Homework 5

1. Give context-free grammars that generate the following languages.
(a) $\left\{w \in\{0,1\}^{*} \mid w\right.$ contains at least three 1 s$\}$
(b) $\left\{w \in\{0,1\}^{*} \mid w=w^{\mathcal{R}}\right.$ and $|w|$ is even $\}$
(c) $\left\{w \in\{0,1\}^{*} \mid\right.$ the length of w is odd and the middle symbol is 0$\}$
(d) $\left\{a^{i} b^{j} c^{k} \mid i, j, k \geq 0\right.$, and $i=j$ or $\left.i=k\right\}$
(e) $\left\{a^{i} b^{j} c^{k} \mid i, j, k \geq 0\right.$ and $\left.i+j=k\right\}$
(f) $\left\{a^{i} b^{j} c^{k} \mid i, j, k \geq 0\right.$ and $\left.i+k=j\right\}$. [Hint: use problem 3b.]
(g) $\left\{a b^{n} a c a b^{n} a \mid n \geq 0\right\}$.
(h) \emptyset
(i) The language A of strings of properly balanced left and right brackets: every left bracket can be paired with a unique subsequent right bracket, and every right bracket can be paired with a unique preceding left bracket. Moreover, the string between any such pair has the same property. For example, [][[[][]][]] $\in A$.
2. Let $T=\left\{0,1,(),, \cup,{ }^{*}, \emptyset, e\right\}$. We may think of T as the set of symbols used by regular expressions over the alphabet $\{0,1\}$; the only difference is that we use e for symbol ε, to avoid potential confusion in what follows.
(a) Your task is to design a CFG G with set of terminals T that generates exactly the regular expressions with alphabet $\{0,1\}$.
(b) Using your CFG G, give a derivation and the corresponding parse tree for the string ($\left.0 \cup(10)^{*} 1\right)^{*}$.
3. (a) Suppose that language A_{1} has a context-free grammar $G_{1}=\left(V_{1}, \Sigma, R_{1}, S_{1}\right)$, and language A_{2} has a context-free grammar $G_{2}=\left(V_{2}, \Sigma, R_{2}, S_{2}\right)$, where, for $i=1,2, V_{i}$ is the set of variables, R_{i} is the set of rules, and S_{i} is the start variable for CFG G_{i}. The CFGs have the same set of terminals Σ. Assume that $V_{1} \cap V_{2}=$ \emptyset. Define another CFG $G_{3}=\left(V_{3}, \Sigma, R_{3}, S_{3}\right)$ with $V_{3}=V_{1} \cup V_{2} \cup\left\{S_{3}\right\}$, where $S_{3} \notin V_{1} \cup V_{2}$, and $R_{3}=R_{1} \cup R_{2} \cup\left\{S_{3} \rightarrow S_{1}, S_{3} \rightarrow S_{2}\right\}$. Argue that G_{3} generates the language $A_{1} \cup A_{2}$. Thus, conclude that the class of context-free languages is closed under union.
(b) Prove that the class of context-free languages is closed under concatenation.
(c) Prove that the class of context-free languages is closed under Kleene-star.
4. Convert the following CFG into an equivalent CFG in Chomsky normal form, using the procedure given in Theorem 2.9.

$$
\begin{aligned}
& S \rightarrow B S B|B| \varepsilon \\
& B \rightarrow 00 \mid \varepsilon
\end{aligned}
$$

5. Consider the CFG $G=(V, \Sigma, R, S)$, where $V=\{S\}$ is the set of variables with S as the starting variable, alphabet $\Sigma=\{+,-, \times, /,(), 0,1,2,, \ldots, 9\}$, and rules R as

$$
S \rightarrow S+S|S-S| S \times S|S / S|(S)|-S| 0|1| \cdots \mid 9
$$

The CFG G generates the language $L(G)$ of some types of simple arithmetic expressions.
(a) Consider the strings ---5 and $2+--4$. Give derivations showing that each string belongs to $L(G)$.
(b) Suppose that we want to disallow such strings. Give another CFG that achieves this. More specifically, strings such as $2-3,2+-3$ and $2--3$ are allowed, but not $2+--3$ nor $2---3$.

