
CS 341: Foundations of Computer Science II

Prof. Marvin Nakayama

Homework 6 Solutions

1. Give pushdown automata that recognize the following languages. For each PDA, give
both a state diagram and 6-tuple specification. Every context-free language has in-
finitely many (correct) PDAs, but you only need to give one.

(a) A = {w ∈ {0,1}∗ | w contains at least three 1s }

Answer:

q1 q2 q3 q4

0, ε → ε

1, ε → ε

0, ε → ε

1, ε → ε

0, ε → ε

1, ε → ε

0, ε → ε

1, ε → ε

We formally express the PDA as a 6-tuple (Q,Σ,Γ, δ, q1, F), where

• Q = {q1, q2, q3, q4}

• Σ = {0,1}

• Γ = {0,1}

• transition function δ : Q×Σε × Γε → P(Q× Γε) is defined by

Input: 0 1 ε

Stack: 0 1 ε 0 1 ε 0 1 ε

q1 { (q1, ε) } { (q2, ε) }
q2 { (q2, ε) } { (q3, ε) }
q3 { (q3, ε) } { (q4, ε) }
q4 { (q4, ε) } { (q4, ε) }

Blank entries are ∅.

• q1 is the start state

• F = {q4}

Note that A is a regular language, so the language has a DFA. We can easily
convert the DFA into a PDA by using the same states and transitions and never
push nor pop anything to/from the stack.

1

(b) B = {w ∈ {0,1}∗ | w = wR and the length of w is odd }

Answer:

q1 q2 q3 q4
ε, ε → $

0, ε → 0
1, ε → 1

0, ε → ε

1, ε → ε

0, 0 → ε

1, 1 → ε

ε, $ → ε

Since the length of any string w ∈ B is odd, w must have a symbol exactly in the
middle position; i.e., |w| = 2n+ 1 for some n ≥ 0, and the (n+ 1)th symbol
in w is the middle one. If a string w of length 2n + 1 satisfies w = wR, the
first n symbols must match (in reverse order) the last n symbols, and the middle
symbol doesn’t have to match anything. Thus, in the above PDA, the transition
from q2 to itself reads the first n symbols and pushes these on the stack. The
transition from q2 to q3 nondeterministically identifies the middle symbol of w,
which doesn’t need to match any symbol, so the stack is unaltered. The transition
from q3 to itself then reads the last n symbols of w, popping the stack at each step
to make sure the symbols after the middle match (in reverse order) the symbols
before the middle.

We formally express the PDA as a 6-tuple (Q,Σ,Γ, δ, q1, F), where

• Q = {q1, q2, q3, q4}

• Σ = {0,1}

• Γ = {0,1,$} (use $ to mark bottom of stack)

• transition function δ : Q×Σε × Γε → P(Q× Γε) is defined by

Input: 0 1 ε

Stack: 0 1 $ ε 0 1 $ ε 0 1 $ ε

q1 { (q2,$) }
q2 { (q2,0), (q3, ε) } { (q2,1), (q3, ε) }
q3 { (q3, ε) } { (q3, ε) } { (q4, ε) }
q4

Blank entries are ∅.

• q1 is the start state

• F = {q4}

(c) C = {w ∈ {0,1}∗ | w = wR }

Answer:

2

q1 q2 q3 q4
ε, ε → $

0, ε → 0
1, ε → 1

ε, ε → ε

0, ε → ε

1, ε → ε

0, 0 → ε

1, 1 → ε

ε, $ → ε

The length of a string w ∈ C can be either even or odd. If it’s even, then there
is no middle symbol in w, so the first half of w is pushed on the stack, we move
from q2 to q3 without reading, pushing, or popping anything, and then match
the second half of w to the first half in reverse order by popping the stack. If the
length of w is odd, then there is a middle symbol in w, and the description of the
PDA in part (b) applies.

We formally express the PDA as a 6-tuple (Q,Σ,Γ, δ, q1, F), where

• Q = {q1, q2, q3, q4}

• Σ = {0,1}

• Γ = {0,1,$} (use $ to mark bottom of stack)

• transition function δ : Q×Σε × Γε → P(Q× Γε) is defined by

Input: 0 1 ε

Stack: 0 1 $ ε 0 1 $ ε 0 1 $ ε

q1 { (q2,$) }
q2 { (q2,0), (q3, ε) } { (q2,1), (q3, ε) } { (q3, ε) }
q3 { (q3, ε) } { (q3, ε) } { (q4, ε) }
q4

Blank entries are ∅.

• q1 is the start state

• F = {q1, q4}

(d) D = { ai bj ck | i, j, k ≥ 0, and i = j or j = k }

Answer:

q1

q2 q3 q4

q5 q6 q7 q8

ε, ε → $
ε, ε → ε

ε, ε → $

a, ε → a b, a → ε

ε, $ → ε

c, ε → ε

ε, ε → ε

a, ε → ε

ε, ε → ε

b, ε → b c, b → ε

ε, $ → ε

3

The PDA has a nondeterministic branch at q1. If the string is aibjck with i = j,
then the PDA takes the branch from q1 to q2. If the string is aibjck with j = k,
then the PDA takes the branch from q1 to q5.

We formally express the PDA as a 6-tuple (Q,Σ,Γ, δ, q1, F), where

• Q = {q1, q2, . . . , q8}

• Σ = {a, b, c}

• Γ = {a, b,$} (use $ to mark bottom of stack)

• transition function δ : Q×Σε × Γε → P(Q× Γε) is defined by

Input: a b c ε
Stack: a b c $ ε a b c $ ε a b c $ ε a b c $ ε

q1 { (q2,$), (q5,$) }
q2 { (q2, a) } { (q3, ε) }
q3 { (q3, ε) } { (q4, ε) }
q4 { (q4, ε) }
q5 { (q5, ε) } { (q6, ε) }
q6 { (q6, b) } { (q7, ε) }
q7 { (q7, ε) } { (q8, ε) }
q8

Blank entries are ∅.

• q1 is the start state

• F = {q4, q8}

(e) E = { ai bj ck | i, j, k ≥ 0 and i+ j = k }

Answer:

q1 q2 q3 q4 q5
ε, ε → $ ε, ε → ε

a, ε → x b, ε → x

ε, ε → ε

c, x → ε

ε, $ → ε

For every a and b read in the first part of the string, the PDA pushes an x onto
the stack. Then it must read a c for each x popped off the stack.

We formally express the PDA as a 6-tuple (Q,Σ,Γ, δ, q1, F), where

• Q = {q1, q2, . . . , q5}

• Σ = {a, b, c}

• Γ = {x,$} (use $ to mark bottom of stack)

• transition function δ : Q×Σε × Γε → P(Q× Γε) is defined by

Input: a b c ε

Stack: x $ ε x $ ε x $ ε x $ ε

q1 { (q2,$) }
q2 { (q2, x) } { (q3, ε) }
q3 { (q3, x) } { (q4, ε) }
q4 { (q4, ε) } { (q5, ε) }
q5

4

Blank entries are ∅.

• q1 is the start state

• F = {q5}

(f) F = { a2nb3n | n ≥ 0 }

Answer:

q1 q2

q3

q4

q5 q6

q7
ε, ε → $

a, ε → ε
a, ε → x

ε, ε → ε

b, ε → ε

b, ε → ε

b, x → ε

ε, $ → ε

The PDA pushes a single x onto the stack for every 2 a’s read at the beginning
of the string. Then it pops a single x for every 3 b’s read at the end of the string.

We formally express the PDA as a 6-tuple (Q,Σ,Γ, δ, q1, F), where

• Q = {q1, q2, . . . , q7}

• Σ = {a, b}

• Γ = {x,$} (use $ to mark bottom of stack)

• transition function δ : Q×Σε × Γε → P(Q× Γε) is defined by

Input: a b ε

Stack: x $ ε x $ ε x $ ε

q1 { (q2,$) }
q2 { (q3, ε) } { (q4, ε) }
q3 { (q2, x) }
q4 { (q5, ε) } { (q7, ε) }
q5 { (q6, ε) }
q6 { (q4, ε) }
q7

Blank entries are ∅.

• q1 is the start state

• F = {q7}

5

(g) H = { ai bj ck | i, j, k ≥ 0 and i+ k = j }

Answer: A PDA M for H is as follows:

q1 q2 q3 q4 q5 q6
ε, ε → $ ε, ε → ε

a, ε → x b, x → ε

ε, $ → $

b, ε → x

ε, ε → ε

c, x → ε

ε, $ → ε

We formally express the PDA for H as a 6-tuple M = (Q,Σ,Γ, δ, q1, F), where

• Q = {q1, q2, . . . , q6}

• Σ = {a, b, c}

• Γ = {x,$} (use $ to mark bottom of stack)

• transition function δ : Q×Σε × Γε → P(Q× Γε) is defined by

Input: a b c ε

Stack: x $ ε x $ ε x $ ε x $ ε

q1 { (q2,$) }

q2 { (q2, x) } { (q3, ε) }

q3 { (q3, ε) } { (q4,$) }

q4 { (q4, x) } { (q5, ε) }

q5 { (q5, ε) } { (q6, ε) }

q6

Blank entries are ∅.

• q1 is the start state

• F = {q6}

To explain the PDA M for H = { ai bj ck | i, j, k ≥ 0 and i+ k = j }, note
that H = L1 ◦ L2 for

L1 = { ai bi | i ≥ 0 },

L2 = { bk ck | k ≥ 0 },

because concatenating any string aibi ∈ L1 with any string bkck ∈ L2 results in
a string aibibkck = aibi+kck ∈ H . Thus, for a string aibjck ∈ H , the number i

of a’s at the beginning has to be no more than the number j of b’s in the middle
(because i + k = j implies i ≤ j), and the remaining number j − i of b’s in
the middle must match the number k of c’s at the end. Hence, if we have PDAs
M1 and M2 for L1 and L2, respectively, then we can then build a PDA for H by
connecting M1 and M2 so that M1 processes the first part of the string aibi, and
M2 processes the second part of the string bkck. A PDA M1 for L1 is

q′1 q′2 q′3 q′4
ε, ε → $ ε, ε → ε

a, ε → x b, x → ε

ε, $ → ε

6

(Another PDA for L1 is given slide 2-38 of the notes.) Similarly, a PDA M2 for
L2 is

q′′1 q′′2 q′′3 q′′4
ε, ε → $ ε, ε → ε

b, ε → x c, x → ε

ε, $ → ε

But in connecting the two PDAs M1 and M2 to get a PDA M for H , we need
to make sure the stack is empty after M1 finishes processing the first part of
the string and before M2 starts processing the second part of the string. This
is accomplished in the PDA M for H by the transition from q3 to q4 with label
“ε,$ → $”.

(h) L = { abnacabna | n ≥ 0 }.

Answer: A PDA M for L is as follows:

q1 q2 q3 q4 q5 q6
a, ε → a a, ε → ε

b, ε → b

c, ε → ε a, ε → ε

b, b → ε

a, a → ε

We formally express the PDA for L as a 6-tuple M = (Q,Σ,Γ, δ, q1, F), where

• Q = {q1, q2, . . . , q6}

• Σ = {a, b, c}

• Γ = {a, b} (use a to mark bottom of stack)

• transition function δ : Q×Σε × Γε → P(Q× Γε) is defined by

Input: a b c ε

Stack: a b ε a b ε a b ε a b ε

q1 { (q2, a) }

q2 { (q3, ε) } { (q2, b) }

q3 { (q4, ε) }

q4 { (q5, ε) }

q5 { (q6, ε) } { (q5, ε) }

q6

Blank entries are ∅.

• q1 is the start state

• F = {q6}

(i) ∅, with Σ = {0,1}

Answer:

7

q1

Because the PDA has no accept states, the PDA accepts no strings; i.e., the PDA
recognizes the language ∅.

We formally express the PDA as a 6-tuple (Q,Σ,Γ, δ, q1, F), where

• Q = {q1}

• Σ = {0,1}

• Γ = {x}

• transition function δ : Q×Σε × Γε → P(Q× Γε) is defined by

Input: 0 1 ε

Stack: x ε x ε x ε

q1

Blank entries are ∅.

• q1 is the start state

• F = ∅

(j) The language J of strings of properly balanced left and right brackets: every left
bracket can be paired with a unique subsequent right bracket, and every right
bracket can be paired with a unique preceding left bracket. Moreover, the string
between any such pair has the same property. For example, [] [[[] []] []] ∈ J .

Answer:

q1 q2 q3
ε, ε → $

[, ε → [
], [→ ε

ε, $ → ε

We formally express the PDA as a 6-tuple (Q,Σ,Γ, δ, q1, F), where

• Q = {q1, q2, q3}

• Σ = { [,] }

• Γ = { [, $ } (use $ to mark bottom of stack)

• transition function δ : Q×Σε × Γε → P(Q× Γε) is defined by

Input: [] ε

Stack: [$ ε [$ ε [$ ε

q1 { (q2,$) }
q2 { (q2, [) } { (q2, ε) } { (q3, ε) }
q3

8

Blank entries are ∅.

• q1 is the start state

• F = {q3}

2. (a) Example 2.36 of the Sipser’s book (also see slides 2-96 and 2-97 of the notes)
proves that the language { anbncn | n ≥ 0 } is not context-free. Use this and the
languages

A = { ambncn | m,n ≥ 0 } and

B = { anbncm | m,n ≥ 0 }

to show that the class of context-free languages is not closed under intersection.

Answer: The language A is context free since it has CFG G1 with rules

S → XY

X → aX | ε

Y → bY c | ε

The language B is context free since it has CFG G2 with rules

S → XY

X → aXb | ε

Y → cY | ε

But A ∩ B = { anbncn | n ≥ 0}, which we know is not context free from
Example 2.36 of the textbook. Thus, the class of context-free languages is not
closed under intersection.

(b) Recall DeMorgan’s law (Theorem 0.20 of the textbook): for any two sets A and

B, A ∪B = A ∩B. Use part (a) and DeMorgan’s law to show that the class of
context-free languages is not closed under complementation.

Answer: We will use a proof by contradiction, so we first assume the opposite
of what we want to show; i.e., suppose the following is true:

R1. The class of context-free languages is closed under complementation.

Define the context-free languages A and B as in the previous part. Then R1
implies A and B are context-free. We know the class of context-free languages is
closed under union, as shown on slide 2-101, so we then must have that A∪B is

context-free. Then again apply R1 to conclude that A ∪B is context-free. Now

DeMorgan’s law states that A∩B = A ∪B, but we showed in the previous part
that A ∩B is not context-free, which is a contradiction. Therefore, R1 must not
be true.

9

3. (Optional) Consider the following CFG G = (V,Σ, R, S), where V = {S, T,X},
Σ = {a, b}, the start variable is S, and the rules R are

S → aTXb

T → XTS | ε

X → a | b

Convert G to an equivalent PDA using the procedure given in Lemma 2.21.

Answer: First we create a PDA for G that allows for pushing strings onto the stack:

q1 q2 q3
ε, ε → S$

ε, S → aTXb

ε, T → XTS

ε, T → ε

ε, X → a

ε, X → b

a, a → ε

b, b → ε

ε, $ → ε

Then we need to fix the non-compliant transitions, i.e., the ones for which a string of
length more than 1 is pushed onto the stack. The only non-compliant transitions are
the first two from q2 back to itself, and the transition from q1 to q2. Fixing these gives
the following PDA:

q1 r q2

t u

v x y

q3
ε, ε → $ ε, ε → S

ε, T → S

ε, ε → T

ε, ε → Xε, S → b

ε, ε → X ε, ε → T

ε, ε → a

ε, T → ε

ε, X → a

ε, X → b

a, a → ε

b, b → ε

ε, $ → ε

10

4. Each of the languages in the parts below is of one of following three types:

Type REG. It is regular.
Type CFL. It is context-free, but not regular.
Type NCFL. It is not context-free.

For each of the following languages, specify which type it is. Also follow these instruc-
tions:

• If a language L is of Type REG, give a regular expression and a DFA for L. For
your DFA, give both a state diagram and 5-tuple description.

• If a language L is of Type CFL, give a context-free grammar and a PDA for L.
Be sure to give a 4-tuple description for your CFG. For your PDA, give both a
state diagram and 6-tuple description. Also, prove that L is not regular.

• If a language L is of Type NCFL, prove that L is not context-free.

(a) A = {02i 13j 0k | i, j, k ≥ 0, and i = j = k }.

Answer: Language A is of type NCFL. To prove this, assume for a contradiction
that A is a CFL, and note that we can write A as A = {02n 13n 0n | n ≥ 0 }.
Let p be the pumping length of the pumping lemma for CFLs (Theorem 2.34),
and consider string s = 02p13p0p ∈ A. Note that |s| = 6p > p, so the pumping
lemma will hold. Thus, there exist strings u, v, x, y, z such that s = uvxyz =
02p13p0p, uvixyiz ∈ A for all i ≥ 0, and |vy| ≥ 1. We now consider all of the
possible choices for v and y:

• Suppose strings v and y are uniform (e.g., v = 0j for some j ≥ 0, and
y = 1k for some k ≥ 0). Then |vy| ≥ 1 implies that j ≥ 1 or k ≥ 1 (or
both), so uv2xy2z won’t have the correct number of 0’s at the beginning, 1’s
in the middle, and 0’s at the end since only at most two groups of symbols
are changed, not all three groups. Hence, uv2xy2z 6∈ A.

• Now suppose strings v and y are not both uniform. Then uv2xy2z will not
have the form 0 · · ·01 · · ·10 · · ·0. Hence, uv2xy2z 6∈ A.

Thus, there are no options for v and y such that uvixyiz ∈ A for all i ≥ 0. This
is a contradiction, so A is not a CFL.

(b) B = {02i 13j 0k | i, j, k ≥ 0 }.

Answer: Language B is of type REG. This is because there is no relationship
among i, j, and k in 02i13j0k in the specification of B. A regular expression forB
is (00)∗(111)∗(0)∗; there are infinitely many other correct regular expressions
for B.

Although coming up directly with a DFA for B is a bit tricky, designing an NFA
N for B is easier. We will then convert N into a DFA D for B. An NFA N for
B is as follows:

11

q1

q2

q3

q4 q5

q6

0
0

ε

1

1

1

ε

0

We now convert N into a DFA D using the algorithm in the proof of Theorem
1.39 to get the state diagram

1,3,6 2,6

4 ∅

5

3,6

6

0

1

0

1

0

1

1

0

0

1

0

1

0,1

The 5-tuple description of D is D = (Q,Σ, δ, q1,3,6, F), with

• Q = {q1,3,6, q2,6, q4, q∅, q5, q6, q3,6},

• Σ = {0,1},

• start state q1,3,6,

• set of accepting states F = {q1,3,6, q2,6, q6, q3,6},

12

• transition function δ:
0 1

q1,3,6 q2,6 q4
q2,6 q1,3,6 q∅
q4 q∅ q5
q∅ q∅ q∅
q5 q∅ q3,6
q6 q6 q∅
q3,6 q6 q4

There are infinitely many other correct DFAs for B.

(c) C = {02i 13j 0k | i, j, k ≥ 0, and i = k }.

Answer: Language C is of type CFL. Strings in C have twice as many 0s at the
beginning of the string as at the end of the string. The 1s in the middle do not
have to match anything, but the number of them must be a multiple of 3.

A CFG for C is G = (V,Σ, R, S) with V = {S,X } with S the start variable,
Σ = {0,1 }, and rules in R as

S → 00S0 | X

X → 111X | ε

There are infinitely many other correct CFGs for C. A PDA for C is

q1 q2

q3

q4

q5 q6

q7 q8
ε, ε → $

0, ε → ε

ε, ε → ε

0, ε → x

1, ε → ε

ε, ε → ε

1, ε → ε

1, ε → ε

0, x → ε

ε, $ → ε

Strings in C have twice as many 0s at the beginning of the string as at the end of
the string. The PDA handles this by pushing only a single x from reading two 0s
in q2 and q3, and pops a single x for every 0 read in q7. Because the number of 1s
in the middle doesn’t have to match anything, the transitions among q4, q5, and
q6 do not pop/push anything from/to the stack. There are infinitely many other
correct PDAs for C. The 6-tuple description of the PDA is (Q,Σ,Γ, δ, q1, F),
where

• Q = {q1, q2, . . . , q8}

• Σ = {0,1}

13

• Γ = {x,$} (use $ to mark bottom of stack)

• transition function δ : Q×Σε × Γε → P(Q× Γε) is defined by

Input: 0 1 ε

Stack: x $ ε x $ ε x $ ε

q1 { (q2,$) }
q2 { (q3, ε) } { (q4, ε) }
q3 { (q2, x) }
q4 { (q5, ε) } { (q7, ε) }
q5 { (q6, ε) }
q6 { (q4, ε) }
q7 { (q7, ε) } { (q8, ε) }
q8

Blank entries are ∅.

• q1 is the start state

• F = {q8}

There are infinitely many other correct PDAs for C.

We now prove that C is nonregular. For a contradiction, suppose that C is
regular, and let p be the pumping length in the pumping lemma for regular
languages (Theorem 1.70). Consider the string s = 02p1110p ∈ C, where
|s| = 3p+3 ≥ p, so the conclusions of the pumping lemma for regular languages
will hold: we can split s = xyz with (i) xyiz ∈ C for all i ≥ 0, (ii) |y| > 0,
and (iii) |xy| ≤ p. Property (iii) implies that x and y are solely contained in the
first p of the 0s in s, and z is the rest of the first group of 0s followed by 1110p.
Specifically, we can write

x = 0j for some j ≥ 0,

y = 0k for some k ≥ 0,

z = 0l1110p for some l ≥ 0, .

Because 02p1110p = s = xyz = 0j0k0l1110p = 0j+k+l1110p, we get that
j+k+ l = 2p. Also, property (ii) implies that k ≥ 1. By property (i), we must
have that xyyz ∈ C, but

xyyz = 0j0k0k0l1110p = 02p+k1110p 6∈ C

because j + k + l = 2p and k ≥ 1. Since xyyz 6∈ C, this contradicts the
pumping lemmma for regular languages, so C is not regular.

5. The Turing machine M below recognizes the language A = {02n | n ≥ 0 }.

14

q1 q2 q3

q4

q5

qreject qaccept

0 → xy, R 0 → x,R

xy→ xy, L

xy→ xy, R

0 → 0, L
x → x, L

x → x,R

x → x,R

xy→ xy, R

x → x,R xy→ xy, R
0 → x,R

0 → 0, R

x → x,Rxy→ xy, R

In each of the parts below, give the sequence of configurations that M enters when
started on the indicated input string.

(a) 00

Answer: q100 xyq20 xyxq3xy xyq5x q5xyx xyq2x xyxq2xy xyxxyqaccept

(b) 000000

Answer: q1000000 xyq200000 xyxq30000 xyx0q4000
xyx0xq300 xyx0x0q40 xyx0x0xq3xy xyx0x0q5x xyx0xq50x
xyx0q5x0x xyxq50x0x xyq5x0x0x q5xyx0x0x xyq2x0x0x
xyxq20x0x xyxxq3x0x xyxxxq30x xyxxx0q4x xyxxx0xq4xy
xyxxx0xxyqreject

15

