Homework 4 Solutions

Updated 2/24/2024 to correct solution to problem 3(e)

1. Use the procedure described in Lemma 1.55 to convert the regular expression $\left(\left((00)^{*}(11)\right) \cup\right.$ 01)* into an NFA.

Answer:

0

1

00

11

01

(00)*

$(00) *(11)$

Next, we eliminate the states of G (except for s and t) one at a time. The order in which the states are eliminated does not matter. However, eliminating states in a different order from what is done below may result in a different (but also correct) regular expression. We first eliminate state 3. To do this, we need to account for the paths

- $2 \rightarrow 3 \rightarrow 1$, which will create an arc from 2 to 1 labelled with $b a$;
- $2 \rightarrow 3 \rightarrow 2$, which will create an arc from 2 to 2 labelled with $b b$; and
- $2 \rightarrow 3 \rightarrow t$, which will create an arc from 2 to t labelled with $b \varepsilon=b$.

We combine the previous arc from 2 to 2 labelled a with the new one labelled $b b$ to get the new label $a \cup b b$.

We next eliminate state 1. To do this, we need to account for the following paths:

- $s \rightarrow 1 \rightarrow 2$, which will create an arc from s to 2 labelled with $\varepsilon(a \cup b)=a \cup b$.
- $s \rightarrow 1 \rightarrow t$, which will create an arc from s to t labelled with $\varepsilon \varepsilon=\varepsilon$.
- $2 \rightarrow 1 \rightarrow 2$, which will create an arc from 2 to 2 labelled with $b a(a \cup b)$. We combine this with the existing 2 to 2 arc to get the new label $a \cup b b \cup b a(a \cup b)$.
- $2 \rightarrow 1 \rightarrow t$, which will create an arc from 2 to t labelled with $b a \varepsilon=b a$. We combine this arc with the existing arc from 2 to t to get the new label $b \cup b a$.

Finally, we eliminate state 2 by adding an arc from s to t labelled $(a \cup b)(a \cup b b \cup$ $b a(a \cup b))^{*}(b \cup b a)$. We then combine this with the existing s to t arc to get the new label $\varepsilon \cup(a \cup b)(a \cup b b \cup b a(a \cup b))^{*}(b \cup b a)$.

So a regular expression for the language $L(M)$ recognized by the DFA M is

$$
\varepsilon \cup(a \cup b)(a \cup b b \cup b a(a \cup b))^{*}(b \cup b a) .
$$

Writing this as

$$
\underbrace{\varepsilon}_{\text {stay in } 1} \cup \underbrace{(a \cup b)}_{1 \text { to } 2} \underbrace{(a \cup b b \cup b a(a \cup b))^{*}}_{(2 \text { to } 2)^{*}} \underbrace{(b \cup b a)}_{\text {end in } 3 \text { or } 1}
$$

should make it clear how the regular expression accounts for every path that starts in 1 and ends in either 3 or 1, which are the accepting states of the given DFA.

3. Each of the following languages is either regular or nonregular. If a language is regular, give a DFA and regular expression for it. If a language is nonregular, give a proof.
(a) $A_{1}=\left\{w w w \mid w \in\{a, b\}^{*}\right\}$

Answer: A_{1} is nonregular. To prove this, suppose that A_{1} is a regular language. Let p be the "pumping length" of the Pumping Lemma. Consider the string $s=a^{p} b a^{p} b a^{p} b$. Note that $s \in A_{1}$ since $s=\left(a^{p} b\right)^{3}$, and $|s|=3(p+1) \geq p$, so the Pumping Lemma will hold. Thus, we can split the string s into 3 parts $s=x y z$ satisfying the conditions
i. $x y^{i} z \in A_{1}$ for each $i \geq 0$,
ii. $|y|>0$,
iii. $|x y| \leq p$.

Since the first p symbols of s are all a 's, the third condition implies that x and y consist only of a 's. So z will be the rest of the first set of a 's, followed by $b a^{p} b a^{p} b$. The second condition states that $|y|>0$, so y has at least one a. More precisely, we can then say that

$$
\begin{aligned}
& x=a^{j} \text { for some } j \geq 0 \\
& y=a^{k} \text { for some } k \geq 1 \\
& z=a^{m} b a^{p} b a^{p} b \text { for some } m \geq 0
\end{aligned}
$$

Since $a^{p} b a^{p} b a^{p} b=s=x y z=a^{j} a^{k} a^{m} b a^{p} b a^{p} b=a^{j+k+m} b a^{p} b a^{p} b$, we must have that $j+k+m=p$. The first condition implies that $x y^{2} z \in A_{1}$, but

$$
\begin{aligned}
x y^{2} z & =a^{j} a^{k} a^{k} a^{m} b a^{p} b a^{p} b \\
& =a^{p+k} b a^{p} b a^{p} b
\end{aligned}
$$

since $j+k+m=p$. Hence, $x y^{2} z \notin A_{1}$ because $k \geq 1$, and we get a contradiction. Therefore, A_{1} is a nonregular language.
(b) $A_{2}=\left\{w \in\{a, b\}^{*} \mid w=w^{\mathcal{R}}\right\}$.

Answer: A_{2} is nonregular. To prove this, suppose that A_{2} is a regular language. Let p be the "pumping length" of the Pumping Lemma. Consider the string $s=a^{p} b a^{p}$. Note that $s \in A_{2}$ since $s=s^{\mathcal{R}}$, and $|s|=2 p+1 \geq p$, so the Pumping Lemma will hold. Thus, we can split the string s into 3 parts $s=x y z$ satisfying the conditions
i. $x y^{i} z \in A_{2}$ for each $i \geq 0$,
ii. $|y|>0$,
iii. $|x y| \leq p$.

Since the first p symbols of s are all a 's, the third condition implies that x and y consist only of a 's. So z will be the rest of the first set of a 's, followed by $b a^{p}$. The second condition states that $|y|>0$, so y has at least one a. More precisely, we can then say that

$$
\begin{aligned}
& x=a^{j} \text { for some } j \geq 0 \\
& y=a^{k} \text { for some } k \geq 1 \\
& z=a^{m} b a^{p} \text { for some } m \geq 0
\end{aligned}
$$

Since $a^{p} b a^{p}=s=x y z=a^{j} a^{k} a^{m} b a^{p}=a^{j+k+m} b a^{p}$, we must have that $j+$ $k+m=p$. The first condition implies that $x y^{2} z \in A_{2}$, but

$$
\begin{aligned}
x y^{2} z & =a^{j} a^{k} a^{k} a^{m} b a^{p} \\
& =a^{p+k} b a^{p}
\end{aligned}
$$

since $j+k+m=p$. Hence, $x y^{2} z \notin A_{2}$ because $\left(a^{p+k} b a^{p}\right)^{\mathcal{R}}=a^{p} b a^{p+k} \neq$ $a^{p+k} b a^{p}$ since $k \geq 1$, and we get a contradiction. Therefore, A_{2} is a nonregular language.
(c) $A_{3}=\left\{a^{2 n} b^{3 n} a^{n} \mid n \geq 0\right\}$.

Answer: A_{3} is nonregular. To prove this, suppose that A_{3} is a regular language. Let p be the "pumping length" of the Pumping Lemma. Consider the string $s=a^{2 p} b^{3 p} a^{p}$. Note that $s \in A_{3}$, and $|s|=6 p \geq p$, so the Pumping Lemma will hold. Thus, we can split the string s into 3 parts $s=x y z$ satisfying the conditions
i. $x y^{i} z \in A_{3}$ for each $i \geq 0$,
ii. $|y|>0$,
iii. $|x y| \leq p$.

Since the first p symbols of s are all a 's, the third condition implies that x and y consist only of a 's. So z will be the rest of the first set of a 's, followed by $b^{3 p} a^{p}$. The second condition states that $|y|>0$, so y has at least one a. More precisely, we can then say that

$$
\begin{aligned}
& x=a^{j} \text { for some } j \geq 0 \\
& y=a^{k} \text { for some } k \geq 1 \\
& z=a^{m+p} b^{3 p} a^{p} \text { for some } m \geq 0
\end{aligned}
$$

Since $a^{2 p} b^{3 p} a^{p}=s=x y z=a^{j} a^{k} a^{m+p} b^{3 p} a^{p}=a^{j+k+m+p} b^{3 p} a^{p}$, we must have that $j+k+m+p=2 p$, or equivalently, $j+k+m=p$, so $j+k \leq p$. The first condition implies that $x y^{2} z \in A_{3}$, but

$$
\begin{aligned}
x y^{2} z & =a^{j} a^{k} a^{k} a^{m+p} b^{3 p} a^{p} \\
& =a^{2 p+k} b^{3 p} a^{p}
\end{aligned}
$$

since $j+k+m=p$. Hence, $x y^{2} z \notin A_{3}$ because $k \geq 1$, and we get a contradiction. Therefore, A_{3} is a nonregular language.
(d) $A_{4}=\left\{w \in\{a, b\}^{*} \mid w\right.$ has more a 's than b 's $\}$.

Answer: A_{3} is nonregular. To prove this, suppose that A_{4} is a regular language. Let p be the "pumping length" of the Pumping Lemma. Consider the string $s=b^{p} a^{p+1}$. Note that $s \in A_{4}$, and $|s|=2 p+1 \geq p$, so the Pumping Lemma will hold. Thus, we can split the string s into 3 parts $s=x y z$ satisfying the conditions
i. $x y^{i} z \in A_{4}$ for each $i \geq 0$,
ii. $|y|>0$,
iii. $|x y| \leq p$.

Since the first p symbols of s are all b 's, the third condition implies that x and y consist only of b 's. So z will be the rest of the b 's, followed by a^{p+1}. The second condition states that $|y|>0$, so y has at least one b. More precisely, we can then say that

$$
\begin{aligned}
& x=b^{j} \text { for some } j \geq 0 \\
& y=b^{k} \text { for some } k \geq 1 \\
& z=b^{m} a^{p+1} \text { for some } m \geq 0
\end{aligned}
$$

Since $b^{p} a^{p+1}=s=x y z=b^{j} b^{k} b^{m} a^{p+1}=b^{j+k+m} a^{p+1}$, we must have that $j+k+m=p$. The first condition implies that $x y^{2} z \in A_{4}$, but

$$
\begin{aligned}
x y^{2} z & =b^{j} b^{k} b^{k} b^{m} a^{p+1} \\
& =b^{p+k} a^{p+1}
\end{aligned}
$$

since $j+k+m=p$. Hence, $x y^{2} z \notin A_{4}$ because it doesn't have more a 's than b 's since $k \geq 1$, and we get a contradiction. Therefore, A_{4} is a nonregular language.
(e) $A_{5}=\left\{w \in\{a, b\}^{*} \mid n_{a b}(w)=n_{b a}(w)\right\}$, where $n_{s}(w)$ is the number of occurrences of the substring $s \in\{a, b\}^{*}$ in w.

Answer: A_{5} is regular. A regular expression for the language is $a\left(a \cup b b^{*} a\right)^{*} \cup$ $b\left(b \cup a a^{*} b\right)^{*} \cup \varepsilon$. Another regular expression is $a(a \cup b)^{*} a \cup b(a \cup b)^{*} b \cup a \cup b \cup \varepsilon$. A DFA for the language is

There are infinitely many other correct regular expressions and DFAs for A_{5}.
4. Suppose that language A is recognized by an NFA N, and language B is the collection of strings not accepted by some DFA M. Prove that $A \circ B$ is a regular language.

Answer: Since A is recognized by an NFA, we know that A is regular since a language is regular if and only if it is recognized by an NFA (Corollary 1.20). Note that the DFA M recognizes the language \bar{B}, the complement of B. Since \bar{B} is recognized by a DFA, by definition, \bar{B} is regular. We know from a problem on the previous homework that \bar{B} being regular implies that its complement $\overline{\bar{B}}$ is regular. $(\overline{\bar{B}}$ is the complement of the complement of B.) But $\overline{\bar{B}}=B$, so B is regular. Since A and B are regular, their concatenation $A \circ B$ is regular by Theorem 1.23.
5. (a) Prove that if we add a finite set of strings to a regular language, the result is a regular language.

Answer: Let A be a regular language, and let B be a finite set of strings. We know from class (see page 1-95 of Lecture Notes for Chapter 1) that finite languages are regular, so B is regular. Thus, $A \cup B$ is regular since the class of regular languages is closed under union (Theorem 1.22).
(b) Prove that if we remove a finite set of strings from a regular language, the result is a regular language.

Answer: Let A be a regular language, and let B be a finite set of strings with $B \subseteq A$. Let C be the language resulting from removing B from A, i.e., $C=$ $A-B$. As we argued in the previous part, B is regular. Note that $C=A-B=$ $A \cap \bar{B}$. Since B is regular, \bar{B} is regular since the class of regular languages is closed under complement. We proved in an earlier homework that the class of regular languages is closed under intersection, so $A \cap \bar{B}$ is regular since A and \bar{B} are regular. Therefore, $A-B$ is regular.
(c) Prove that if we add a finite set of strings to a nonregular language, the result is a nonregular language.

Answer: Let A be a nonregular language, and let B be a finite set of strings. We want to add B to A, so we may assume that none of the strings in B are in A, i.e., $A \cap B=\emptyset$. Let C be the language obtained by adding B to A, i.e., $C=A \cup B$. Suppose for a contradiction that C is regular, and we now show this is impossible. Since $A \cap B=\emptyset$, we have that $A=C-B$. Since C and B are regular (the latter because B is finite), the previous part of this problem implies that $C-B=C \cap \bar{B}$ must be regular, but we assumed that $A=C-B$ is nonregular, so we get a contradiction.
(d) Prove that if we remove a finite set of strings from a nonregular language, the result is a nonregular language.

Answer: Let A be a nonregular language, and let B be a finite set of strings, where $B \subseteq A$. Let C be the language obtained by removing B from A, i.e.,
$C=A-B$. Suppose that C is regular, and we now show this is impossible. Since we removed B from A to get C, we must have that $C \cap B=\emptyset$, so $A=C \cup B$. Now C is regular by assumption and B is regular since it's finite, so $C \cup B$ must be regular by Theorem 1.25 . But we assumed that $A=C \cup B$ is nonregular, so we get a contradiction.
6. Consider the following statement: "If A is a nonregular language and B is a language such that $B \subseteq A$, then B must be nonregular." If the statement is true, give a proof. If it is not true, give a counterexample showing that the statement doesn't always hold.

Answer: The statement is not always true. For example, we know that the language $A=\left\{0^{j} 1^{j} \mid j \geq 0\right\}$ is nonregular. Define the language $B=\{01\}$, and note that $B \subseteq A$. However, B is finite, so we know that it is regular.

