CS 341: Foundations of Computer Science II

Prof. Marvin Nakayama

Homework 8

1. Consider the decision problem of testing whether a DFA and a regular expression are equivalent. Express this problem as a language and show that it is decidable.
2. Consider the decision problem of testing whether a CFG generates the empty string. Express this problem as a language and show that it is decidable.
3. Let $\Sigma=\{0,1\}$, and consider the decision problem of testing whether a regular expression with alphabet Σ generates at least one string w that has 111 as a substring. Express this problem as a language and show that it is decidable.
4. Consider the emptiness problem for Turing machines:

$$
E_{\mathrm{TM}}=\{\langle M\rangle \mid M \text { is a Turing machine with } L(M)=\emptyset\} .
$$

Show that $E_{\text {TM }}$ is co-Turing-recognizable. (A language L is co-Turing-recognizable if its complement \bar{L} is Turing-recognizable.) Note that the complement of E_{TM} is

$$
\overline{E_{\mathrm{TM}}}=\{\langle M\rangle \mid M \text { is a Turing machine with } L(M) \neq \emptyset\} .
$$

(Actually, $\overline{E_{\mathrm{TM}}}$ also contains all $\langle M\rangle$ such that $\langle M\rangle$ is not a valid Turing-machine encoding, but we will ignore this technicality.)
5. Recall that the equivalence problem for DFAs has language

$$
\begin{aligned}
E Q_{\mathrm{DFA}} & =\{\langle A, B\rangle \mid A \text { and } B \text { are DFAs and } L(A)=L(B)\} \\
& \subseteq\{\langle A, B\rangle \mid A \text { and } B \text { are DFAs }\} \equiv \Omega
\end{aligned}
$$

In other words, for any $\langle A, B\rangle \in \Omega$, the pair $\langle A, B\rangle \in E Q_{\mathrm{DFA}}$ if and only if A and B agree on every possible input string $s \in \Sigma^{*}$, where Σ is the input alphabet for both A and B. Specifically, we say that A and B agree on a string s if A and B both accept s or both reject s. Similarly, A and B disagree on s if one of the DFAs accepts and the other rejects. Theorem 4.5 establishes that $E Q_{\text {DFA }}$ is decidable. The proof builds a DFA C for the symmetric difference of $L(A)$ and $L(B)$, which is possible because the class of regular languages is closed under complementation, intersection, and union. Then it checks if the symmetric difference is empty using the decider for $E_{\text {DFA }}$.

Instead of the proof that was given for Theorem 4.5, suppose we instead try to prove that $E Q_{\text {DFA }}$ is decidable using the following TM M^{\prime} that checks if the two inputted

DFAs A and B always agree on every possible input string. Let s_{1}, s_{2}, \ldots be an enumeration of Σ^{*}, and define TM M^{\prime} as follows:
$M^{\prime}=$ "On input $\langle A, B\rangle \in \Omega$, where A and B are DFAs:
0. Check if $\langle A, B\rangle$ is a proper encoding of 2 DFAs. If not, reject.

1. Repeat the following for $i=1,2,3, \ldots$
2. Run A and B on s_{i}.
3. If A and B disagree on s_{i}, then reject.
4. If A and B always agree on each s_{i}, then accept. "

What is the problem with this approach?

