Homework 10 Solutions

1. If $A \leq_m B$ and B is a regular language, does that imply that A is a regular language?

Answer: No. For example, define the languages $A = \{0^n1^n \mid n \geq 0\}$ and $B = \{1\}$, both over the alphabet $\Sigma = \{0, 1\}$. Define the function $f : \Sigma^* \to \Sigma^*$ as

$$f(w) = \begin{cases} 1 & \text{if } w \in A, \\ 0 & \text{if } w \notin A. \end{cases}$$

Observe that A is a context-free language, so it is also Turing-decidable. Thus, f is a computable function. Also, $w \in A$ if and only if $f(w) = 1$, which is true if and only if $f(w) \in B$. Hence, $A \leq_m B$. Language A is nonregular, but B is regular since it is finite.

2. Show that A_{TM} is not mapping reducible to E_{TM}. In other words, show that no computable function reduces A_{TM} to E_{TM}. (Hint: Use a proof by contradiction, and facts you already know about A_{TM} and E_{TM}.)

Answer: Suppose for a contradiction that $A_{TM} \leq_m E_{TM}$ via reduction f. This means that $w \in A_{TM}$ if and only if $f(w) \in E_{TM}$, which is equivalent to saying $w \notin A_{TM}$ if and only if $f(w) \notin E_{TM}$. Therefore, using the same reduction function f, we have that $A_{TM} \leq_m \overline{E_{TM}}$. However, $\overline{E_{TM}}$ is Turing-recognizable (HW 8, problem 4) and $\overline{A_{TM}}$ is not Turing-recognizable (Corollary 4.23), contradicting Theorem 5.22.

3. Consider the language

$$A_{\varepsilon_{TM}} = \{ \langle M \rangle \mid M \text{ is a TM that accepts } \varepsilon \}.$$

Show that $A_{\varepsilon_{TM}}$ is undecidable.

Answer: We will show that A_{TM} reduces to $A_{\varepsilon_{TM}}$. Suppose for contradiction that $A_{\varepsilon_{TM}}$ is decidable, and let R be a TM that decides $A_{\varepsilon_{TM}}$. We construct another TM S with input $\langle M, w \rangle$ that does the following. It first uses M and w to construct a new TM M_2, which takes input x. If $x \neq \varepsilon$, then M_2 accepts; otherwise, M_2 runs M on input w and M_2 accepts if M accepts w. Note that M_2 recognizes the language $\Sigma^* - \{\varepsilon\}$ if M rejects w; otherwise, M_2 recognizes the language Σ^*. In other words, M_2 accepts ε if and only if M accepts w. So our TM S decides A_{TM}, which is a contradiction since we know A_{TM} is undecidable.
Here are the details of our TM S:

\[S = \text{“On input } \langle M, w \rangle, \text{ where } M \text{ is a TM and } w \text{ is a string:} \]

1. Check if $\langle M, w \rangle$ is a valid encoding of a TM M and string w.
 If not, reject.

2. Construct the following TM M_2:

 \[M_2 = \text{“On input } x: \]

 1. If $x \neq \varepsilon$, accept.
 2. If $x = \varepsilon$, then run M on input w and accept if M accepts w."

3. Run R on input $\langle M_2 \rangle$.
4. If R accepts, accept; if R rejects, reject.”

4. A useless state in a Turing machine is one that is never entered on any input string. Consider the problem of determining whether a state in a Turing machine is useless. Formulate this problem as a language and show it is undecidable.

\textbf{Answer:} We define the problem as the language

\[\text{USELESS}_{\text{TM}} = \{ \langle M, q \rangle \mid q \text{ is a useless state in TM } M \}. \]

We show that $\text{USELESS}_{\text{TM}}$ is undecidable by reducing E_{TM} to $\text{USELESS}_{\text{TM}}$, where

\[E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}. \]

We know E_{TM} is undecidable by Theorem 5.2.

Suppose that $\text{USELESS}_{\text{TM}}$ is decidable and that TM R decides it. Note that for any Turing machine M with accept state q_{accept}, q_{accept} is useless if and only if $L(M) = \emptyset$. Thus, since TM R solves $\text{USELESS}_{\text{TM}}$, we can use R to check if q_{accept} is a useless state to decide E_{TM}. Specifically, below is a TM S that decides E_{TM} by using the decider R for $\text{USELESS}_{\text{TM}}$ as a subroutine:

\[S = \text{“On input } \langle M \rangle, \text{ where } M \text{ is a TM:} \]

 1. Run TM R on input $\langle M, q_{\text{accept}} \rangle$, where q_{accept} is the accept state of M.
 2. If R accepts, accept. If R rejects, reject.”

However, since we known E_{TM} is undecidable, there cannot exist a TM that decides $\text{USELESS}_{\text{TM}}$.
