
CS 341: Foundations of Computer Science II

Prof. Marvin Nakayama

Homework 12 Solutions

1. (a) Show that NP is closed under union.

Answer:

Let L1 and L2 be languages in NP. Also, for i = 1,2, let Vi(x, c) be an algorithm
that, for a string x and a possible certificate c, verifies whether c is actually a
certificate for x ∈ Li. Thus, Vi(x, c) = 1 if certificate c verifies x ∈ Li, and
Vi(x, c) = 0 otherwise. Since both L1 and L2 are both in NP, we know that
Vi(x, c) terminates in polynomial time O(|x|d) for some constant d.

To show that L3 = L1 ∪ L2 is also in NP, we will construct a polynomial-time
verifier V3 for L3. Since a certificate c for L3 will have the property that either
V1(x, c) = 1 or V2(x, c) = 1, we can easily construct a verifier V3(x, c) =
V1(x, c) ∨ V2(x, c). Clearly then x ∈ L3 if and only if there is a certificate c
such that V3(x, c) = 1. Notice also that the new verifier V3 will run in time
O(2(|x|d)), which is polynomial. Therefore, the union L3 of two languages in
NP is also in NP, so NP is closed under union.

(b) Show that NP is closed under concatenation.

Answer:

Now we will show that L4 = L1 ◦ L2 is in NP, where L1 and L2 are languages
in NP with verifiers V1 and V2 as in the solution for the previous part. Again,
our goal is to construct a polynomial-time verifier V4(x, c) for a string x and the
possible certificate c. Suppose |x| = n. We can define V4(x, c) = 1 if and only
if c = k#y#z, where # is a new symbol, k ∈ {0,1, . . . , n}, and

V1(x1 · · ·xk, y) = 1 and V2(xk+1 · · ·xn, z) = 1.

Note that k specifies the position where the original string x should be split into
two parts, and y and z are the certificates for the two parts. The verifier V4

will run in time O(|x|d) since |x1 · · ·xk| ≤ |x| and |xk+1 · · ·xn| ≤ |x|. Also,
V4(x,w) = 1 if and only if x ∈ L4. Thus, the language L4, the concatenation
of two languages in NP, is also in NP.

2. Show that if P = NP, we can factor integers in polynomial time.

Answer: Define the language

LARGE-FACTOR = { ⟨n, t⟩ | n and t are positive integers, and n

has a factor f satisfying t ≤ f < n }.

1

We first show that LARGE-FACTOR ∈ NP. A non-deterministic TM M that decides
LARGE-FACTOR simply guesses an integer f and verifies that (a) t ≤ f < n and
(b) f divides n.

By invoking TM M with input ⟨n,2⟩, we check if n is composite or not. If n is
composite, we use M to actually discover the prime factorization of n as follows:

Let us denote the largest factor of n that lies in the range (1, n) by flargest. Then M
accepts ⟨n, f⟩ for all f ∈ [2, flargest], and M rejects ⟨n, f⟩ for all f ∈ [flargest +1, n].
How do we discover flargest? If we iterate f from 1 through n, we would be doing an
exponential amount of work in the size of the input (because we have O(n) iterations
when the size of the input is only O(logn)). A faster procedure is to use binary search
to identify flargest. This would involve at most O(logn) invocations of TM M .

Having discovered the largest factor of n, say flargest, we compute p = n/flargest, which
happens to be the smallest prime factor of n. We now discover the largest factor of
n/p, and so on (using the above procedure for discovering the largest factor).

Any number n can have at most O(logn) prime factors. As we showed earlier, each
prime factor requires O(logn) invocations of TM M for its discovery. Thus, TM M
is invoked O(log2 n) times. Under the assumption that P = NP, the whole procedure
is polynomial.

2

