Homework 6

- 1. Give pushdown automata that recognize the following languages. Give both a drawing and 6-tuple specification for each PDA.
 - (a) $A = \{ w \in \{0, 1\}^* \mid w \text{ contains at least three } 1s \}$
 - (b) $B = \{ w \in \{0, 1\}^* \mid w = w^{\mathcal{R}} \text{ and the length of } w \text{ is odd } \}$
 - (c) $C = \{ w \in \{0, 1\}^* \mid w = w^{\mathcal{R}} \}$
 - (d) $D = \{ a^i b^j c^k \mid i, j, k \ge 0, \text{ and } i = j \text{ or } j = k \}$
 - (e) $E = \{ a^i b^j c^k \mid i, j, k \ge 0 \text{ and } i + j = k \}$
 - (f) $F = \{ a^{2n} b^{3n} \mid n \ge 0 \}$
 - (g) $H = \{ a^i b^j c^k \mid i, j, k \ge 0 \text{ and } i + k = j \}$
 - (h) $L = \{ ab^n a c a b^n a \mid n \ge 0 \}.$
 - (i) \emptyset , with $\Sigma = \{0, 1\}$
 - (j) The language J of strings of properly balanced left and right brackets: every left bracket can be paired with a unique subsequent right bracket, and every right bracket can be paired with a unique preceding left bracket. Moreover, the string between any such pair has the same property. For example, $[][[]][]] \in J$.
- 2. (a) Use the languages

$$A = \{ a^m b^n c^n \mid m, n \ge 0 \} \text{ and}$$
$$B = \{ a^n b^n c^m \mid m, n \ge 0 \}$$

together with Example 2.36 of the textbook to show that the class of context-free languages is not closed under intersection.

- (b) Use part (a) and DeMorgan's law (Theorem 0.20 of the textbook) to show that the class of context-free languages is not closed under complementation.
- 3. (Optional) Consider the following CFG $G = (V, \Sigma, R, S)$, where $V = \{S, T, X\}$, $\Sigma = \{a, b\}$, the start variable is S, and the rules R are

$$\begin{array}{rcl} S & \rightarrow & aTXb \\ T & \rightarrow & XTS \mid \varepsilon \\ X & \rightarrow & a \mid b \end{array}$$

Convert G to an equivalent PDA using the procedure given in Lemma 2.21.

- 4. Use the pumping lemma to prove that the language $A = \{ 0^{2n} 1^{3n} 0^n \mid n \ge 0 \}$ is not context free.
- 5. The Turing machine M below recognizes the language $A = \{ 0^{2^n} | n \ge 0 \}.$

In each of the parts below, give the sequence of configurations that M enters when started on the indicated input string.

- (a) **00**
- (b) **000000**