
CS 341: Foundations of Computer Science II

Prof. Marvin Nakayama

Homework 8 Solutions

1. Consider the decision problem of testing whether a DFA and a regular expression are
equivalent. Express this problem as a language and show that it is decidable.

Answer: Define the language as

C = {〈M,R〉 | M is a DFA and R is a regular expression with L(M) = L(R) }.

Recall that the proof of Theorem 4.5 defines a Turing machine F that decides the
language EQDFA = { 〈A,B〉 | A and B are DFAs and L(A) = L(B) }. Then the
following Turing machine T decides C:

T = “On input 〈M,R〉, where M is a DFA and R is a regular expression:

1. Convert R into a DFA DR using the algorithm in the

proof of Kleene’s Theorem.

2. Run TM decider F from Theorem 4.5 on input 〈M,DR〉.

3. If F accepts, accept. If F rejects, reject.”

2. Consider the decision problem of testing whether a CFG generates the empty string.
Express this problem as a language and show that it is decidable.

Answer: The language of the decision problem is

AεCFG = { 〈G〉 | G is a CFG that generates ε }.

If a CFG G = (V,Σ, R, S) includes the rule S → ε, then clearly G can generate
ε. But G could still generate ε even if it doesn’t include the rule S → ε. For
example, if G has rules S → XY , X → aY | ε, and Y → baX | ε, then the derivation
S ⇒ XY ⇒ εY ⇒ εε = ε shows that ε ∈ L(G), even though G doesn’t include
the rule S → ε. So it’s not sufficient to simply check if G includes the rule S → ε to
determine if ε ∈ L(G).

But if we have a CFG G′ = (V ′,Σ, R′, S′) that is in Chomsky normal form, then G′

generates ε if and only if S′ → ε is a rule in G′. Thus, we first convert the CFG G

into an equivalent CFG G′ = (V ′,Σ, R′, S′) in Chomsky normal form. If S′ → ε is
a rule in G′, then clearly G′ generates ε, so G also generates ε since L(G) = L(G′).
Since G′ is in Chomsky normal form, the only possible ε-rule in G′ is S′ → ε, so the
only way we can have ε ∈ L(G′) is if G′ includes the rule S′ → ε in R. Hence, if
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G′ does not include the rule S′ → ε, then ε 6∈ L(G′). Thus, a Turing machine that
decides AεCFG is as follows:

M = “On input 〈G〉, where G is a CFG:

1. Convert G into an equivalent CFG G′ = (V ′,Σ, R′, S′)

in Chomsky normal form.

2. If G′ includes the rule S′ → ε, accept. Otherwise, reject.”

3. Let Σ = {0,1}, and consider the decision problem of testing whether a regular
expression with alphabetΣ generates at least one string w that has 111 as a substring.
Express this problem as a language and show that it is decidable.

Answer: The language of the decision problem is

A = { 〈R〉 |R is a regular expression describing a language over Σ containing

at least one string w that has 111 as a substring

(i.e., w = x111y for some x and y) }.

Define the language C = {w ∈ Σ∗ | w has 111 as a substring }. Note that C is a
regular language with regular expression (0 ∪ 1)∗111(0 ∪ 1)∗ and is recognized by
the following DFA DC :

1 2 3 4

0

1

0

1

0

1

0,1

Now consider any regular expression R with alphabet Σ. If L(R) ∩ C 6= ∅, then R

generates a string having 111 as a substring, so 〈R〉 ∈ A. Also, if L(R) ∩ C = ∅,
then R does not generate any string having 111 as a substring, so 〈R〉 6∈ A. By
Kleene’s Theorem, since L(R) is described by regular expression R, L(R) must be a
regular language. Since C and L(R) are regular languages, C ∩L(R) is regular since
the class of regular languages is closed under intersection, as was shown in an earlier
homework. Thus, C∩L(R) has some DFADC∩L(R). Theorem 4.4 shows that EDFA =
{ 〈B〉 |B is a DFA with L(B) = ∅ } is decidable, so there is a Turing machineH that
decides EDFA. We apply TM H to 〈DC∩L(R)〉 to determine if C ∩L(R) = ∅. Putting
this all together gives us the following Turing machine T to decide A:

T = “On input 〈R〉, where R is a regular expression:

1. Convert R into a DFA DR using the algorithm in the

proof of Kleene’s Theorem.

2. Construct a DFA DC∩L(R) for language C ∩ L(R)

from the DFAs DC and DR.

3. Run TM H that decides EDFA on input 〈DC∩L(R)〉.

4. If H accepts, reject. If H rejects, accept.”

2



4. Consider the emptiness problem for Turing machines:

ETM = { 〈M〉 | M is a Turing machine with L(M) = ∅ }.

Show that ETM is co-Turing-recognizable. (A language L is co-Turing-recognizable if

its complement L is Turing-recognizable.) Note that the complement of ETM is

ETM = { 〈M〉 | M is a Turing machine with L(M) 6= ∅ }.

(Actually, ETM also contains all 〈M〉 such that 〈M〉 is not a valid Turing-machine
encoding, but we will ignore this technicality.)

Answer: We need to show there is a Turing machine that recognizes ETM, the com-
plement of ETM. Let s1, s2, s3, . . . be a list of all strings in Σ∗. For a given Turing
machine M , we want to determine if any of the strings s1, s2, s3, . . . is accepted by
M . If M accepts at least one string si, then L(M) 6= ∅, so 〈M〉 ∈ ETM; if M

accepts none of the strings, then L(M) = ∅, so 〈M〉 6∈ ETM. However, we cannot
just run M sequentially on the strings s1, s2, s3, . . .. For example, suppose M accepts
s2 but loops on s1. Since M accepts s2, we have that 〈M〉 ∈ ETM. But if we run M

sequentially on s1, s2, s3, . . ., we never get past the first string. The following Turing
machine avoids this problem and recognizes ETM:

R = “On input 〈M〉, where M is a Turing machine:

1. Repeat the following for i = 1,2,3, . . ..

2. Run M for i steps on each input s1, s2, . . . , si.

3. If any computation accepts, accept.

5. Recall that the equivalence problem for DFAs has language

EQDFA = { 〈A,B〉 | A and B are DFAs and L(A) = L(B) }

⊆ { 〈A,B〉 | A and B are DFAs } ≡ Ω.

In other words, for any 〈A,B〉 ∈ Ω, the pair 〈A,B〉 ∈ EQDFA if and only if A and B

agree on every possible input string s ∈ Σ∗, where Σ is the input alphabet for both A

and B. Specifically, we say that A and B agree on a string s if A and B both accept s
or both reject s. Similarly, A and B disagree on s if one of the DFAs accepts and the
other rejects. Theorem 4.5 establishes that EQDFA is decidable. The proof builds a
DFA C for the symmetric difference of L(A) and L(B), which is possible because the
class of regular languages is closed under complementation, intersection, and union.
Then it checks if the symmetric difference is empty using the decider for EDFA.

Rather than using the proof that was given for Theorem 4.5, suppose we instead try
to prove that EQDFA is decidable using the following TM M ′ that checks if the two
inputted DFAs A and B always agree on every possible input string. Let s1, s2, . . . be
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an enumeration of Σ∗, and define TM M ′ as follows:

M ′ = “On input 〈A,B〉 ∈ Ω, where A and B are DFAs:

0. Check if 〈A,B〉 is a proper encoding of 2 DFAs. If not, reject.

1. Repeat the following for i = 1,2,3, . . .

2. Run A and B on si.

3. If A and B disagree on si, then reject.

4. If A and B always agree on each si, then accept. ”

What is the problem with this approach?

Answer: The problem is that M ′ loops on every 〈A,B〉 ∈ EQDFA, so M ′ does not
even recognize EQDFA, so it cannot possibly decide EQDFA. To see why, suppose that
〈A,B〉 ∈ EQDFA, so A and B agree on every si ∈ Σ∗. Thus, M ′ will be stuck in a
loop in Stages 1–3, trying the infinitely many strings in Σ∗ but never finding one on
which A and B disagree. Hence, M ′ never gets to Stage 4 to accept, so M ′ loops on
every YES instance 〈A,B〉 ∈ EQDFA; i.e., M

′ does not recognize EQDFA.
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