Homework 4

1. Use the procedure described in Lemma 1.55 to convert the regular expression \(((00)^*(11)) \cup 01)^*\) into an NFA.

Answer:

\[
\begin{align*}
0 & \quad \rightarrow \quad 0 \\
1 & \quad \rightarrow \quad 1 \\
00 & \quad \rightarrow \quad 0 \quad \varepsilon \quad 0 \\
11 & \quad \rightarrow \quad 1 \quad \varepsilon \quad 1 \\
01 & \quad \rightarrow \quad 0 \quad \varepsilon \quad 1 \\
(00)^* & \quad \rightarrow \quad 0 \quad \varepsilon \quad 0 \\
(00)^*(11) & \quad \rightarrow \quad 0 \quad \varepsilon \quad 0 \\
\end{align*}
\]
2. Use the procedure described in Lemma 1.60 to convert the following DFA M to a regular expression.

Answer: First convert DFA M into an equivalent GNFA G.
Next, we eliminate the states of G (except for s and t) one at a time. The order in which the states are eliminated does not matter. However, eliminating states in a different order from what is done below may result in a different (but also correct) regular expression. We first eliminate state 3. To do this, we need to account for the paths

- $2 \rightarrow 3 \rightarrow 1$, which will create an arc from 2 to 1 labelled with ba;
- $2 \rightarrow 3 \rightarrow 2$, which will create an arc from 2 to 2 labelled with bb; and
- $2 \rightarrow 3 \rightarrow t$, which will create an arc from 2 to t labelled with $b\varepsilon = b$.

We combine the previous arc from 2 to 2 labelled a with the new one labelled bb to get the new label $a \cup bb$.

We next eliminate state 1. To do this, we need to account for the following paths:

- $s \rightarrow 1 \rightarrow 2$, which will create an arc from s to 2 labelled with $\varepsilon (a \cup b) = a \cup b$.
- $s \rightarrow 1 \rightarrow t$, which will create an arc from s to t labelled with $\varepsilon \varepsilon = \varepsilon$.
- $2 \rightarrow 1 \rightarrow 2$, which will create an arc from 2 to 2 labelled with $ba(a \cup b)$. We combine this with the existing 2 to 2 arc to get the new label $a \cup bb \cup ba(a \cup b)$.
- $2 \rightarrow 1 \rightarrow t$, which will create an arc from 2 to t labelled with $ba\varepsilon = ba$. We combine this arc with the existing arc from 2 to t to get the new label $b \cup ba$.

Finally, we eliminate state 2 by adding an arc from s to t labelled \((a \cup b)(a \cup bb \cup ba(a \cup b))^*(b \cup ba)\). We then combine this with the existing s to t arc to get the new label \(\varepsilon \cup (a \cup b)(a \cup bb \cup ba(a \cup b))^*(b \cup ba)\).

So a regular expression for the language \(L(M)\) recognized by the DFA \(M\) is

\[\varepsilon \cup (a \cup b)(a \cup bb \cup ba(a \cup b))^*(b \cup ba) \]

Writing this as

\[\varepsilon \cup (a \cup b)(a \cup bb \cup ba(a \cup b))^*(b \cup ba) \]

should make it clear how the regular expression accounts for every path that starts in 1 and ends in either 3 or 1, which are the accepting states of the given DFA.

3. Prove that the following languages are not regular.

 (a) \(A_1 = \{ www \mid w \in \{a, b\}^* \} \)

 Answer: Suppose that \(A_1\) is a regular language. Let \(p\) be the “pumping length” of the Pumping Lemma. Consider the string \(s = a^pba^pb\). Note that \(s \in A_1\).
since \(s = (a^p b)^3 \), and \(|s| = 3(p + 1) \geq p \), so the Pumping Lemma will hold. Thus, we can split the string \(s \) into 3 parts \(s = xyz \) satisfying the conditions

i. \(xy^iz \in A_1 \) for each \(i \geq 0 \),

ii. \(|y| > 0 \),

iii. \(|xy| \leq p \).

Since the first \(p \) symbols of \(s \) are all \(a \)'s, the third condition implies that \(x \) and \(y \) consist only of \(a \)'s. So \(z \) will be the rest of the first set of \(a \)'s, followed by \(ba^pba^p \). The second condition states that \(|y| > 0 \), so \(y \) has at least one \(a \). More precisely, we can then say that

\[
\begin{align*}
 x &= a^j \text{ for some } j \geq 0, \\
 y &= a^k \text{ for some } k \geq 1, \\
 z &= a^m ba^p ba^p b \text{ for some } m \geq 0.
\end{align*}
\]

Since \(a^p ba^p ba^p b = s = xyz = a^j a^k a^m ba^p ba^p b = a^{j+k+m} ba^p ba^p b \), we must have that \(j + k + m = p \). The first condition implies that \(xy^2 z \in A_1 \), but

\[
xy^2 z = a^j a^k a^m ba^p ba^p b = a^{p+k} ba^p ba^p
\]

since \(j + k + m = p \). Hence, \(xy^2 z \not\in A_1 \) because \(k \geq 1 \), and we get a contradiction. Therefore, \(A_1 \) is a nonregular language.

(b) \(A_2 = \{ w \in \{a, b\}^* \mid w = w^R \} \).

Answer: Suppose that \(A_2 \) is a regular language. Let \(p \) be the “pumping length” of the Pumping Lemma. Consider the string \(s = a^p ba^p \). Note that \(s \in A_2 \) since \(s = s^R \), and \(|s| = 2p + 1 \geq p \), so the Pumping Lemma will hold. Thus, we can split the string \(s \) into 3 parts \(s = xyz \) satisfying the conditions

i. \(xy^iz \in A_2 \) for each \(i \geq 0 \),

ii. \(|y| > 0 \),

iii. \(|xy| \leq p \).

Since the first \(p \) symbols of \(s \) are all \(a \)'s, the third condition implies that \(x \) and \(y \) consist only of \(a \)'s. So \(z \) will be the rest of the first set of \(a \)'s, followed by \(ba^p \). The second condition states that \(|y| > 0 \), so \(y \) has at least one \(a \). More precisely, we can then say that

\[
\begin{align*}
 x &= a^j \text{ for some } j \geq 0, \\
 y &= a^k \text{ for some } k \geq 1, \\
 z &= a^m ba^p \text{ for some } m \geq 0.
\end{align*}
\]

Since \(a^p ba^p = s = xyz = a^j a^k a^m ba^p = a^{j+k+m} ba^p \), we must have that \(j + k + m = p \). The first condition implies that \(xy^2 z \in A_2 \), but

\[
xy^2 z = a^j a^k a^k a^m ba^p = a^{p+k} ba^p
\]
since \(j + k + m = p \). Hence, \(xy^2z \not\in A_2 \) because \((a^{p+k}ba^p)^R = a^pba^{p+k} \neq a^{p+k}ba^p \) since \(k \geq 1 \), and we get a contradiction. Therefore, \(A_2 \) is a nonregular language.

(c) \(A_3 = \{ a^{2n}b^{3n}a^n \mid n \geq 0 \} \).

Answer: Suppose that \(A_3 \) is a regular language. Let \(p \) be the “pumping length” of the Pumping Lemma. Consider the string \(s = a^{2p}b^{3p}a^p \). Note that \(s \in A_3 \), and \(|s| = 6p \geq p \), so the Pumping Lemma will hold. Thus, we can split the string \(s \) into 3 parts \(s = xyz \) satisfying the conditions

i. \(xy^iz \in A_3 \) for each \(i \geq 0 \),

ii. \(|y| > 0 \),

iii. \(|xy| \leq p \).

Since the first \(p \) symbols of \(s \) are all \(a \)'s, the third condition implies that \(x \) and \(y \) consist only of \(a \)'s. So \(z \) will be the rest of the first set of \(a \)'s, followed by \(b^{3p}a^p \). The second condition states that \(|y| > 0 \), so \(y \) has at least one \(a \). More precisely, we can then say that

\[
\begin{align*}
x &= a^j \text{ for some } j \geq 0, \\
y &= a^k \text{ for some } k \geq 1, \\
z &= a^m b^{3p}a^p \text{ for some } m \geq 0.
\end{align*}
\]

Since \(a^{2p}b^{3p}a^p = s = xyz = a^j a^k a^m b^{3p}a^p = a^{j+k+m} b^{3p}a^p \), we must have that \(j + k + m = 2p \). The first condition implies that \(xy^2z \in A_3 \), but

\[
\begin{align*}
xy^2z &= a^j a^k a^m b^{3p}a^p \\
 &= a^{2p+k} b^{3p}a^p
\end{align*}
\]

since \(j + k + m = 2p \). Hence, \(xy^2z \not\in A_3 \) because \(k \geq 1 \), and we get a contradiction. Therefore, \(A_3 \) is a nonregular language.

(d) \(A_4 = \{ w \in \{a, b\}^* \mid w \text{ has more } a \text{'s than } b \text{'s} \} \).

Answer: Suppose that \(A_4 \) is a regular language. Let \(p \) be the “pumping length” of the Pumping Lemma. Consider the string \(s = b^p a^{p+1} \). Note that \(s \in A_4 \), and \(|s| = 2p + 1 \geq p \), so the Pumping Lemma will hold. Thus, we can split the string \(s \) into 3 parts \(s = xyz \) satisfying the conditions

i. \(xy^iz \in A_4 \) for each \(i \geq 0 \),

ii. \(|y| > 0 \),

iii. \(|xy| \leq p \).

Since the first \(p \) symbols of \(s \) are all \(b \)'s, the third condition implies that \(x \) and \(y \) consist only of \(b \)'s. So \(z \) will be the rest of the \(b \)'s, followed by \(a^{p+1} \). The second condition states that \(|y| > 0 \), so \(y \) has at least one \(b \). More precisely, we can then
say that

\[x = b^j \text{ for some } j \geq 0, \]
\[y = b^k \text{ for some } k \geq 1, \]
\[z = b^m a^{p+1} \text{ for some } m \geq 0. \]

Since \(b^p a^{p+1} = s = xyz = b^j b^k b^m a^{p+1} = b^{j+k+m} a^{p+1} \), we must have that \(j + k + m = p \). The first condition implies that \(x y^2 z \in A_4 \), but

\[
xy^2z = b^j b^k b^m a^{p+1} = b^{p+k} a^{p+1}
\]

since \(j + k + m = p \). Hence, \(x y^2 z \notin A_4 \) because it doesn’t have more \(a \)'s than \(b \)'s since \(k \geq 1 \), and we get a contradiction. Therefore, \(A_4 \) is a nonregular language.

4. Suppose that language \(A \) is recognized by an NFA \(N \), and language \(B \) is the collection of strings not accepted by some DFA \(M \). Prove that \(A \circ B \) is a regular language.

Answer: Since \(A \) is recognized by an NFA, we know that \(A \) is regular since a language is regular if and only if it is recognized by an NFA (Corollary 1.20). Note that the DFA \(M \) recognizes the language \(\overline{B} \), the complement of \(B \). Since \(\overline{B} \) is recognized by a DFA, by definition, \(\overline{B} \) is regular. We know from a problem on the previous homework that \(\overline{B} \) being regular implies that its complement \(\overline{\overline{B}} \) is regular. (\(\overline{B} \) is the complement of the complement of \(B \).) But \(\overline{\overline{B}} = B \), so \(B \) is regular. Since \(A \) and \(B \) are regular, their concatenation \(A \circ B \) is regular by Theorem 1.23.

5. (a) Prove that if we add a finite set of strings to a regular language, the result is a regular language.

Answer: Let \(A \) be a regular language, and let \(B \) be a finite set of strings. We know from class (see page 1-95 of Lecture Notes for Chapter 1) that finite languages are regular, so \(B \) is regular. Thus, \(A \cup B \) is regular since the class of regular languages is closed under union (Theorem 1.22).

(b) Prove that if we remove a finite set of strings from a regular language, the result is a regular language.

Answer: Let \(A \) be a regular language, and let \(B \) be a finite set of strings with \(B \subseteq A \). Let \(C \) be the language resulting from removing \(B \) from \(A \), i.e., \(C = A - B \). As we argued in the previous part, \(B \) is regular. Note that \(C = A - B = A \cap \overline{B} \). Since \(B \) is regular, \(\overline{B} \) is regular since the class of regular languages is closed under complement. We proved in an earlier homework that the class of regular languages is closed under intersection, so \(A \cap \overline{B} \) is regular since \(A \) and \(\overline{B} \) are regular. Therefore, \(A - B \) is regular.
(c) Prove that if we add a finite set of strings to a nonregular language, the result is a nonregular language.

Answer: Let A be a nonregular language, and let B be a finite set of strings. We want to add B to A, so we may assume that none of the strings in B are in A, i.e., $A \cap B = \emptyset$. Let C be the language obtained by adding B to A, i.e., $C = A \cup B$. Suppose that C is regular, and we now show this is impossible. Since $A \cap B = \emptyset$, we have that $A = C - B$. Since C and B are regular, the previous part of this problem implies that $C - B$ should be regular, but we assumed that $A = C - B$ is nonregular, so we get a contradiction.

(d) Prove that if we remove a finite set of strings from a nonregular language, the result is a nonregular language.

Answer: Let A be a nonregular language, and let B be a finite set of strings, where $B \subseteq A$. Let C be the language obtained by removing B from A, i.e., $C = A - B$. Suppose that C is regular, and we now show this is impossible. Since we removed B from A to get C, we must have that $C \cap B = \emptyset$, so $A = C \cup B$. Now C is regular by assumption and B is regular since it’s finite, so $C \cup B$ must be regular by Theorem 1.25. But we assumed that $A = C \cup B$ is nonregular, so we get a contradiction.

6. Consider the following statement: “If A is a nonregular language and B is a language such that $B \subseteq A$, then B must be nonregular.” If the statement is true, give a proof. If it is not true, give a counterexample showing that the statement doesn’t always hold.

Answer: The statement is not always true. For example, we know that the language $A = \{0^j1^j \mid j \geq 0\}$ is nonregular. Define the language $B = \{01\}$, and note that $B \subseteq A$. However, B is finite, so we know that it is regular.