Homework 2 Solutions

1. For the state diagram below,

we formally express the DFA as $M=\left(Q, \Sigma, \delta, q_{1}, F\right)$, where

- $Q=\left\{q_{1}, q_{2}, q_{3}\right\}$
- $\Sigma=\{a, b\}$
- transition function δ is given by

	a	b
q_{1}	q_{1}	q_{2}
q_{2}	q_{1}	q_{3}
q_{3}	q_{1}	q_{3}

- q_{1} is the start state
- $F=\left\{q_{1}, q_{3}\right\}$ is the set of accept states.

2. There are (infinitely) many correct DFAs for each part below.
(a) The state diagram of one DFA that recognizes the language $A=\{\varepsilon, b, a b\}$ is below:

We formally express the DFA as a 5 -tuple $\left(Q, \Sigma, \delta, q_{1}, F\right)$, where

- $Q=\left\{q_{1}, q_{2}, \ldots, q_{8}\right\}$
- $\Sigma=\{a, b\}$
- transition function δ is given by

	a	b
q_{1}	q_{2}	q_{3}
q_{2}	q_{4}	q_{5}
q_{3}	q_{6}	q_{7}
q_{4}	q_{8}	q_{8}
q_{5}	q_{8}	q_{8}
q_{6}	q_{8}	q_{8}
q_{7}	q_{8}	q_{8}
q_{8}	q_{8}	q_{8}

- q_{1} is the start state
- $F=\left\{q_{1}, q_{3}, q_{5}\right\}$ is the set of accept states.

There are simpler DFAs that recognize this language. Can you come up with one with only 4 states?
(b) The state diagram of one DFA that recognizes the language $B=\left\{w \in \Sigma^{*} \mid n_{a}(w)\right.$ $\bmod 3=1\}$ is below:

We formally express the DFA as a 5 -tuple $\left(Q, \Sigma, \delta, q_{1}, F\right)$, where

- $Q=\left\{q_{1}, q_{2}, q_{3}\right\}$
- $\Sigma=\{a, b\}$
- transition function δ is given by

	a	b
q_{1}	q_{2}	q_{1}
q_{2}	q_{3}	q_{2}
q_{3}	q_{1}	q_{3}

- q_{1} is the start state
- $F=\left\{q_{2}\right\}$ is the set of accept states.
(c) The state diagram of one DFA that recognizes the language $C=\left\{w \in \Sigma^{*} \mid w=\right.$ saba for some string $\left.s \in \Sigma^{*}\right\}$ is below:

We formally express the DFA as a 5 -tuple $\left(Q, \Sigma, \delta, q_{1}, F\right)$, where

- $Q=\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}$
- $\Sigma=\{a, b\}$
- transition function δ is given by

	a	b
q_{1}	q_{2}	q_{1}
q_{2}	q_{2}	q_{3}
q_{3}	q_{4}	q_{1}
q_{4}	q_{2}	q_{3}

- q_{1} is the start state
- $F=\left\{q_{4}\right\}$ is the set of accept states.
(d) Because $D=\bar{C}$, the complement of C, we can convert the DFA for C into a DFA for D by swapping the accept and non-accept states:

We formally express the DFA as a 5 -tuple $\left(Q, \Sigma, \delta, q_{1}, F\right)$, where

- $Q=\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}$
- $\Sigma=\{a, b\}$
- transition function δ is given by

	a	b
q_{1}	q_{2}	q_{1}
q_{2}	q_{2}	q_{3}
q_{3}	q_{4}	q_{1}
q_{4}	q_{2}	q_{3}

- q_{1} is the start state
- $F=\left\{q_{1}, q_{2}, q_{3}\right\}$ is the set of accept states.
(e) The state diagram of one DFA that recognizes the language

$$
E=\left\{w \in \Sigma^{*} \mid w \text { begins with } b \text { and ends with } a\right\}
$$

is below:

We formally express the DFA as a 5 -tuple $\left(Q, \Sigma, \delta, q_{1}, F\right)$, where

- $Q=\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}$
- $\Sigma=\{a, b\}$
- transition function δ is given by

	a	b
q_{1}	q_{4}	q_{2}
q_{2}	q_{3}	q_{2}
q_{3}	q_{3}	q_{2}
q_{4}	q_{4}	q_{4}

- q_{1} is the start state
- $F=\left\{q_{3}\right\}$ is the set of accept states.
(f) The state diagram of one DFA that recognizes the language $F_{0}=\left\{w \in \Sigma^{*} \mid n_{a}(w) \geq\right.$ $\left.2, n_{b}(w) \leq 1\right\}$ is below:

We formally express the DFA as a 5 -tuple $\left(Q, \Sigma, \delta, q_{1}, F\right)$, where

- $Q=\left\{q_{1}, q_{2}, \ldots, q_{7}\right\}$
- $\Sigma=\{a, b\}$
- transition function δ is given by

	a	b
q_{1}	q_{2}	q_{4}
q_{2}	q_{3}	q_{5}
q_{3}	q_{3}	q_{6}
q_{4}	q_{5}	q_{7}
q_{5}	q_{6}	q_{7}
q_{6}	q_{6}	q_{7}
q_{7}	q_{7}	q_{7}

- q_{1} is the start state
- $F=\left\{q_{3}, q_{6}\right\}$ is the set of accept states.
(g) The state diagram of one DFA that recognizes the language $G=\left\{w \in \Sigma^{*}| | w \mid \geq\right.$ 2, second-to-last symbol of w is $b\}$ is below:

We formally express the DFA as a 5 -tuple $\left(Q, \Sigma, \delta, q_{1}, F\right)$, where

- $Q=\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}$
- $\Sigma=\{a, b\}$
- transition function δ is given by

	a	b
q_{1}	q_{1}	q_{2}
q_{2}	q_{3}	q_{4}
q_{3}	q_{1}	q_{2}
q_{4}	q_{3}	q_{4}

- q_{1} is the start state
- $F=\left\{q_{3}, q_{4}\right\}$ is the set of accept states.

3. Show that, if M is a DFA that recognizes language B, swapping the accept and non-accept states in M yields a new DFA that recognizes \bar{B}, the complement of B. Conclude that the class of regular languages is closed under complement.

Answer:

Suppose language B over alphabet Σ has a DFA

$$
M=\left(Q, \Sigma, \delta, q_{1}, F\right)
$$

Then, a DFA for the complementary language \bar{B} is

$$
\bar{M}=\left(Q, \Sigma, \delta, q_{1}, Q-F\right)
$$

The reason why \bar{M} recognizes \bar{B} is as follows. First note that M and \bar{M} have the same transition function δ. Thus, since M is deterministic, \bar{M} is also deterministic. Now consider any string $w \in \Sigma^{*}$. Running M on input string w will result in M ending in some state $r \in Q$. Since M is deterministic, there is only one possible state that M can end in on input w. If we run \bar{M} on the same input w, then \bar{M} will end in the same state r since M and \bar{M} have the same transition function. Also, since \bar{M} is deterministic, there is only one possible ending state that \bar{M} can be in on input w.

Now suppose that $w \in B$. Then M will accept w, which means that the ending state $r \in F$, i.e., r is an accept state of M. But then $r \notin Q-F$, so \bar{M} does not accept w since \bar{M} has $Q-F$ as its set of accept states. Similarly, suppose that $w \notin B$. Then M will not accept w, which means that the ending state $r \notin F$. But then $r \in Q-F$, so \bar{M} accepts w. Therefore, \bar{M} accepts string w if and only M does not accept string w, so \bar{M} recognizes language \bar{B}. Hence, the class of regular languages is closed under complement.
4. We say that a DFA M for a language A is minimal if there does not exist another DFA M^{\prime} for A such that M^{\prime} has strictly fewer states than M. Suppose that $M=$ $\left(Q, \Sigma, \delta, q_{0}, F\right)$ is a minimal DFA for A. Using M, we construct a DFA \bar{M} for the complement \bar{A} as $\bar{M}=\left(Q, \Sigma, \delta, q_{0}, Q-F\right)$. Prove that \bar{M} is a minimal DFA for \bar{A}.

Answer:

We prove this by contradiction. Suppose that \bar{M} is not a minimal DFA for \bar{A}. Then there exists another DFA D for \bar{A} such that D has strictly fewer states than \bar{M}. Now create another DFA D^{\prime} by swapping the accepting and non-accepting states of D. Then D^{\prime} recognizes the complement of \bar{A}. But the complement of \bar{A} is just A, so D^{\prime} recognizes A. Note that D^{\prime} has the same number of states as D, and \bar{M} has the same number of states as M. Thus, since we assumed that D has strictly fewer states than \bar{M}, then D^{\prime} has strictly fewer states than M. But since D^{\prime} recognizes A, this contradicts our assumption that M is a minimal DFA for A. Therefore, \bar{M} is a minimal DFA for \bar{A}.
5. Give a formal proof that the class of regular languages is closed under intersection.

Answer:

Basic Idea: Recall that Theorem 1.25 establishes that the class of regular languages is closed under union. The approach that we will use to show that the class of regular
languages is closed under intersection is to modify the proof of Theorem 1.25. Specifically, Theorem 1.25 establishes that if A_{1} is regular and A_{2} is regular, then their union $A_{1} \cup A_{2}$ is regular. The proof of Theorem 1.25 builds a DFA M_{3}^{\prime} for $A_{1} \cup A_{2}$ by simultaneously running a DFA M_{1} for A_{1} and a DFA M_{2} for A_{2}, where the union DFA M_{3}^{\prime} accepts if and only if M_{1} accepts or M_{2} accepts (or both accept). To instead build a DFA for the intersection $A_{1} \cap A_{2}$, we can build a DFA M_{3} by running M_{1} and M_{2} simultaneously, with the intersection DFA M_{3} accepting if and only if both M_{1} and M_{2} accept. Below are the details.

Proof: Suppose A_{1} and A_{2} are defined over the same alphabet Σ. Suppose DFA M_{1} recognizes A_{1}, where $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$. Suppose DFA M_{2} recognizes A_{2}, where $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$. Define DFA $M_{3}=\left(Q_{3}, \Sigma, \delta_{3}, q_{3}, F_{3}\right)$ for $A_{1} \cap A_{2}$ as follows:

- Set of states of M_{3} is

$$
Q_{3}=Q_{1} \times Q_{2}=\left\{(x, y) \mid x \in Q_{1}, y \in Q_{2}\right\} .
$$

- The alphabet of M_{3} is Σ.
- M_{3} has transition function $\delta_{3}: Q_{3} \times \Sigma \rightarrow Q_{3}$ such that for $x \in Q_{1}, y \in Q_{2}$, and $\ell \in \Sigma$,

$$
\delta_{3}((x, y), \ell)=\left(\delta_{1}(x, \ell), \delta_{2}(y, \ell)\right)
$$

- The initial state of M_{3} is $s_{3}=\left(q_{1}, q_{2}\right) \in Q_{3}$.
- The set of accept states of M_{3} is

$$
F_{3}=\left\{(x, y) \in Q_{1} \times Q_{2} \mid x \in F_{1} \text { and } y \in F_{2}\right\}=F_{1} \times F_{2}
$$

Since $Q_{3}=Q_{1} \times Q_{2}$, the number of states in the new DFA M_{3} is $\left|Q_{3}\right|=\left|Q_{1}\right| \cdot\left|Q_{2}\right|$. Thus, $\left|Q_{3}\right|<\infty$ since $\left|Q_{1}\right|<\infty$ and $\left|Q_{2}\right|<\infty$.
6. (a) Consider the language $L=\left\{w \in \Sigma^{*} \mid w\right.$ begins with a lower-case Roman letter $\}$ with $\Sigma=\{\mathrm{a}, \mathrm{b}, \ldots, \mathrm{z}, 0,1,2, \ldots, 9\}$. Define $\Gamma=\{\mathrm{a}, \mathrm{b}, \ldots, \mathrm{z}\}$ as the set of lower-case Roman letters, and $\Lambda=\{0,1,2, \ldots, 9\}$ as the set of Arabic numerals, so $\Sigma=\Gamma \cup \wedge$ with $\Gamma \cap \wedge=\emptyset$. The state diagram of one DFA that recognizes L is below:

We formally express the DFA as a 5 -tuple $\left(Q, \Sigma, \delta, q_{1}, F\right)$, where

- $Q=\left\{q_{1}, q_{2}, q_{3}\right\}$
- $\Sigma=\{a, b, \ldots, z, 0,1,2, \ldots, 9\}$
- transition function δ is given by

	Γ	\wedge
q_{1}	q_{2}	q_{3}
q_{2}	q_{2}	q_{2}
q_{3}	q_{3}	q_{3}

- q_{1} is the start state
- $F=\left\{q_{2}\right\}$ is the set of accept states.
(b) Note that the string if $\in L$ but if $\notin J$ (because if is a reserved keyword), so $L \nsubseteq J$. Also, the string $\mathrm{AB} \in J$ but $\mathrm{AB} \notin L$, so $J \nsubseteq L$.

