CS 341: Foundations of Computer Science II Prof. Marvin Nakayama

Homework 1 Solutions

1. We are given the sets of strings:

 $C = \{\varepsilon, aab, baa\},\$ $D = \{bb, aab\},\$ $E = \{\varepsilon\},\$ $F = \emptyset.$

- (a) $D \cup C = \{\varepsilon, bb, aab, baa\}$
- (b) $C \cup F = \{\varepsilon, aab, baa\} = C$
- (c) $C \times D = \{ (\varepsilon, bb), (\varepsilon, aab), (aab, bb), (aab, aab), (baa, bb), (baa, aab) \}$
- (d) $C \cap D = \{aab\}$
- (e) $D \circ C = \{bb, aab, bbaab, bbbaa, aabaab, aabbaa\}$
- (f) $C \circ E = \{\varepsilon, aab, baa\}$
- (g) $D \circ D \circ D = \{bbbbbb, aabbbbb, bbaabbb, bbbbaab, aabaabbb, aabbbaab, bbaabaab, aabaabaab \}$
- (h) $\mathcal{P}(C) = \{ \emptyset, \{\varepsilon\}, \{aab\}, \{baa\}, \{\varepsilon, aab\}, \{\varepsilon, baa\}, \{aab, baa\}, \{\varepsilon, aab, baa\} \}$
- (i) $D C = \{bb\}$
- (j) $C^+ = \{\varepsilon, aab, baa, aabaab, aabbaa, baaaab, baabaa, aabaabaab, \ldots\}$
- (k) $F^* = \{\varepsilon\}$
- (1) $E \subseteq C$ since every element of E is also in C.
- (m) $D \not\subseteq C$ since $bb \in D$ but $bb \notin C$.
- (n) C is closed under reversal since $\varepsilon^{\mathcal{R}} = \varepsilon \in C$, $(aab)^{\mathcal{R}} = baa \in C$, and $(baa)^{\mathcal{R}} = aab \in C$.
 - D is not closed under reversal since $(aab)^{\mathcal{R}} = baa \notin D$.
 - *E* is closed under reversal since $\varepsilon^{\mathcal{R}} = \varepsilon \in E$.
- 2. (a) It is not true in general that $w \in S$. For example, suppose that w = aa, $S = \{a\}$, and $T = \{a, aa\}$. Then note that $T = S \cup \{aa\}$, and $S^* = T^* = \{\varepsilon, a, aa, aaa, \ldots\}$, but $aa \notin S$.
 - (b) It must be the case that $w \in S^*$. Note that $w \in T$, so $w \in T^*$ since any string in T is also in T^* because $T \subset T^*$. But since $T^* = S^*$, we must have that $w \in S^*$.

- 3. (a) Let $S = \{\varepsilon, a\}$. Then $S^* = \{\varepsilon, a, aa, aaa, \ldots\}$ and $S^+ = \{\varepsilon, a, aa, aaa, \ldots\}$, so $S^* = S^+$.
 - (b) Let $S = \{a\}$. Then $S^* = \{\varepsilon, a, aa, aaa, ...\}$ and $S^+ = \{a, aa, aaa, ...\}$, so $S^* \neq S^+$.
 - (c) Let $S = \{\varepsilon, a, aa, aaa, \ldots\}$. Then $S^* = \{\varepsilon, a, aa, aaa, \ldots\}$, so $S = S^*$.
 - (d) Let $S = \{a\}$. Then $S^* = \{\varepsilon, a, aa, aaa, \ldots\}$, so $S \neq S^*$.
 - (e) Let $S = \{\varepsilon\}$. Then $S^* = \{\varepsilon\}$, so S^* is finite.
- (a) Recall that for any set A, we let |A| denote the number of elements in A. Let 4. $\Sigma_1 = \{a, b, \dots, z, A, B, \dots, Z\}$ be the set of upper-case and lower-case Roman letters, and note that $|\Sigma_1| = 52$. Let $\Sigma_2 = \{0, 1, 2, \dots, 9\}$, which is the set of Arabic numerals, and note that $|\Sigma_2| = 10$. Let $\Sigma_3 = \Sigma_1 \cup \Sigma_2$. Since $\Sigma_1 \cap \Sigma_2 = \emptyset, |\Sigma_3| = |\Sigma_1| + |\Sigma_2| = 62.$

Let L_i be all of the strings of length *i* in L_0 . Note that L_1 consists of all 1-letter strings in L_0 , so L_1 consists of all the single letters in Σ_1 , and $|L_1| = 52$. Also, L_2 consists of all 2-letter strings in L_0 , and if $w \in L_2$, then the first letter of w is from Σ_1 , and the second letter of w is from Σ_3 , so $|L_2| = 52 \times 62$. In general L_i consists of all strings that have first letter from Σ_1 and the remaining i-1letters from Σ_3 , so $|L_i| = 52 \times 62^{i-1}$.

Note that

$$L_0 = L_1 \cup L_2 \cup \cdots \cup L_8.$$

Also, L_i and L_j are disjoint for $i \neq j$, so

$$|L_0| = |L_1| + |L_2| + \dots + |L_8| = \sum_{i=1}^8 52 \times 62^{i-1}.$$

- (b) Note that $L \subset L_0$, so we must have that $|L| \leq |L_0|$. In the previous part, we showed that $|L_0| < \infty$, so we must have that $|L| < \infty$.
- 5. Recall

$$S^* = \{ x_1 x_2 \cdots x_k \mid k \ge 0 \text{ and each } x_i \in S \},\$$

$$S^+ = \{ x_1 x_2 \cdots x_k \mid k \ge 1 \text{ and each } x_i \in S \},\$$

where the concatenation of k = 0 strings is ε , so we always have $\varepsilon \in S^*$. Now S^+ and S^* are the same except S^+ doesn't include the case k = 0, so we can write $S^* = S^+ \cup \{\varepsilon\}$. Hence, $S^* = S^+$ if and only if $\varepsilon \in S^+$. Thus, proving that $\varepsilon \in S^+$ if and only if $\varepsilon \in S$ will establish the result in the problem.

Suppose that $\varepsilon \in S$. Then clearly taking k = 1 and $x_1 = \varepsilon \in S$ shows that $\varepsilon \in S^+$. Thus, if $\varepsilon \in S$, then $\varepsilon \in S^+$.

Now we need to show the converse: if $\varepsilon \in S^+$, then $\varepsilon \in S$. This is equivalent to its contrapositive: if $\varepsilon \notin S$, then $\varepsilon \notin S^+$. But if $\varepsilon \notin S$, then we cannot concatenate $k \geq 1$ strings $x_1, x_2, \ldots, x_k \in S$, all of which are nonempty since $\varepsilon \notin S$, to obtain the empty string ε . Thus, we have shown $\varepsilon \notin S$ implies $\varepsilon \notin S^+$, so the proof is complete.