Homework 10 Solutions

1. If $A \leq_{\mathrm{m}} B$ and B is a regular language, does that imply that A is a regular language?

Answer: No. For example, define the languages $A = \{0^n 1^n \mid n \geq 0\}$ and $B = \{1\}$, both over the alphabet $\Sigma = \{0, 1\}$. Define the function $f : \Sigma^* \to \Sigma^*$ as

$$f(w) = \begin{cases} 1 & \text{if } w \in A, \\ 0 & \text{if } w \notin A. \end{cases}$$

Observe that A is a context-free language, so it is also Turing-decidable. Thus, f is a computable function. Also, $w \in A$ if and only if f(w) = 1, which is true if and only if $f(w) \in B$. Hence, $A \leq_{\mathrm{m}} B$. Language A is nonregular, but B is regular since it is finite.

2. Show that $A_{\rm TM}$ is not mapping reducible to $E_{\rm TM}$. In other words, show that no computable function reduces $A_{\rm TM}$ to $E_{\rm TM}$. (Hint: Use a proof by contradiction, and facts you already know about $A_{\rm TM}$ and $E_{\rm TM}$.)

Answer: Suppose for a contradiction that $A_{\text{TM}} \leq_{\text{m}} E_{\text{TM}}$ via reduction f. This means that $w \in A_{\text{TM}}$ if and only if $f(w) \in E_{\text{TM}}$, which is equivalent to saying $w \notin A_{\text{TM}}$ if and only if $f(w) \notin E_{\text{TM}}$. Therefore, using the same reduction function f, we have that $\overline{A_{\text{TM}}} \leq_{\text{m}} \overline{E_{\text{TM}}}$. However, $\overline{E_{\text{TM}}}$ is Turing-recognizable (HW 8, problem 4) and $\overline{A_{\text{TM}}}$ is not Turing-recognizable (Corollary 4.23), contradicting Theorem 5.22.

3. Consider the language

$$A\varepsilon_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM that accepts } \varepsilon \}.$$

Show that $A\varepsilon_{\rm TM}$ is undecidable.

Answer: We will show that $A_{\rm TM}$ reduces to $A\varepsilon_{\rm TM}$. Suppose for contradiction that $A\varepsilon_{\rm TM}$ is decidable, and let R be a TM that decides $A\varepsilon_{\rm TM}$. We construct another TM S with input $\langle M, w \rangle$ that does the following. It first uses M and w to construct a new TM M_2 , which takes input x. If $x \neq \varepsilon$, then M_2 accepts; otherwise, M_2 runs M on input w and M_2 accepts if M accepts w. Note that M_2 recognizes the language $\Sigma^* - \{\varepsilon\}$ if M does not accept w; otherwise, M_2 recognizes the language Σ^* . In other words, M_2 accepts ε if and only if M accepts w. So our TM S decides $A_{\rm TM}$, which is a contradiction since we know $A_{\rm TM}$ is undecidable.

Here are the details of our TM S:

- S = "On input $\langle M, w \rangle$, where M is a TM and w is a string:
 - **0.** Check if $\langle M, w \rangle$ is a valid encoding of a TM M and string w. If not, reject.
 - 1. Construct the following TM M_2 from M and w:

 $M_2 =$ "On input x:

- 1. If $x \neq \varepsilon$, accept.
- 2. If $x = \varepsilon$, then run M on input w and accept if M accepts w."
- **2.** Run R on input $\langle M_2 \rangle$.
- **3.** If R accepts, accept; if R rejects, reject."
- 4. A useless state in a Turing machine is one that is never entered on any input string. Consider the problem of determining whether a state in a Turing machine is useless. Formulate this problem as a language and show it is undecidable.

Answer: We define the decision problem with the language

$$USELESS_{TM} = \{ \langle M, q \rangle \mid q \text{ is a useless state in TM } M \}.$$

We show that $USELESS_{TM}$ is undecidable by reducing E_{TM} to $USELESS_{TM}$, where $E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$. We know E_{TM} is undecidable by Theorem 5.2.

Suppose that $USELESS_{TM}$ is decidable and that TM R decides it. Note that for any Turing machine M with accept state q_{accept} , q_{accept} is useless if and only if $L(M) = \emptyset$. Thus, because TM R solves $USELESS_{TM}$, we can use R to check if q_{accept} is a useless state to decide E_{TM} . Specifically, below is a TM S that decides E_{TM} by using the decider R for $USELESS_{TM}$ as a subroutine:

- S = "On input $\langle M \rangle$, where M is a TM:
 - 1. Run TM R on input $\langle M, q_{\text{accept}} \rangle$, where q_{accept} is the accept state of M.
 - 2. If R accepts, accept. If R rejects, reject."

However, because we known $E_{\rm TM}$ is undecidable, there cannot exist a TM that decides $USELESS_{\rm TM}$.