
CS 341: Foundations of Computer Science II

Prof. Marvin Nakayama

Homework 7 Solutions

1. Give an implementation-level description of a Turing machine that decides the language
B = {0n1n2n | n ≥ 0 }.

Answer:

M = “On input string w:

1. Scan the input from left to right to make sure that

it is a member of 0∗1∗2∗, and reject if it isn’t.

2. Return tape head to left-hand end of tape.

3. Repeat the following until no more 0s left on tape.

4. Replace the leftmost 0 with x.

5. Scan right until a 1 occurs. If there are no 1s, reject.

6. Replace the leftmost 1 with x.

7. Scan right until a 2 occurs. If there are no 2s, reject.

8. Replace the leftmost 2 with x.

9. Return tape head to left-hand end of tape, and go to stage 3.

10. If the tape contains any 1s or 2s, reject. Otherwise, accept.”

2. (a) Show that the class of decidable languages is closed under union.

Answer: For any two decidable languages L1 and L2, let M1 and M2, respec-
tively be the TMs that decide them. We construct a TM M ′ that decides the
union of L1 and L2:

M ′
= “On input string w:

1. Run M1 on w. If it accepts, accept.

2. Run M2 on w. If it accepts, accept. Otherwise, reject.”

To see why M ′ decides L1 ∪ L2, first consider w ∈ L1 ∪ L2. Then w is in L1 or
in L2 (or both). If w ∈ L1, then M1 accepts w, so M ′ will eventually accept w.
Similarly, if w 6∈ L1 but w ∈ L2, then M1 will reject w because M1 is a decider
(i.e., M1 never loops), and M2 will accept w, so M ′ will eventually accept w. On
the other hand, if w 6∈ L1 ∪ L2, then w 6∈ L1 and w 6∈ L2. Thus, both M1 and
M2 reject w, so M ′ rejects w 6∈ L1 ∪ L2. Hence, M ′ decides L1 ∪ L2.

1



(b) Show that the class of Turing-recognizable languages is closed under union.

Answer: For any two Turing-recognizable languages L1 and L2, let M1 and M2,
respectively, be TMs that recognize them. We construct a TM M ′ that recognizes
the union L1 ∪ L2:

M ′
= “On input string w:

1. Run M1 and M2 alternately on w, one step at a time.

If either accepts, accept. If both halt and reject, reject.”

To see why M ′ recognizes L1 ∪L2, first consider w ∈ L1 ∪ L2. Then w is in L1

or in L2 (or both). If w ∈ L1, then M1 accepts w, so M ′ will eventually accept
w. Similarly, if w ∈ L2, then M2 accepts w, so M ′ will eventually accept w. On
the other hand, if w 6∈ L1 ∪ L2, then w 6∈ L1 and w 6∈ L2. Thus, neither M1

nor M2 accepts w, so M ′ will also not accept w. Hence, M ′ recognizes L1 ∪L2.
Note that if neither M1 nor M2 accepts w and one of them does so by looping,
then M ′ will loop, but this is fine because we only needed M ′ to recognize and
not decide L1 ∪ L2.

3. In Theorem 3.21 we showed that a language is Turing-recognizable iff some enumerator
enumerates it. Why didn’t we construct the following simpler enumerator E ′ from an
existing TM M for the forward direction of the proof? As before, s1, s2, . . . is a list
of all strings in Σ∗, and the construct the following enumerator:

E ′
= “Ignore the input.

1. Repeat the following for i = 1,2,3, . . .

2. Run M on si.

3. If it accepts, print out si.”

Answer: The problem with the proof is that M on si might loop forever. If it loops
forever, then E ′ doesn’t print out si. More importantly, E ′ isn’t going to move on to
test the next string. Therefore, it won’t be able to enumerate any other strings in L.
For this reason, we need to simulate M on each of the strings for a fixed length of time
so that no looping can occur.

4. A Turing machine with doubly infinite tape is similar to an ordinary Turing machine,
but its tape is infinite to the left as well as to the right. The tape is initially filled with
blanks except for the portion that contains the input. Computation is defined as usual
except that the head never encounters an end to the tape as it moves leftward. Show
that this type of Turing machine recognizes the class of Turing-recognizable languages.

Answer: A TM with doubly infinite tape can simulate an ordinary TM. It marks the
left-hand end of the input to detect and prevent the head from moving off of that end.

To simulate the doubly infinite tape TM by an ordinary TM, we show how to simulate
it with a 2-tape TM, which was already shown to be equivalent in power to an ordinary

2



TM. The first tape of the 2-tape TM is written with the input string, and the second
tape is blank. We cut the tape of the doubly infinite tape TM into two parts, at the
starting cell of the input string. The portion with the input string and all the blank
spaces to its right appears on the first tape of the 2-tape TM. The portion to the left
of the input string appears on the second tape, in reverse order.

3


