Homework 1 Solutions

1. We are given the sets of strings:

$$
\begin{aligned}
& C=\{\varepsilon, a a b, b a a\} \\
& D=\{b b, a a b\} \\
& E=\{\varepsilon\} \\
& F=\emptyset
\end{aligned}
$$

(a) $D \cup C=\{\varepsilon, b b, a a b, b a a\}$
(b) $C \cup F=\{\varepsilon, a a b, b a a\}=C$
(c) $C \times D=\{(\varepsilon, b b),(\varepsilon, a a b),(a a b, b b),(a a b, a a b),(b a a, b b),(b a a, a a b)\}$
(d) $C \cap D=\{a a b\}$
(e) $D \circ C=\{b b, a a b, b b a a b, b b b a a, a a b a a b, a a b b a a\}$
(f) $C \circ E=\{\varepsilon, a a b, b a a\}$
(g) $D \circ D \circ D=\{b b b b b b, a a b b b b b, b b a a b b b, b b b b a a b, a a b a a b b b, a a b b b a a b, b b a a b a a b$, aabaabaab\}
(h) $\mathcal{P}(C)=\{\emptyset,\{\varepsilon\},\{a a b\},\{b a a\},\{\varepsilon, a a b\},\{\varepsilon, b a a\},\{a a b, b a a\},\{\varepsilon, a a b, b a a\}\}$
(i) $D-C=\{b b\}$
(j) $C^{+}=\{\varepsilon, a a b, b a a, a a b a a b, a a b b a a, b a a a a b, b a a b a a, a a b a a b a a b, \ldots\}$
(k) $F^{*}=\{\varepsilon\}$
(l) $E \subseteq C$ since every element of E is also in C.
(m) $D \nsubseteq C$ since $b b \in D$ but $b b \notin C$.
(n) • C is closed under reversal since $\varepsilon^{\mathcal{R}}=\varepsilon \in C$, $(a a b)^{\mathcal{R}}=b a a \in C$, and $(b a a)^{\mathcal{R}}=a a b \in C$.

- D is not closed under reversal since $(a a b)^{\mathcal{R}}=b a a \notin D$.
- E is closed under reversal since $\varepsilon^{\mathcal{R}}=\varepsilon \in E$.

2. (a) It is not true in general that $w \in S$. For example, suppose that $w=a a$, $S=\{a\}$, and $T=\{a, a a\}$. Then note that $T=S \cup\{a a\}$, and $S^{*}=T^{*}=$ $\{\varepsilon, a, a a, a a a, \ldots\}$, but $a a \notin S$.
(b) It must be the case that $w \in S^{*}$. Note that $w \in T$, so $w \in T^{*}$ since any string in T is also in T^{*} because $T \subset T^{*}$. But since $T^{*}=S^{*}$, we must have that $w \in S^{*}$.
3. (a) Let $S=\{\varepsilon, a\}$. Then $S^{*}=\{\varepsilon, a, a a, a a a, \ldots\}$ and $S^{+}=\{\varepsilon, a, a a, a a a, \ldots\}$, so $S^{*}=S^{+}$.
(b) Let $S=\{a\}$. Then $S^{*}=\{\varepsilon, a, a a, a a a, \ldots\}$ and $S^{+}=\{a, a a, a a a, \ldots\}$, so $S^{*} \neq S^{+}$.
(c) Let $S=\{\varepsilon, a, a a, a a a, \ldots\}$. Then $S^{*}=\{\varepsilon, a, a a, a a a, \ldots\}$, so $S=S^{*}$.
(d) Let $S=\{a\}$. Then $S^{*}=\{\varepsilon, a, a a, a a a, \ldots\}$, so $S \neq S^{*}$.
(e) Let $S=\{\varepsilon\}$. Then $S^{*}=\{\varepsilon\}$, so S^{*} is finite.
4. (a) Recall that for any set A, we let $|A|$ denote the number of elements in A. Let $\Sigma_{1}=\{\mathrm{a}, \mathrm{b}, \ldots, \mathrm{z}, \mathrm{A}, \mathrm{B}, \ldots, \mathrm{Z}\}$ be the set of upper-case and lower-case Roman letters, and note that $\left|\Sigma_{1}\right|=52$. Let $\Sigma_{2}=\{0,1,2, \ldots, 9\}$, which is the set of Arabic numerals, and note that $\left|\Sigma_{2}\right|=10$. Let $\Sigma_{3}=\Sigma_{1} \cup \Sigma_{2}$. Since $\Sigma_{1} \cap \Sigma_{2}=\emptyset,\left|\Sigma_{3}\right|=\left|\Sigma_{1}\right|+\left|\Sigma_{2}\right|=62$.
Let L_{i} be all of the strings of length i in L_{0}. Note that L_{1} consists of all 1-letter strings in L_{0}, so L_{1} consists of all the single letters in Σ_{1}, and $\left|L_{1}\right|=52$. Also, L_{2} consists of all 2-letter strings in L_{0}, and if $w \in L_{2}$, then the first letter of w is from Σ_{1}, and the second letter of w is from Σ_{3}, so $\left|L_{2}\right|=52 \times 62$. In general L_{i} consists of all strings that have first letter from Σ_{1} and the remaining $i-1$ letters from Σ_{3}, so $\left|L_{i}\right|=52 \times 62^{i-1}$.
Note that

$$
L_{0}=L_{1} \cup L_{2} \cup \cdots \cup L_{8}
$$

Also, L_{i} and L_{j} are disjoint for $i \neq j$, so

$$
\left|L_{0}\right|=\left|L_{1}\right|+\left|L_{2}\right|+\cdots+\left|L_{8}\right|=\sum_{i=1}^{8} 52 \times 62^{i-1}
$$

(b) Note that $L \subset L_{0}$, so we must have that $|L| \leq\left|L_{0}\right|$. In the previous part, we showed that $\left|L_{0}\right|<\infty$, so we must have that $|L|<\infty$.
5. Recall

$$
\begin{aligned}
S^{*} & =\left\{x_{1} x_{2} \cdots x_{k} \mid k \geq 0 \text { and each } x_{i} \in S\right\} \\
S^{+} & =\left\{x_{1} x_{2} \cdots x_{k} \mid k \geq 1 \text { and each } x_{i} \in S\right\}
\end{aligned}
$$

where the concatenation of $k=0$ strings is ε, so we always have $\varepsilon \in S^{*}$. Now S^{+} and S^{*} are the same except S^{+}doesn't include the case $k=0$, so we can write $S^{*}=S^{+} \cup\{\varepsilon\}$. Hence, $S^{*}=S^{+}$if and only if $\varepsilon \in S^{+}$. Thus, proving that $\varepsilon \in S^{+}$ if and only if $\varepsilon \in S$ will establish the result in the problem.
Suppose that $\varepsilon \in S$. Then clearly taking $k=1$ and $x_{1}=\varepsilon \in S$ shows that $\varepsilon \in S^{+}$. Thus, if $\varepsilon \in S$, then $\varepsilon \in S^{+}$.
Now we need to show the converse: if $\varepsilon \in S^{+}$, then $\varepsilon \in S$. This is equivalent to its contrapositive: if $\varepsilon \notin S$, then $\varepsilon \notin S^{+}$. But if $\varepsilon \notin S$, then we cannot concatenate $k \geq 1$ strings $x_{1}, x_{2}, \ldots, x_{k} \in S$, all of which are nonempty since $\varepsilon \notin S$, to obtain the empty string ε. Thus, we have shown $\varepsilon \notin S$ implies $\varepsilon \notin S^{+}$, so the proof is complete.

