
CS 341: Foundations of Computer Science II

Prof. Marvin Nakayama

Homework 5 Solutions

1. Give context-free grammars that generate the following languages. Each context-free
language has infinitely many correct CFGs, but you only need to provide one.

(a) {w ∈ {0,1}∗ | w contains at least three 1s }

Answer: G = (V,Σ, R, S) with set of variables V = {S,X}, where S is the
start variable; set of terminals Σ = {0,1}; and rules

S → X1X1X1X

X → 0X | 1X | ε

(b) {w ∈ {0,1}∗ | w = wR and |w| is even }

Answer: G = (V,Σ, R, S) with set of variables V = {S}, where S is the start
variable; set of terminals Σ = {0,1}; and rules

S → 0S0 | 1S1 | ε

(c) {w ∈ {0,1}∗ | the length of w is odd and the middle symbol is 0 }

Answer: G = (V,Σ, R, S) with set of variables V = {S}, where S is the start
variable; set of terminals Σ = {0,1}; and rules

S → 0S0 | 0S1 | 1S0 | 1S1 | 0

(d) { ai bj ck | i, j, k ≥ 0, and i = j or i = k }

Answer: G = (V,Σ, R, S) with set of variables V = {S,W,X, Y, Z}, where
S is the start variable; set of terminals Σ = {a, b, c}; and rules

S → XY | W

X → aXb | ε

Y → cY | ε

W → aWc | Z

Z → bZ | ε

1

(e) { ai bj ck | i, j, k ≥ 0 and i+ j = k }

Answer: G = (V,Σ, R, S) with set of variables V = {S,X}, where S is the
start variable; set of terminals Σ = {a, b, c}; and rules

S → aSc | X

X → bXc | ε

(f) { ai bj ck | i, j, k ≥ 0 and i+ k = j } [Hint: use problem 3b.]

Answer: Let L = { ai bj ck | i, j, k ≥ 0 and i+ k = j } be the language given
in the problem, and define other languages

L1 = { ai bi | i ≥ 0 },

L2 = { bk ck | k ≥ 0 }.

Note that L = L1 ◦ L2 because concatenating any string aibi ∈ L1 with any
string bkck ∈ L2 results in a string aibibkck = aibi+kck ∈ L. Thus, if L1 has
a CFG G1 = (V1,Σ, R1, S1), and L2 has a CFG G2 = (V2,Σ, R2, S2), we
can construct a CFG for L = L1 ◦ L2 by using the approach in problem 3b, as
suggested in the hint. Specifically,

• L1 has a CFG G1 = (V1,Σ, R1, S1), with V1 = {S1}, Σ = {a, b, c}, S1

as the starting variable, and rules S1 → aS1b | ε in R1;

• L2 has a CFG G2 = (V2,Σ, R2, S2), with V2 = {S2}, Σ = {a, b, c}, S2

as the starting variable, and rules S2 → bS2c | ε in R2.

Even though Σ = {a, b, c} for both CFGs G1 and G2, CFG G1 never generates
a string with c, and CFG G2 never generates a string with a. Then from problem
3b, a CFG G3 = (V3,Σ, R3, S3) for L has V3 = V1∪V2∪{S3} = {S1, S2, S3}
with S3 the starting variable, Σ = {a, b, c}, and rules

S3 → S1S2

S1 → aS1b | ε

S2 → bS2c | ε

(g) { abnacabna | n ≥ 0 }.

Answer: G = (V,Σ, R, S) with set of variables V = {S, T}, where S is the
start variable; set of terminals Σ = {a, b, c}; and rules

S → aTa

T → bT b | aca

2

(h) ∅

Answer: G = (V,Σ, R, S) with set of variables V = {S}, where S is the start
variable; set of terminals Σ = {0,1}; and rules

S → S

Note that if we start a derivation, it never finishes, i.e., S ⇒ S ⇒ S ⇒ · · · , so
no string of terminals is ever produced. Thus, L(G) = ∅.

(i) The language A of strings of properly balanced left and right brackets: every left
bracket can be paired with a unique subsequent right bracket, and every right
bracket can be paired with a unique preceding left bracket. Moreover, the string
between any such pair has the same property. For example, [] [[[] []] []] ∈ A.

Answer: G = (V,Σ, R, S) with set of variables V = {S}, where S is the start
variable; set of terminals Σ = {[,]}; and rules

S → ε | SS | [S]

2. Let T = {0, 1, (,), ∪, ∗, ∅, e }. We may think of T as the set of symbols used by
regular expressions over the alphabet {0,1}; the only difference is that we use e for
symbol ε, to avoid potential confusion in what follows.

(a) Your task is to design a CFG G with set of terminals T that generates exactly
the regular expressions with alphabet {0,1}.

Answer: G = (V,Σ, R, S) with set of variables V = {S}, where S is the start
variable; set of terminals Σ = T ; and rules

S → S ∪ S | SS | S∗ | (S) | 0 | 1 | ∅ | e

(b) Using your CFG G, give a derivation and the corresponding parse tree for the
string (0 ∪ (10)∗1)∗.

Answer: A derivation for (0 ∪ (10)∗1)∗ is

S ⇒ S∗ ⇒ (S)∗ ⇒ (S ∪ S)∗ ⇒ (0 ∪ S)∗ ⇒ (0 ∪ SS)∗ ⇒ (0 ∪ S∗S)∗

⇒ (0 ∪ (S)∗S)∗ ⇒ (0 ∪ (SS)∗S)∗ ⇒ (0 ∪ (1S)∗S)∗

⇒ (0 ∪ (10)∗S)∗ ⇒ (0 ∪ (10)∗1)∗

and the corresponding parse tree is

3

S

S ∗

(S)

S ∪ S

0 S S

S ∗ 1

(S)

S S

1 0

3. (a) Suppose that language A1 has a context-free grammar G1 = (V1,Σ, R1, S1),
and language A2 has a context-free grammar G2 = (V2,Σ, R2, S2), where, for
i = 1,2, Vi is the set of variables, Ri is the set of rules, and Si is the start variable
for CFG Gi. The CFGs have the same set of terminals Σ. Assume that V1∩V2 =
∅. Define another CFG G3 = (V3,Σ, R3, S3) with V3 = V1 ∪ V2 ∪ {S3}, where
S3 6∈ V1 ∪ V2, and R3 = R1 ∪ R2 ∪ {S3 → S1, S3 → S2 }. Argue that G3

generates the language A1 ∪ A2. Thus, conclude that the class of context-free
languages is closed under union.

Answer: Let A3 = A1 ∪ A2, and we need to show that L(G3) = A3. To
do this, we need to prove that L(G3) ⊆ A3 and A3 ⊆ L(G3). To show that
L(G3) ⊆ A3, first consider any string w ∈ L(G3). Since w ∈ L(G3), we

have that S3
∗
⇒ w. Since the only rules in R3 with S3 on the left side are

S3 → S1 | S2, we must have that S3 ⇒ S1
∗
⇒ w or S3 ⇒ S2

∗
⇒ w. Suppose

first that S3 ⇒ S1
∗
⇒ w. Since S1 ∈ V1 and we assumed that V1 ∩ V2 = ∅, the

derivation S1
∗
⇒ w must only use variables in V1 and rules in R1, which implies

that w ∈ A1. Similarly, if S3 ⇒ S2
∗
⇒ w, then we must have that w ∈ A2.

Thus, w ∈ A3 = A1 ∪A2, so L(G3) ⊆ A3.

To show that A3 ⊆ L(G3), first suppose that w ∈ A3. This implies w ∈ A1 or

w ∈ A2. If w ∈ A1, then S1
∗
⇒ w. But then S3 ⇒ S1

∗
⇒ w, so w ∈ L(G3).

4

Similarly, if w ∈ A2, then S2
∗
⇒ w. But then S3 ⇒ S2

∗
⇒ w, so w ∈ L(G3).

Thus, A3 ⊆ L(G3), and since we previously showed that L(G3) ⊆ A3, it follows
that L(G3) = A3; i.e., the CFG G3 generates the language A1 ∪A2.

(b) Prove that the class of context-free languages is closed under concatenation.

Answer: Suppose that languageA1 has a context-free grammarG1 = (V1,Σ, R1, S1),
and language A2 has a context-free grammar G2 = (V2,Σ, R2, S2), where, for
i = 1,2, Vi is the set of variables, Ri is the set of rules, and Si is the start
variable for CFG Gi. The CFGs have the same set of terminals Σ. Assume
that V1 ∩ V2 = ∅. Then a CFG for A1 ◦ A2 is G3 = (V3,Σ, R3, S3) with
V3 = V1∪V2∪{S3}, where S3 6∈ V1∪V2, and R3 = R1∪R2∪{S3 → S1S2 }.

To understand why L(G3) = A1 ◦ A2, note that any string w ∈ A1 ◦ A2 can

be written as w = uv, where u ∈ A1 and v ∈ A2. It follows that S1
∗
⇒ u and

S2
∗
⇒ v, so S3 ⇒ S1S2

∗
⇒ uS2

∗
⇒ uv, so w = uv ∈ L(G3). This proves that

A1 ◦A2 ⊆ L(G3).

To prove that L(G3) ⊆ A1 ◦ A2, consider any string w ∈ L(G3). Since w ∈

L(G3), it follows that S3
∗
⇒ w. The only rule in R3 with S3 on the left side is

S3 → S1S2, so S3 ⇒ S1S2
∗
⇒ w. Since V1 ∩ V2 = ∅, any derivation starting

from S1 can only generate a string in A1, and any derivation starting from S2

can only generate a string in A2. Thus, since S3 ⇒ S1S2
∗
⇒ w, it must be that

w is the concatenation of a string from A1 with a string from A2. Therefore,
w ∈ A1 ◦A2, which establishes that L(G3) ⊆ A1 ◦A2.

(c) Prove that the class of context-free languages is closed under Kleene-star.

Answer: Suppose that languageA has a context-free grammarG1 = (V1,Σ, R1, S1).
Then a CFG for A∗ is G2 = (V2,Σ, R2, S2) with V2 = V1 ∪ {S2}, where
S2 6∈ V1, and R2 = R1 ∪ {S2 → S1S2, S2 → ε }.

To show that L(G2) = A∗, we first prove that A∗ ⊆ L(G2). Consider any
string w ∈ A∗. We can write w = w1w2 · · ·wn for some n ≥ 0, where each
wi ∈ A. (Here, we interpret w = w1w2 · · ·wn for n = 0 to be w = ε.) Since

each wi ∈ A, we have that S1
∗
⇒ wi. To derive the string w using CFG G2, we

first apply the rule S2 → S1S2 a total of n times, followed by one application of

the rule S2 → ε. Then for the ith S1, we use S1
∗
⇒ wi. Thus, we get

S2
∗
⇒ S1S1 · · ·S1
︸ ︷︷ ︸

n times

S2 ⇒ S1S1 · · ·S1
︸ ︷︷ ︸

n times

∗
⇒ w1w2 · · ·wn = w

Therefore, w ∈ L(G2), so A∗ ⊆ L(G2).

To show that L(G2) ⊆ A∗, suppose we apply the rule S → S1S2 a total of
n ≥ 0 times, followed by an application of the rule S2 → ε. This gives

S2
∗
⇒ S1S1 · · ·S1
︸ ︷︷ ︸

n times

S2 ⇒ S1S1 · · ·S1
︸ ︷︷ ︸

n times

.

5

Now each of the variables S1 can be used to derive a string wi ∈ A, i.e., from the

ith S1, we get S1
∗
⇒ wi. Thus,

S2
∗
⇒ S1S1 · · ·S1
︸ ︷︷ ︸

n times

∗
⇒ w1w2 · · ·wn ∈ A∗

since each wi ∈ A. Therefore, we end up with a string in A∗. To convince
ourselves that the productions applied to the various separate S1 terms do not
interfere in undesired ways, we need only think of the parse tree. Each S1 is the
root of a distinct branch, and the rules along one branch do not affect those on
another. Here, we assumed that we first applied the rule S2 → S1S2 a total of
n times, then applied the rule S2 → ε, and then applied rules to change each
S1 into strings. However, we could have applied the rules in a different order, as
long as the rule S2 → ε is applied only after the n applications of S2 → S1S2.
By examining the parse tree, we can argue as before that the order in which we
applied the rules doesn’t matter.

4. Convert the following CFG into an equivalent CFG in Chomsky normal form, using
the procedure given in Theorem 2.9.

S → BSB | B | ε

B → 00 | ε

Answer: First introduce new start variable S0 and the new rule S0 → S, which gives

S0 → S

S → BSB | B | ε

B → 00 | ε

Then we remove ε rules:

• Removing B → ε yields

S0 → S

S → BSB | BS | SB | S | B | ε

B → 00

• Removing S → ε yields

S0 → S | ε

S → BSB | BS | SB | S | B | BB

B → 00

• We don’t need to remove the ε-rule S0 → ε since S0 is the start variable and
that is allowed in Chomsky normal form.

6

Then we remove unit rules:

• Removing S → S yields

S0 → S | ε

S → BSB | BS | SB | B | BB

B → 00

• Removing S → B yields

S0 → S | ε

S → BSB | BS | SB | 00 | BB

B → 00

• Removing S0 → S gives

S0 → BSB | BS | SB | 00 | BB | ε

S → BSB | BS | SB | 00 | BB

B → 00

Then we replaced ill-placed terminals 0 by variable U with new rule U → 0, which
gives

S0 → BSB | BS | SB | UU | BB | ε

S → BSB | BS | SB | UU | BB

B → UU

U → 0

Then we shorten rules with a long RHS to a sequence of RHS’s with only 2 variables
each. So the rule S0 → BSB is replaced by the 2 rules S0 → BA1 and A1 → SB.
Also the rule S → BSB is replaced by the 2 rules S → BA2 and A2 → SB. Thus,
our final CFG in Chomsky normal form is

S0 → BA1 | BS | SB | UU | BB | ε

S → BA2 | BS | SB | UU | BB

B → UU

U → 0

A1 → SB

A2 → SB

To be precise, the CFG in Chomsky normal form is G = (V,Σ, R, S0), where the set
of variables is V = {S0, S,B, U,A1, A2}, the start variable is S0, the set of terminals
is Σ = {0}, and the rules R are given above.

7

5. Consider the CFG G = (V,Σ, R, S), where V = {S } is the set of variables with S
as the starting variable, alphabet Σ = {+,−,×, /, (,),0,1,2, . . . ,9 }, and rules R
as

S → S + S | S − S | S × S | S/S | (S) | −S | 0 | 1 | · · · | 9

The CFG G generates the language L(G) of some types of simple arithmetic expres-
sions.

(a) Consider the strings −−−5 and 2+−−4. Give derivations showing that each
string belongs to L(G).

Answer: The CFG G derives the string −−−5 as

S ⇒ −S ⇒ −− S ⇒ −−−S ⇒ −−−5

so −−−5 ∈ L(G). The CFG G derives the string 2+−− 4 as

S ⇒ S + S ⇒ S +−S ⇒ S +−− S ⇒ 2+−− S ⇒ 2+−− 4

so 2+−− 4 ∈ L(G).

(b) Suppose that we want to disallow such strings. Give another CFG that achieves
this. More specifically, strings such as 2 − 3, 2 + −3 and 2 − −3 are allowed,
but not 2+−− 3 nor 2−−− 3.

Answer: To prevent generating strings such as in part (a), we can use the CFG
G′ = (V ′,Σ, R′, S), where V ′ = {S,N } is the set of variables with S as the
starting variable, alphabet Σ = {+,−,×, /, (,),0,1,2, . . . ,9 }, and rules R′

as

S → S + S | S − S | S × S | S/S | (S) | N | −N

N → 0 | 1 | · · · | 9

8

