
CS 341: Foundations of Computer Science II

Prof. Marvin Nakayama

Homework 9 Solutions

1. Let B be the set of all infinite sequences over {0,1}. Show that B is uncountable,
using a proof by diagonalization.

Answer: Each element in B is an infinite sequence (b1, b2, b3, . . .), where each bi ∈
{0,1}. Suppose B is countable. Then we can define a correspondence f between
N = {1,2,3, . . .} and B. Specifically, for n ∈ N , let f(n) = (bn1, bn2, bn3, . . .),
where bni is the ith bit in the nth sequence, i.e.,

n f(n)

1 (b11, b12, b13, b14, b15, . . .)
2 (b21, b22, b23, b24, b25, . . .)
3 (b31, b32, b33, b34, b35, . . .)
4 (b41, b42, b43, b44, b45, . . .)
...

...

Now define the infinite sequence c = (c1, c2, c3, c4, c5, . . .) ∈ B, where ci = 1− bii
for each i ∈ N . In other words, the ith bit in c is the opposite of the ith bit in the
ith sequence. For example, if

n f(n)

1 (0,1,1,0,0, . . .)
2 (1,0,1,0,1, . . .)
3 (1,1,1,1,1, . . .)
4 (1,0,0,1,0, . . .)
...

...

then we would define c = (1,1,0,0, . . .). Thus, for each n = 1,2,3, . . ., note that
c ∈ B differs from the nth sequence in the nth bit, so c does not equal f(n) for any
n, which is a contradiction. Hence, B is uncountable.

2. Recall thatEQCFG = { 〈G1, G2〉 |G1 and G2 are CFGs and L(G1) = L(G2) }. Show
that EQCFG is undecidable. For this problem, you may assume that ALLCFG is un-
decidable, as established in Theorem 5.13.

Answer: We will reduce ALLCFG to EQCFG, where

ALLCFG = { 〈G〉 | G is a CFG and L(G) = Σ∗ }.

1

Sipser (Theorem 5.13) shows that ALLCFG is undecidable.

Define CFG G0 = (V,Σ, R, S), where V = {S} and S is the starting variable. For
each terminal ℓ ∈ Σ, the CFG G0 has a rule S → ℓS in R. Also, G0 includes the rule
S → ε. For example, if Σ = {a, b}, then the rules in G0 are S → aS | bS | ε. It is
easy to see that L(G0) = Σ∗.

Let R be a TM that decides EQCFG and construct TM S to decide ALLCFG. Then
S works in the following manner.

S = “On input 〈G〉, where G is a CFG:

1. Run R on input 〈G,G0〉, where G0 is the CFG defined above

with L(G0) = Σ∗.

2. If R accepts, accept. If R rejects, reject.”

In stage 1, TM R determines if L(G) = L(G0), but because L(G0) = Σ∗, this
determines if L(G) = Σ∗. In other words, TM S decides ALLCFG, but because
ALLCFG is undecidable, this is a contradiction. Hence, we must have that EQCFG is
also undecidable.

3. Show that EQCFG is co-Turing-recognizable.

Answer: Recall that EQCFG is a co-Turing-recognizable language if and only if its
complement EQCFG is a Turing-recognizable language. Now,

EQCFG = C ∪D,

where

C = {w | w does not have the form 〈G1, G2〉 for some CFGs G1 and G2},

D = { 〈G1, G2〉 | G1 and G2 are CFGs and L(G1) 6= L(G2) }.

We claim that the set C (consisting of strings that violate the syntax for encoding
〈G1, G2〉) is easy to recognize. We do not provide a formal proof though. The set
D can be recognized as follows. We convert CFGs G1 and G2 into equivalent CFGs
in Chomsky normal form. Then we start enumerating strings in Σ∗ in string order
s1, s2, s3, . . ., whereΣ is the set of terminals for bothG1 andG2. For each enumerated
string si, we check whether it can be generated by G1 and by G2. If both CFGs or
neither CFG can generate si, then TM moves on to consider the next string in string
order. Otherwise, exactly one of the CFGs generates the string and the other CFG
does not, so the CFGs are not equivalent, and the TM accepts. Thus, D is Turing-
recognizable. We showed in a previous homework that the class of Turing-recognizable
languages is closed under union, so EQCFG is Turing-recognizable.

Here are the details of a TM T that recognizes EQCFG, where s1, s2, s3, . . . is an

2

enumeration of strings in Σ∗ in string order:

T = “On input 〈G1, G2〉, where G1 and G2 are CFGs:

0. Check if G1 and G2 are valid CFGs. If at least one isn’t, accept.

1. Convert G1 and G2 each into equivalent CFGs G′
1 and G′

2,

both in Chomsky normal form.

2. Repeat the following for i = 1,2,3, . . .

3. Test if both G′
1 and G′

2 generate si.

If exactly one of them does and the other doesn’t, accept.”

Why did we convert the CFGs into Chomsky normal form? The reason is that there
is a procedure that always halts for checking whether a CFG in Chomsky normal form
can generate a particular string w or not; e.g., see the proof of Theorem 4.7, which
shows ACFG is decidable.

4. Let STM = { 〈M〉 | M is a TM that accepts wR whenever it accepts w }. Show that
STM is undecidable.

Answer: The basic idea is to reduce ATM to STM, where

ATM = { 〈M,w〉 | M is a TM that accepts w },

which we know is undecidable by Theorem 4.11. To get a contradiction, let us assume
that STM is decidable, and let S be a decider for STM. To show that ATM reduces
to STM, we will now use the decider S as a subroutine to build a TM A that decides
ATM, as follows:

A = “On input 〈M,w〉, where M is a TM and w is a string:

0. Check if 〈M,w〉 is a valid encoding of a TM M and string w.

If not, reject.

1. Construct the following TM M2 from M and w:

M2 = “On input x:

1. If x ∈ L(00∗11∗), accept.

2. If x 6∈ L(00∗11∗), then run M on input w.

If M accepts w, accept ; else, reject.”

2. Run S on input 〈M2〉.

3. If S accepts, accept ; if S rejects, reject.”

Before showing that TM A decides ATM, first consider the language L(00∗11∗) that
appears in the constructed TM M2. The language L(00∗11∗) does not have the
property that if y ∈ L(00∗11∗), then yR ∈ L(00∗11∗); e.g., 001 ∈ L(00∗11∗),
but its reverse (001)R = 100 6∈ L(00∗11∗). So if we have a TM T with language
L(00∗11∗), then 〈T 〉 6∈ STM.

3

On the other hand, consider the language L((0 ∪ 1)∗), which consists of all strings
of 0s and 1s. This language does the property that if y ∈ L((0 ∪ 1)∗), then yR ∈
L((0 ∪ 1)∗) because L((0 ∪ 1)∗) contains all strings over {0,1}. So if we have a
TM T ′ with language L((0 ∪ 1)∗), then 〈T ′〉 ∈ STM.

Now let’s figure out the language of the TM M2. In stage 1 of TM M2, it automatically
accepts any string x ∈ L(00∗11∗). For any string x 6∈ L(00∗11∗), TM M2 accepts
x if and only if M accepts w. Thus, the language L(M2) of M2 has two possibilities:

• If M accepts w, then L(M2) is L((0 ∪ 1)∗), so 〈M2〉 ∈ STM.

• If M does not accept w, then L(M2) is L(00∗11∗), so 〈M2〉 6∈ STM.

Hence, 〈M2〉 belongs to STM if and only if M accepts w, so a solution for STM can
be used to solve ATM; i.e., ATM reduces to STM. Because S is assumed to decide
STM, the TM A decides ATM because stage 3 of the TM A accepts 〈M,w〉 if and
only if S accepts 〈M2〉. But we know that ATM is undecidable, so STM must also be
undecidable.

4

