Homework 5

- 1. Give context-free grammars that generate the following languages.
 - (a) $\{w \in \{0, 1\}^* \mid w \text{ contains at least three } 1s\}$
 - (b) $\{ w \in \{0, 1\}^* \mid w = w^{\mathcal{R}} \text{ and } |w| \text{ is even } \}$
 - (c) { $w \in \{0, 1\}^*$ | the length of w is odd and the middle symbol is 0 }
 - (d) $\{a^i b^j c^k \mid i, j, k \ge 0, \text{ and } i = j \text{ or } i = k\}$
 - (e) $\{a^i b^j c^k \mid i, j, k \ge 0 \text{ and } i + j = k \}$
 - (f) $\{a^i b^j c^k \mid i, j, k \ge 0 \text{ and } i + k = j\}$. [Hint: use problem 3b.]
 - (g) $\{ab^n a c a b^n a \mid n \ge 0\}.$
 - (h) Ø
 - (i) The language A of strings of properly balanced left and right brackets: every left bracket can be paired with a unique subsequent right bracket, and every right bracket can be paired with a unique preceding left bracket. Moreover, the string between any such pair has the same property. For example, $[][[]][]] \in A$.
- 2. Let $T = \{0, 1, (,), \cup, *, \emptyset, e\}$. We may think of T as the set of symbols used by regular expressions over the alphabet $\{0, 1\}$; the only difference is that we use e for symbol ε , to avoid potential confusion in what follows.
 - (a) Your task is to design a CFG G with set of terminals T that generates exactly the regular expressions with alphabet $\{0, 1\}$.
 - (b) Using your CFG G, give a derivation and the corresponding parse tree for the string (0 ∪ (10)*1)*.
- 3. (a) Suppose that language A₁ has a context-free grammar G₁ = (V₁, Σ, R₁, S₁), and language A₂ has a context-free grammar G₂ = (V₂, Σ, R₂, S₂), where, for i = 1, 2, V_i is the set of variables, R_i is the set of rules, and S_i is the start variable for CFG G_i. The CFGs have the same set of terminals Σ. Assume that V₁ ∩ V₂ = Ø. Define another CFG G₃ = (V₃, Σ, R₃, S₃) with V₃ = V₁ ∪ V₂ ∪ {S₃}, where S₃ ∉ V₁ ∪ V₂, and R₃ = R₁ ∪ R₂ ∪ {S₃ → S₁, S₃ → S₂}. Argue that G₃ generates the language A₁ ∪ A₂. Thus, conclude that the class of context-free languages is closed under union.
 - (b) Prove that the class of context-free languages is closed under concatenation.

- (c) Prove that the class of context-free languages is closed under Kleene-star.
- 4. Convert the following CFG into an equivalent CFG in Chomsky normal form, using the procedure given in Theorem 2.9.

$$\begin{array}{rrrr} S & \rightarrow & BSB \mid B \mid \varepsilon \\ B & \rightarrow & 00 \mid \varepsilon \end{array}$$

5. Consider the CFG $G = (V, \Sigma, R, S)$, where $V = \{S\}$ is the set of variables with S as the starting variable, alphabet $\Sigma = \{+, -, \times, /, (,), 0, 1, 2, \dots, 9\}$, and rules R as

 $S \rightarrow S + S \mid S - S \mid S \times S \mid S/S \mid (S) \mid -S \mid 0 \mid 1 \mid \cdots \mid 9$

The CFG G generates the language L(G) of some types of simple arithmetic expressions.

- (a) Consider the strings --5 and 2+-4. Give derivations showing that each string belongs to L(G).
- (b) Suppose that we want to disallow such strings. Give another CFG that achieves this. More specifically, strings such as 2 3, 2 + -3 and 2 -3 are allowed, but not 2 + -3 nor 2 -3.