
CS 341: Foundations of Computer Science II

Prof. Marvin Nakayama

Homework 8

1. Consider the decision problem of testing whether a DFA and a regular expression are
equivalent. Express this problem as a language and show that it is decidable.

2. Consider the decision problem of testing whether a CFG generates the empty string.
Express this problem as a language and show that it is decidable.

3. Let Σ = {0,1}, and consider the decision problem of testing whether a regular
expression with alphabetΣ generates at least one string w that has 111 as a substring.
Express this problem as a language and show that it is decidable.

4. Consider the emptiness problem for Turing machines:

ETM = { ⟨M⟩ | M is a Turing machine with L(M) = ∅ }.

Show that ETM is co-Turing-recognizable. (A language L is co-Turing-recognizable if

its complement L is Turing-recognizable.) Note that the complement of ETM is

ETM = { ⟨M⟩ | M is a Turing machine with L(M) ̸= ∅ }.

(Actually, ETM also contains all ⟨M⟩ such that ⟨M⟩ is not a valid Turing-machine
encoding, but we will ignore this technicality.)

5. Recall that the equivalence problem for DFAs has language

EQDFA = { ⟨A,B⟩ | A and B are DFAs and L(A) = L(B) }
⊆ { ⟨A,B⟩ | A and B are DFAs } ≡ Ω.

In other words, for any ⟨A,B⟩ ∈ Ω, the pair ⟨A,B⟩ ∈ EQDFA if and only if A and B
agree on every possible input string s ∈ Σ∗, where Σ is the input alphabet for both A
and B. Specifically, we say that A and B agree on a string s if A and B both accept s
or both reject s. Similarly, A and B disagree on s if one of the DFAs accepts and the
other rejects. Theorem 4.5 establishes that EQDFA is decidable. The proof builds a
DFA C for the symmetric difference of L(A) and L(B), which is possible because the
class of regular languages is closed under complementation, intersection, and union.
Then it checks if the symmetric difference is empty using the decider for EDFA.

Instead of the proof that was given for Theorem 4.5, suppose we instead try to prove
that EQDFA is decidable using the following TM M ′ that checks if the two inputted

1



DFAs A and B always agree on every possible input string. Let s1, s2, . . . be an
enumeration of Σ∗, and define TM M ′ as follows:

M ′ = “On input ⟨A,B⟩ ∈ Ω, where A and B are DFAs:

0. Check if ⟨A,B⟩ is a proper encoding of 2 DFAs. If not, reject.

1. Repeat the following for i = 1,2,3, . . .

2. Run A and B on si.

3. If A and B disagree on si, then reject .

4. If A and B always agree on each si, then accept. ”

What is the problem with this approach?

2


