
CS 341: Foundations of Computer Science II

Prof. Marvin Nakayama

Homework 1 Solutions

1. We are given the sets of strings:

C = {ε, aab, baa},
D = {bb, aab},
E = {ε},
F = ∅.

(a) D ∪ C = {ε, bb, aab, baa}
(b) C ∪ F = {ε, aab, baa} = C

(c) C ×D = { (ε, bb), (ε, aab), (aab, bb), (aab, aab), (baa, bb), (baa, aab) }
(d) C ∩D = {aab}
(e) D ◦ C = {bb, aab, bbaab, bbbaa, aabaab, aabbaa}
(f) C ◦ E = {ε, aab, baa}
(g) D◦D◦D = {bbbbbb, aabbbbb, bbaabbb, bbbbaab, aabaabbb, aabbbaab, bbaabaab,

aabaabaab}
(h) P(C) = { ∅, {ε}, {aab}, {baa}, {ε, aab}, {ε, baa}, {aab, baa}, {ε, aab, baa} }
(i) D − C = {bb}
(j) C+ = {ε, aab, baa, aabaab, aabbaa, baaaab, baabaa, aabaabaab, . . .}
(k) F ∗ = {ε}
(l) E ⊆ C since every element of E is also in C.

(m) D ̸⊆ C since bb ∈ D but bb ̸∈ C.

(n) � C is closed under reversal since εR = ε ∈ C, (aab)R = baa ∈ C, and
(baa)R = aab ∈ C.

� D is not closed under reversal since (aab)R = baa ̸∈ D.

� E is closed under reversal since εR = ε ∈ E.

2. (a) It is not true in general that w ∈ S. For example, suppose that w = aa,
S = {a}, and T = {a, aa}. Then note that T = S ∪ {aa}, and S∗ = T ∗ =
{ε, a, aa, aaa, . . .}, but aa ̸∈ S.

(b) It must be the case that w ∈ S∗. Note that w ∈ T , so w ∈ T ∗ since any string in
T is also in T ∗ because T ⊂ T ∗. But since T ∗ = S∗, we must have that w ∈ S∗.
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3. (a) Let S = {ε, a}. Then S∗ = {ε, a, aa, aaa, . . .} and S+ = {ε, a, aa, aaa, . . .},
so S∗ = S+.

(b) Let S = {a}. Then S∗ = {ε, a, aa, aaa, . . .} and S+ = {a, aa, aaa, . . .}, so
S∗ ̸= S+.

(c) Let S = {ε, a, aa, aaa, . . .}. Then S∗ = {ε, a, aa, aaa, . . .}, so S = S∗.

(d) Let S = {a}. Then S∗ = {ε, a, aa, aaa, . . .}, so S ̸= S∗.

(e) Let S = {ε}. Then S∗ = {ε}, so S∗ is finite.

4. (a) Recall that for any set A, we let |A| denote the number of elements in A. Let
Σ1 = {a, b, . . . , z,A,B, . . . ,Z} be the set of upper-case and lower-case Roman
letters, and note that |Σ1| = 52. Let Σ2 = {0,1,2, . . . ,9}, which is the set
of Arabic numerals, and note that |Σ2| = 10. Let Σ3 = Σ1 ∪ Σ2. Since
Σ1 ∩Σ2 = ∅, |Σ3| = |Σ1|+ |Σ2| = 62.

Let Li be all of the strings of length i in L0. Note that L1 consists of all 1-letter
strings in L0, so L1 consists of all the single letters in Σ1, and |L1| = 52. Also,
L2 consists of all 2-letter strings in L0, and if w ∈ L2, then the first letter of w is
from Σ1, and the second letter of w is from Σ3, so |L2| = 52× 62. In general
Li consists of all strings that have first letter from Σ1 and the remaining i − 1
letters from Σ3, so |Li| = 52× 62i−1.

Note that
L0 = L1 ∪ L2 ∪ · · · ∪ L8.

Also, Li and Lj are disjoint for i ̸= j, so

|L0| = |L1|+ |L2|+ · · ·+ |L8| =
8∑

i=1

52× 62i−1.

(b) Note that L ⊂ L0, so we must have that |L| ≤ |L0|. In the previous part, we
showed that |L0| < ∞, so we must have that |L| < ∞.

5. Recall

S∗ = {x1x2 · · ·xk | k ≥ 0 and each xi ∈ S },
S+ = {x1x2 · · ·xk | k ≥ 1 and each xi ∈ S },

where the concatenation of k = 0 strings is ε, so we always have ε ∈ S∗. Now S+

and S∗ are the same except S+ doesn’t include the case k = 0, so we can write
S∗ = S+ ∪ {ε}. Hence, S∗ = S+ if and only if ε ∈ S+. Thus, proving that ε ∈ S+

if and only if ε ∈ S will establish the result in the problem.

Suppose that ε ∈ S. Then clearly taking k = 1 and x1 = ε ∈ S shows that ε ∈ S+.
Thus, if ε ∈ S, then ε ∈ S+.

Now we need to show the converse: if ε ∈ S+, then ε ∈ S. This is equivalent to its
contrapositive: if ε ̸∈ S, then ε ̸∈ S+. But if ε ̸∈ S, then we cannot concatenate
k ≥ 1 strings x1, x2, . . . , xk ∈ S, all of which are nonempty since ε ̸∈ S, to obtain the
empty string ε. Thus, we have shown ε ̸∈ S implies ε ̸∈ S+, so the proof is complete.
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