Homework 7 Solutions

1. Give an implementation-level description of a Turing machine that decides the language $B=\left\{0^{n} 1^{n} 2^{n} \mid n \geq 0\right\}$.

Answer:

$M=$ "On input string $w:$

1. Scan the input from left to right to make sure that it is a member of $0^{*} 1^{*} 2^{*}$, and reject if it isn't.
2. Return tape head to left-hand end of tape.
3. Repeat the following until no more Os left on tape.
4. \quad Replace the leftmost 0 with x.
5. Scan right until a 1 occurs. If there are no 1 s , reject.
6. \quad Replace the leftmost 1 with x.
7. Scan right until a 2 occurs. If there are no 2 s , reject.
8. \quad Replace the leftmost 2 with x.
9. Return tape head to left-hand end of tape, and go to stage 3.
10. If the tape contains any 1 s or 2 s , reject. Otherwise, accept."
11. (a) Show that the class of decidable languages is closed under union.

Answer: For any two decidable languages L_{1} and L_{2}, let M_{1} and M_{2}, respectively be the TMs that decide them. We construct a TM M^{\prime} that decides the union of L_{1} and L_{2} :

$$
M^{\prime}=\text { "On input string } w:
$$

1. Run M_{1} on w. If it accepts, accept.
2. Run M_{2} on w. If it accepts, accept. Otherwise, reject.

To see why M^{\prime} decides $L_{1} \cup L_{2}$, first consider $w \in L_{1} \cup L_{2}$. Then w is in L_{1} or in L_{2} (or both). If $w \in L_{1}$, then M_{1} accepts w, so M^{\prime} will eventually accept w. Similarly, if $w \notin L_{1}$ but $w \in L_{2}$, then M_{1} will reject w because M_{1} is a decider (i.e., M_{1} never loops), and M_{2} will accept w, so M^{\prime} will eventually accept w. On the other hand, if $w \notin L_{1} \cup L_{2}$, then $w \notin L_{1}$ and $w \notin L_{2}$. Thus, both M_{1} and M_{2} reject w, so M^{\prime} rejects $w \notin L_{1} \cup L_{2}$. Hence, M^{\prime} decides $L_{1} \cup L_{2}$.
(b) Show that the class of Turing-recognizable languages is closed under union.

Answer: For any two Turing-recognizable languages L_{1} and L_{2}, let M_{1} and M_{2}, respectively, be TMs that recognize them. We construct a TM M^{\prime} that recognizes the union $L_{1} \cup L_{2}$:

$$
M^{\prime}=" O n \text { input string } w:
$$

1. Run M_{1} and M_{2} alternately on w, one step at a time. If either accepts, accept. If both halt and reject, reject.

To see why M^{\prime} recognizes $L_{1} \cup L_{2}$, first consider $w \in L_{1} \cup L_{2}$. Then w is in L_{1} or in L_{2} (or both). If $w \in L_{1}$, then M_{1} accepts w, so M^{\prime} will eventually accept w. Similarly, if $w \in L_{2}$, then M_{2} accepts w, so M^{\prime} will eventually accept w. On the other hand, if $w \notin L_{1} \cup L_{2}$, then $w \notin L_{1}$ and $w \notin L_{2}$. Thus, neither M_{1} nor M_{2} accepts w, so M^{\prime} will also not accept w. Hence, M^{\prime} recognizes $L_{1} \cup L_{2}$. Note that if neither M_{1} nor M_{2} accepts w and one of them does so by looping, then M^{\prime} will loop, but this is fine because we only needed M^{\prime} to recognize and not decide $L_{1} \cup L_{2}$.
3. In Theorem 3.21 we showed that a language is Turing-recognizable iff some enumerator enumerates it. Why didn't we construct the following simpler enumerator E^{\prime} from an existing TM M for the forward direction of the proof? As before, s_{1}, s_{2}, \ldots is a list of all strings in Σ^{*}, and the construct the following enumerator:

$$
E^{\prime}=\text { "Ignore the input. }
$$

1. Repeat the following for $i=1,2,3, \ldots$
2. Run M on s_{i}.
3. If it accepts, print out s_{i}."

Answer: The problem with the proof is that M on s_{i} might loop forever. If it loops forever, then E^{\prime} doesn't print out s_{i}. More importantly, E^{\prime} isn't going to move on to test the next string. Therefore, it won't be able to enumerate any other strings in L. For this reason, we need to simulate M on each of the strings for a fixed length of time so that no looping can occur.
4. A Turing machine with doubly infinite tape is similar to an ordinary Turing machine, but its tape is infinite to the left as well as to the right. The tape is initially filled with blanks except for the portion that contains the input. Computation is defined as usual except that the head never encounters an end to the tape as it moves leftward. Show that this type of Turing machine recognizes the class of Turing-recognizable languages.

Answer: A TM with doubly infinite tape can simulate an ordinary TM. It marks the left-hand end of the input to detect and prevent the head from moving off of that end.
To simulate the doubly infinite tape TM by an ordinary TM, we show how to simulate it with a 2-tape TM, which was already shown to be equivalent in power to an ordinary

TM. The first tape of the 2 -tape TM is written with the input string, and the second tape is blank. We cut the tape of the doubly infinite tape TM into two parts, at the starting cell of the input string. The portion with the input string and all the blank spaces to its right appears on the first tape of the 2-tape TM. The portion to the left of the input string appears on the second tape, in reverse order.

