
CS 341: Foundations of Computer Science II
Prof. Marvin Nakayama

Homework 4 Solutions
Updated 2/24/2024 to correct solution to problem 3(e)

1. Use the procedure described in Lemma 1.55 to convert the regular expression (((00)∗(11))∪
01)∗ into an NFA.

Answer:

0 0
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2. Use the procedure described in Lemma 1.60 to convert the following DFA M to a
regular expression.

1 2

3

a, b
a

bba

Answer: First convert DFA M into an equivalent GNFA G.
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Next, we eliminate the states of G (except for s and t) one at a time. The order
in which the states are eliminated does not matter. However, eliminating states in a
different order from what is done below may result in a different (but also correct)
regular expression. We first eliminate state 3. To do this, we need to account for the
paths

• 2 → 3 → 1, which will create an arc from 2 to 1 labelled with ba;
• 2 → 3 → 2, which will create an arc from 2 to 2 labelled with bb; and
• 2 → 3 → t, which will create an arc from 2 to t labelled with bε = b.

We combine the previous arc from 2 to 2 labelled a with the new one labelled bb to
get the new label a ∪ bb.

s

t

1 2
ε

a ∪ b

ba

a ∪ bb
ε

ε
b

We next eliminate state 1. To do this, we need to account for the following paths:

• s → 1 → 2, which will create an arc from s to 2 labelled with ε(a∪ b) = a∪ b.
• s → 1 → t, which will create an arc from s to t labelled with εε = ε.
• 2 → 1 → 2, which will create an arc from 2 to 2 labelled with ba(a ∪ b). We

combine this with the existing 2 to 2 arc to get the new label a∪ bb∪ ba(a∪ b).
• 2 → 1 → t, which will create an arc from 2 to t labelled with baε = ba. We

combine this arc with the existing arc from 2 to t to get the new label b ∪ ba.
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t

2
a ∪ b

ε

a ∪ bb ∪ ba(a ∪ b)

b ∪ ba

Finally, we eliminate state 2 by adding an arc from s to t labelled (a ∪ b)(a ∪ bb ∪
ba(a∪ b))∗(b∪ ba). We then combine this with the existing s to t arc to get the new
label ε ∪ (a ∪ b)(a ∪ bb ∪ ba(a ∪ b))∗(b ∪ ba).

s

t

ε ∪ (a ∪ b)(a ∪ bb ∪ ba(a ∪ b))∗(b ∪ ba)

So a regular expression for the language L(M) recognized by the DFA M is

ε ∪ (a ∪ b)(a ∪ bb ∪ ba(a ∪ b))∗(b ∪ ba).

Writing this as

ε︸︷︷︸
stay in 1

∪ (a ∪ b)︸ ︷︷ ︸
1 to 2

(a ∪ bb ∪ ba(a ∪ b))∗︸ ︷︷ ︸
(2 to 2)∗

(b ∪ ba)︸ ︷︷ ︸
end in 3 or 1

should make it clear how the regular expression accounts for every path that starts in
1 and ends in either 3 or 1, which are the accepting states of the given DFA.
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3. Each of the following languages is either regular or nonregular. If a language is regular,
give a DFA and regular expression for it. If a language is nonregular, give a proof.

(a) A1 = {www | w ∈ {a, b}∗ }
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Answer: A1 is nonregular. To prove this, suppose that A1 is a regular language.
Let p be the “pumping length” of the Pumping Lemma. Consider the string
s = apbapbapb. Note that s ∈ A1 since s = (apb)3, and |s| = 3(p + 1) ≥ p,
so the Pumping Lemma will hold. Thus, we can split the string s into 3 parts
s = xyz satisfying the conditions

i. xyiz ∈ A1 for each i ≥ 0,
ii. |y| > 0,
iii. |xy| ≤ p.

Since the first p symbols of s are all a’s, the third condition implies that x and y
consist only of a’s. So z will be the rest of the first set of a’s, followed by bapbapb.
The second condition states that |y| > 0, so y has at least one a. More precisely,
we can then say that

x = aj for some j ≥ 0,

y = ak for some k ≥ 1,

z = ambapbapb for some m ≥ 0.

Since apbapbapb = s = xyz = ajakambapbapb = aj+k+mbapbapb, we must have
that j + k +m = p. The first condition implies that xy2z ∈ A1, but

xy2z = ajakakambapbapb

= ap+kbapbapb

since j + k + m = p. Hence, xy2z 6∈ A1 because k ≥ 1, and we get a
contradiction. Therefore, A1 is a nonregular language.

(b) A2 = {w ∈ {a, b}∗ | w = wR }.

Answer: A2 is nonregular. To prove this, suppose that A2 is a regular language.
Let p be the “pumping length” of the Pumping Lemma. Consider the string
s = apbap. Note that s ∈ A2 since s = sR, and |s| = 2p + 1 ≥ p, so the
Pumping Lemma will hold. Thus, we can split the string s into 3 parts s = xyz
satisfying the conditions

i. xyiz ∈ A2 for each i ≥ 0,
ii. |y| > 0,
iii. |xy| ≤ p.

Since the first p symbols of s are all a’s, the third condition implies that x and
y consist only of a’s. So z will be the rest of the first set of a’s, followed by bap.
The second condition states that |y| > 0, so y has at least one a. More precisely,
we can then say that

x = aj for some j ≥ 0,

y = ak for some k ≥ 1,

z = ambap for some m ≥ 0.
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Since apbap = s = xyz = ajakambap = aj+k+mbap, we must have that j +
k +m = p. The first condition implies that xy2z ∈ A2, but

xy2z = ajakakambap

= ap+kbap

since j + k + m = p. Hence, xy2z 6∈ A2 because (ap+kbap)R = apbap+k 6=
ap+kbap since k ≥ 1, and we get a contradiction. Therefore, A2 is a nonregular
language.

(c) A3 = { a2nb3nan | n ≥ 0 }.

Answer: A3 is nonregular. To prove this, suppose that A3 is a regular language.
Let p be the “pumping length” of the Pumping Lemma. Consider the string
s = a2pb3pap. Note that s ∈ A3, and |s| = 6p ≥ p, so the Pumping Lemma
will hold. Thus, we can split the string s into 3 parts s = xyz satisfying the
conditions

i. xyiz ∈ A3 for each i ≥ 0,
ii. |y| > 0,
iii. |xy| ≤ p.

Since the first p symbols of s are all a’s, the third condition implies that x and y
consist only of a’s. So z will be the rest of the first set of a’s, followed by b3pap.
The second condition states that |y| > 0, so y has at least one a. More precisely,
we can then say that

x = aj for some j ≥ 0,

y = ak for some k ≥ 1,

z = am+pb3pap for some m ≥ 0.

Since a2pb3pap = s = xyz = ajakam+pb3pap = aj+k+m+pb3pap, we must have
that j + k+m+ p = 2p, or equivalently, j + k+m = p, so j + k ≤ p. The
first condition implies that xy2z ∈ A3, but

xy2z = ajakakam+pb3pap

= a2p+kb3pap

since j + k + m = p. Hence, xy2z 6∈ A3 because k ≥ 1, and we get a
contradiction. Therefore, A3 is a nonregular language.

(d) A4 = {w ∈ {a, b}∗ | w has more a’s than b’s }.

Answer: A3 is nonregular. To prove this, suppose that A4 is a regular language.
Let p be the “pumping length” of the Pumping Lemma. Consider the string
s = bpap+1. Note that s ∈ A4, and |s| = 2p+1 ≥ p, so the Pumping Lemma
will hold. Thus, we can split the string s into 3 parts s = xyz satisfying the
conditions
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i. xyiz ∈ A4 for each i ≥ 0,
ii. |y| > 0,
iii. |xy| ≤ p.

Since the first p symbols of s are all b’s, the third condition implies that x and y
consist only of b’s. So z will be the rest of the b’s, followed by ap+1. The second
condition states that |y| > 0, so y has at least one b. More precisely, we can then
say that

x = bj for some j ≥ 0,

y = bk for some k ≥ 1,

z = bmap+1 for some m ≥ 0.

Since bpap+1 = s = xyz = bjbkbmap+1 = bj+k+map+1, we must have that
j + k +m = p. The first condition implies that xy2z ∈ A4, but

xy2z = bjbkbkbmap+1

= bp+kap+1

since j + k + m = p. Hence, xy2z 6∈ A4 because it doesn’t have more a’s
than b’s since k ≥ 1, and we get a contradiction. Therefore, A4 is a nonregular
language.

(e) A5 = {w ∈ {a, b}∗ | nab(w) = nba(w) }, where ns(w) is the number of
occurrences of the substring s ∈ {a, b}∗ in w.

Answer: A5 is regular. A regular expression for the language is a(a ∪ bb∗a)∗ ∪
b(b∪aa∗b)∗∪ε. Another regular expression is a(a∪b)∗a∪b(a∪b)∗b∪a∪b∪ε.
A DFA for the language is

q1 q2 q3

q4

q5

a

b

a

b

b

a

b

a

a
b

There are infinitely many other correct regular expressions and DFAs for A5.
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4. Suppose that language A is recognized by an NFA N , and language B is the collection
of strings not accepted by some DFA M . Prove that A ◦B is a regular language.

Answer: Since A is recognized by an NFA, we know that A is regular since a language
is regular if and only if it is recognized by an NFA (Corollary 1.20). Note that the
DFA M recognizes the language B, the complement of B. Since B is recognized by a
DFA, by definition, B is regular. We know from a problem on the previous homework
that B being regular implies that its complement B is regular. (B is the complement
of the complement of B.) But B = B, so B is regular. Since A and B are regular,
their concatenation A ◦B is regular by Theorem 1.23.

5. (a) Prove that if we add a finite set of strings to a regular language, the result is a
regular language.

Answer: Let A be a regular language, and let B be a finite set of strings.
We know from class (see page 1-95 of Lecture Notes for Chapter 1) that finite
languages are regular, so B is regular. Thus, A ∪ B is regular since the class of
regular languages is closed under union (Theorem 1.22).

(b) Prove that if we remove a finite set of strings from a regular language, the result
is a regular language.

Answer: Let A be a regular language, and let B be a finite set of strings with
B ⊆ A. Let C be the language resulting from removing B from A, i.e., C =
A−B. As we argued in the previous part, B is regular. Note that C = A−B =
A ∩ B. Since B is regular, B is regular since the class of regular languages is
closed under complement. We proved in an earlier homework that the class of
regular languages is closed under intersection, so A∩B is regular since A and B
are regular. Therefore, A−B is regular.

(c) Prove that if we add a finite set of strings to a nonregular language, the result is
a nonregular language.

Answer: Let A be a nonregular language, and let B be a finite set of strings.
We want to add B to A, so we may assume that none of the strings in B are
in A, i.e., A ∩ B = ∅. Let C be the language obtained by adding B to A, i.e.,
C = A ∪ B. Suppose for a contradiction that C is regular, and we now show
this is impossible. Since A ∩ B = ∅, we have that A = C − B. Since C and
B are regular (the latter because B is finite), the previous part of this problem
implies that C−B = C ∩B must be regular, but we assumed that A = C−B
is nonregular, so we get a contradiction.

(d) Prove that if we remove a finite set of strings from a nonregular language, the
result is a nonregular language.

Answer: Let A be a nonregular language, and let B be a finite set of strings,
where B ⊆ A. Let C be the language obtained by removing B from A, i.e.,
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C = A − B. Suppose that C is regular, and we now show this is impossible.
Since we removed B from A to get C, we must have that C ∩ B = ∅, so
A = C ∪ B. Now C is regular by assumption and B is regular since it’s finite,
so C ∪ B must be regular by Theorem 1.25. But we assumed that A = C ∪ B
is nonregular, so we get a contradiction.

6. Consider the following statement: “If A is a nonregular language and B is a language
such that B ⊆ A, then B must be nonregular.” If the statement is true, give a proof.
If it is not true, give a counterexample showing that the statement doesn’t always hold.

Answer: The statement is not always true. For example, we know that the language
A = {0j1j | j ≥ 0} is nonregular. Define the language B = {01}, and note that
B ⊆ A. However, B is finite, so we know that it is regular.
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