Marvin K. Nakayama
Computer Science Department
New Jersey Institute of Technology
Newark, NJ 07102

Introduction

- Now introduce a simple model of a computer having a finite amount of memory.
- This type of machine will be known as a finite-state machine or finite automaton.
- Basic idea how a finite automaton works:
- It is presented an input string w over an alphabet Σ; i.e., $w \in \Sigma^{*}$.
- It reads in the symbols of w from left to right, one at a time.
- After reading the last symbol, it indicates if it accepts or rejects the string.
- These machines are useful for string matching, compilers, etc.

Chapter 1 Regular Languages

Contents

- Finite Automata
- Class of Regular Languages is Closed Under Some Operations
- Nondeterminism
- Regular Expressions
- Nonregular Languages

Deterministic Finite Automata (DFA)

Example: State diagram of DFA with alphabet $\Sigma=\{a, b\}$:

- q_{1}, q_{2}, q_{3} are the states.
- q_{1} is the start state as it has an arrow coming into it from nowhere.
- q_{2} is an accept state as it is drawn with a double circle.

Deterministic Finite Automata

- Edges tell how to move when in a state and a symbol from Σ is read.
- DFA is fed input string $w \in \Sigma^{*}$. After reading last symbol of w,
- if DFA is in an accept state, then string is accepted
- otherwise, it is rejected.
- Process the following strings over $\Sigma=\{a, b\}$ on above machine:
- abaa is accepted

Formal Definition of DFA

Definition: A deterministic finite automaton (DFA) is a 5-tuple

$$
M=\left(Q, \Sigma, \delta, q_{0}, F\right)
$$

where

1. $\quad Q$ is a finite set of states.
2. Σ is an alphabet, and the DFA processes strings over Σ.
3. $\delta: Q \times \Sigma \rightarrow Q$ is the transition function.

- δ defines label on each edge.

4. $q_{0} \in Q$ is the start state (or initial state).
5. $F \subseteq Q$ is the set of accept states (or final states).

Remark: Sometimes refer to DFA as simply a finite automaton (FA).

Transition Function of DFA

Transition function $\delta: Q \times \Sigma \rightarrow Q$ works as follows:

- For each state and for each symbol of the input alphabet, the function δ tells which (one) state to go to next.
- Specifically, if $r \in Q$ and $\ell \in \Sigma$, then $\delta(r, \ell)$ is the state that the DFA goes to when it is in state r and reads in ℓ, e.g., $\delta\left(q_{2}, a\right)=q_{3}$.
- For each pair of state $r \in Q$ and symbol $\ell \in \Sigma$,
- there is exactly one edge leaving r labeled with ℓ.
- Thus, there is no choice in how to process a string.
- So the machine is deterministic.

CS 341: Chapter 1

Example of DFA

$M=\left(Q, \Sigma, \delta, q_{1}, F\right)$ with

- $Q=\left\{q_{1}, q_{2}, q_{3}\right\}$
- $\Sigma=\{a, b\}$
- $\delta: Q \times \Sigma \rightarrow Q$ is described as

$$
\begin{array}{c|cc}
& a & b \\
\hline q_{1} & q_{1} & q_{2} \\
q_{2} & q_{3} & q_{2} \\
q_{3} & q_{2} & q_{2}
\end{array}
$$

- q_{1} is the start state
- $F=\left\{q_{2}\right\}$.

How a DFA Computes

- DFA is presented with an input string $w \in \Sigma^{*}$.
- DFA begins in the start state.
- DFA reads the string one symbol at a time, starting from the left.
- The symbols read in determine the sequence of states visited.
- Processing ends after the last symbol of w has been read.
- After reading the entire input string
- if DFA ends in an accept state, then input string w is accepted;
- otherwise, input string w is rejected.

Language of Machine

- Definition: If A is the set of all strings that machine M accepts, then we say
- $A=L(M)$ is the language of machine M, and
- M recognizes A.
^ M accepts each string $w \in A$.
^ M rejects (does not accept) each string $w \in \Sigma^{*}-A$.
- If machine M has input alphabet Σ, then $L(M) \subseteq \Sigma^{*}$.
- Σ^{*} is universe of problem instances (possible input strings)
- Each $w \in L(M)$ is a YES instance.
- Each $w \in \Sigma^{*}-L(M)$ is a NO instance.
- Definition: A language is regular if it is recognized by some DFA.

Formal Definition of DFA Computation

- Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA.
- String $w=w_{1} w_{2} \cdots w_{n} \in \Sigma^{*}$, where each $w_{i} \in \Sigma$ and $n \geq 0$.
- Then M accepts w if there exists a sequence of states $r_{0}, r_{1}, r_{2}, \ldots, r_{n} \in Q$ such that

1. $r_{0}=q_{0}$

- first state r_{0} in the sequence is the start state of DFA;

2. $r_{n} \in F$

- last state r_{n} in the sequence is an accept state;

3. $\delta\left(r_{i}, w_{i+1}\right)=r_{i+1}$ for each $i=0,1,2, \ldots, n-1$

- sequence of states corresponds to valid transitions for string w.

Examples of Deterministic Finite Automata

Example: Consider the following DFA M_{1} with alphabet $\Sigma=\{0,1\}$:

Remarks:

- 010110 is accepted, but 0101 is rejected.
- $L\left(M_{1}\right)$ is the language of strings over Σ in which the total number of 1 's is odd.
- Can you come up with a DFA that recognizes the language of strings over Σ having an even number of 1 's ?

Example: Consider the following DFA M_{2} with alphabet $\Sigma=\{0,1\}$:

Remarks:

- $L\left(M_{2}\right)$ is language of strings over Σ that have length 1, i.e.,

$$
L\left(M_{2}\right)=\left\{w \in \Sigma^{*}| | w \mid=1\right\}
$$

- Recall that $\overline{L\left(M_{2}\right)}$, the complement of $L\left(M_{2}\right)$, is the set of strings over Σ not in $L\left(M_{2}\right)$, i.e.,

$$
\left.\overline{L\left(M_{2}\right.}\right)=\Sigma^{*}-L\left(M_{2}\right)
$$

Can you come up with a DFA that recognizes $\overline{L\left(M_{2}\right)}$?

Example: Consider the following DFA M_{3} with alphabet $\Sigma=\{0,1\}$:

Remarks:

- $L\left(M_{3}\right)$ is the language of strings over Σ that do not have length 1 , i.e.

$$
L\left(M_{3}\right)=\overline{L\left(M_{2}\right)}=\left\{w \in \Sigma^{*}| | w \mid \neq 1\right\}
$$

- DFA can have more than one accept state.
- Start state can also be an accept state.
- In general, a DFA accepts ε if and only if the start state is also an accept state.

Constructing DFA for Complement

- In general, given a DFA M for language A,
we can make a DFA \bar{M} for \bar{A} from M by
- changing all accept states in M into non-accept states in \bar{M},
- changing all non-accept states in M into accept states in \bar{M},
- More formally, suppose language A over alphabet Σ has a DFA

$$
M=\left(Q, \Sigma, \delta, q_{1}, F\right)
$$

- Then, a DFA for the complementary language \bar{A} is

$$
\bar{M}=\left(Q, \Sigma, \delta, q_{1}, Q-F\right)
$$

where $Q, \Sigma, \delta, q_{1}, F$ are the same as in DFA M.

- Why does this work?

Example: Consider the following DFA M_{4} with alphabet $\Sigma=\{a, b\}$:

Remarks:

- $L\left(M_{4}\right)$ is the language of strings over Σ that end with $b b$, i.e.,

$$
L\left(M_{4}\right)=\left\{w \in \Sigma^{*} \mid w=s b b \text { for some } s \in \Sigma^{*}\right\}
$$

- Note that $a b b b \in L\left(M_{4}\right)$ and $b b a \notin L\left(M_{4}\right)$.

Example: Consider the following DFA M_{5} with alphabet $\Sigma=\{a, b\}$:

$L\left(M_{5}\right)=\left\{w \in \Sigma^{*} \mid w=s a a\right.$ or $w=s b b$ for some string $\left.s \in \Sigma^{*}\right\}$.
Note that $a b b b \in L\left(M_{5}\right)$ and $b b a \notin L\left(M_{5}\right)$.

Example: Consider the following DFA M_{6} with alphabet $\Sigma=\{a, b\}$:

Remarks:

- This DFA accepts all possible strings over Σ, i.e.,

$$
L\left(M_{6}\right)=\Sigma^{*}
$$

- In general, any DFA in which all states are accept states recognizes the language Σ^{*}.

Example: Consider the following DFA M_{7} with alphabet $\Sigma=\{a, b\}$:

Remarks:

- This DFA accepts no strings over Σ, i.e.,

$$
L\left(M_{7}\right)=\emptyset .
$$

- In general,
- a DFA may have no accept states, i.e., $F=\emptyset \subseteq Q$.
- any DFA with no accept states recognizes the language \emptyset.

- DFA moves left or right on a.
- DFA moves up or down on b.
- DFA recognizes the language EVEN-EVEN of strings over Σ having
- even number of a 's and
- even number of b 's.
- Note that ababaa $\in L\left(M_{8}\right)$ and $b b a \notin L\left(M_{8}\right)$.
- Let A and B be languages, each with alphabet Σ.
- Recall we previously defined the operations:
. Union:

$$
A \cup B=\{w \mid w \in A \text { or } w \in B\}
$$

- Concatenation:

$$
A \circ B=\{v w \mid v \in A, w \in B\}
$$

- Kleene star:

$$
A^{*}=\left\{w_{1} w_{2} \cdots w_{k} \mid k \geq 0 \text { and each } w_{i} \in A\right\}
$$

- Complement:

$$
\bar{A}=\left\{w \in \Sigma^{*} \mid w \notin A\right\}=\Sigma^{*}-A
$$

Closed under Operation

- Recall that a collection S of objects is closed under operation f if applying f to members of S always returns an object still in S.
- e.g., $\mathcal{N}=\{1,2,3, \ldots\}$ is closed under addition but not subtraction.
- Previously saw that given a DFA M_{1} for language A, can construct DFA M_{2} for complementary language \bar{A}.
- Make all accept states in M_{1} into non-accept states in M_{2}.
- Make all non-accept states in M_{1} into accept states in M_{2}.
- Thus, the class of regular languages is closed under complementation.
- i.e., if A is a regular language, then \bar{A} is a regular language.

Regular Languages Closed Under Union

Theorem 1.25

The class of regular languages is closed under union.

- i.e., if A_{1} and A_{2} are regular languages, then so is $A_{1} \cup A_{2}$.

Proof Idea:

- Suppose A_{1} is regular, so it has a DFA M_{1}.
- Suppose A_{2} is regular, so it has a DFA M_{2}.
- $w \in A_{1} \cup A_{2}$ if and only if $w \in A_{1}$ or $w \in A_{2}$.
- $w \in A_{1} \cup A_{2}$ if and only if w is accepted by M_{1} or M_{2}.
- Need DFA M_{3} to accept a string w iff w is accepted by M_{1} or M_{2}.
- Construct M_{3} to keep track of where the input would be if it were simultaneously running on both M_{1} and M_{2}.
- Accept string if and only if M_{1} or M_{2} accepts.

Example: Consider the following DFAs and languages over $\Sigma=\{a, b\}$:

- DFA M_{1} recognizes language $A_{1}=L\left(M_{1}\right)$
- DFA M_{2} recognizes language $A_{2}=L\left(M_{2}\right)$

DFA M_{1} for A_{1}
DFA M_{2} for A_{2}

- We now want a DFA M_{3} for $A_{1} \cup A_{2}$.

DFA M_{1} for A_{1}
DFA M_{2} for A_{2}

Step 1 to build DFA M_{3} for $A_{1} \cup A_{2}$: Begin in start states for M_{1} and M_{2}

DFA M_{2} for A_{2}

Step 2: From (x_{1}, y_{1}) on input a, M_{1} moves to x_{1}, and M_{2} moves to y_{2}.

CS 341: Chapter 1
DFA M_{1} for A_{1}

DFA M_{2} for A_{2}

DFA M_{2} for A_{2}

Step 4: From (x_{1}, y_{2}) on input a, M_{1} moves to x_{1}, and M_{2} moves to y_{1}.

DFA M_{1} for A_{1}
DFA M_{2} for A_{2}

Step 5: From $\left(x_{1}, y_{2}\right)$ on input b, M_{1} moves to x_{2}, and M_{2} moves to y_{1}, \ldots.

DFA M_{2} for A_{2}

Accept states for DFA M_{3} for $A_{1} \cup A_{2}$ have accept state from M_{1} or M_{2}

DFA M_{1} for A_{1}

DFA M_{2} for A_{2}

Continue until each state has outgoing edge for each symbol in Σ.

Proof that Regular Languages Closed Under Union

- Suppose A_{1} and A_{2} are defined over the same alphabet Σ.
- Suppose A_{1} recognized by DFA $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$.
- Suppose A_{2} recognized by DFA $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$.
- Define DFA $M_{3}=\left(Q_{3}, \Sigma, \delta_{3}, q_{3}, F_{3}\right)$ for $A_{1} \cup A_{2}$ as follows:
- Set of states of M_{3} is

$$
Q_{3}=Q_{1} \times Q_{2}=\left\{(x, y) \mid x \in Q_{1}, y \in Q_{2}\right\}
$$

- The alphabet of M_{3} is Σ.
- M_{3} has transition function $\delta_{3}: Q_{3} \times \Sigma \rightarrow Q_{3}$ such that for $x \in Q_{1}, y \in Q_{2}$, and $\ell \in \Sigma$,

$$
\delta_{3}((x, y), \ell)=\left(\delta_{1}(x, \ell), \delta_{2}(y, \ell)\right)
$$

- The start state of M_{3} is

$$
q_{3}=\left(q_{1}, q_{2}\right) \in Q_{3} .
$$

- The set of accept states of M_{3} is

$$
\begin{aligned}
F_{3} & =\left\{(x, y) \in Q_{1} \times Q_{2} \mid x \in F_{1} \text { or } y \in F_{2}\right\} \\
& =\left[F_{1} \times Q_{2}\right] \cup\left[Q_{1} \times F_{2}\right] .
\end{aligned}
$$

- Because $Q_{3}=Q_{1} \times Q_{2}$,
- number of states in new machine M_{3} is $\left|Q_{3}\right|=\left|Q_{1}\right| \cdot\left|Q_{2}\right|$.
- Thus, $\left|Q_{3}\right|<\infty$ because $\left|Q_{1}\right|<\infty$ and $\left|Q_{2}\right|<\infty$.

Remark:

- We can leave out a state $(x, y) \in Q_{1} \times Q_{2}$ from Q_{3} if (x, y) is not reachable from M_{3} 's initial state $\left(q_{1}, q_{2}\right)$.
- This would result in fewer states in Q_{3}, but still we have $\left|Q_{1}\right| \cdot\left|Q_{2}\right|$ as an upper bound for $\left|Q_{3}\right|$; i.e., $\left|Q_{3}\right| \leq\left|Q_{1}\right| \cdot\left|Q_{2}\right|<\infty$.

Regular Languages Closed Under Intersection

Theorem

The class of regular languages is closed under intersection.

- i.e., if A_{1} and A_{2} are regular languages, then so is $A_{1} \cap A_{2}$.

Proof Idea:

- A_{1} has DFA M_{1}.
- A_{2} has DFA M_{2}.
- $w \in A_{1} \cap A_{2}$ if and only if $w \in A_{1}$ and $w \in A_{2}$.
- $w \in A_{1} \cap A_{2}$ if and only if w is accepted by both M_{1} and M_{2}.
- Need DFA M_{3} to accept string w iff w is accepted by M_{1} and M_{2}.
- Construct M_{3} to simultaneously keep track of where the input would be if it were running on both M_{1} and M_{2}.
- Accept string if and only if both M_{1} and M_{2} accept.

Regular Languages Closed Under Concatenation

Theorem 1.26

Class of regular languages is closed under concatenation.
\bullet i.e., if A_{1} and A_{2} are regular languages, then so is $A_{1} \circ A_{2}$.

Remark:

- It is possible (but cumbersome) to directly construct a DFA for $A_{1} \circ A_{2}$ given DFAs for A_{1} and A_{2}.
- There is a simpler way if we introduce a new type of machine.

Nondeterministic Finite Automata

- In any DFA, the next state the machine goes to is uniquely determined by current state and next symbol read.

- This is why these machines are deterministic.
- DFA's determinism expressed through its transition function

$$
\delta: Q \times \Sigma \rightarrow Q
$$

- Because range of δ is Q, fon δ always returns a single state.
- DFA has exactly one transition leaving each state for each symbol.
- $\delta(q, \ell)$ tells what state the edge out of q labeled with ℓ leads to.

Nondeterminism

- Nondeterministic finite automata (NFAs) allow for several or no choices to exist for the next state on a given symbol.
- For a state q and symbol $\ell \in \Sigma$, NFA can have
- multiple edges leaving q labelled with the same symbol ℓ
- no edge leaving q labelled with symbol ℓ
- edges leaving q labelled with ε
- can take ε-edge without reading any symbol from input string.
© can also choose not to take ε-edge.

Example: NFA N_{1} with alphabet $\Sigma=\{0,1\}$.

- Suppose NFA is in a state with multiple ways to proceed, e.g., in state q_{1} and the next symbol in input string is 1 .
- The machine splits into multiple copies of itself (threads).
- Each copy proceeds with computation independently of others.
- NFA may be in a set of states, instead of a single state.
- NFA follows all possible computation paths in parallel.
- If a copy is in a state and next input symbol doesn't appear on any outgoing edge from the state, then the copy dies or crashes.
- If any copy ends in an accept state after reading entire input string without crashing, the NFA accepts the string.
- If no copy ends in an accept state after reading entire input string without crashing, then NFA does not accept (rejects) the string.

CS 341: Chapter 1

Example: NFA N

- N accepts strings $\varepsilon, a, a a, b a a, b a b a, \ldots$.
- e.g., $a a=\varepsilon a \varepsilon a$

- N does not accept (i.e., rejects) strings $b, b a, b b, b b b, \ldots$

Difference Between DFA and NFA

- DFA has transition function $\delta: Q \times \Sigma \rightarrow Q$.

- NFA has transition function $\delta: Q \times \Sigma_{\varepsilon} \rightarrow \mathcal{P}(Q)$.
- Returns a set of states rather than a single state.
- Allows for ε-transitions because $\Sigma_{\varepsilon}=\Sigma \cup\{\varepsilon\}$.
- For state $q \in Q$ and $\ell \in \Sigma_{\varepsilon}, \delta(q, \ell)$ is set of states where edges out of q labeled with ℓ lead to.

- Remark: Note that every DFA is also an NFA.

Formal Definition of NFA

Definition: For an alphabet Σ, define $\Sigma_{\varepsilon}=\Sigma \cup\{\varepsilon\}$.

- Σ_{ε} is set of possible labels on NFA edges.

Definition: A nondeterministic finite automaton (NFA) is a 5-tuple ($Q, \Sigma, \delta, q_{0}, F$), where

1. Q is a finite set of states
2. Σ is an alphabet
3. $\delta: Q \times \Sigma_{\varepsilon} \rightarrow \mathcal{P}(Q)$ is the transition function, where

- $\mathcal{P}(Q)$ is the power set of Q
- for each edge, δ specifies label from Σ_{ε}.

4. $q_{0} \in Q$ is the start state
5. $F \subseteq Q$ is the set of accept states.

Formal description of above NFA $N=\left(Q, \Sigma, \delta, q_{1}, F\right)$

- $Q=\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}$ is the set of states
- $\Sigma=\{0,1\}$ is the alphabet
- Transition function $\delta: Q \times \Sigma_{\varepsilon} \rightarrow \mathcal{P}(Q)$

	0	1	ε
q_{1}	$\left\{q_{1}\right\}$	$\left\{q_{1}, q_{2}\right\}$	\emptyset
q_{2}	$\left\{q_{3}\right\}$	\emptyset	$\left\{q_{3}\right\}$
q_{3}	\emptyset	$\left\{q_{4}\right\}$	\emptyset
q_{4}	$\left\{q_{4}\right\}$	$\left\{q_{4}\right\}$	\emptyset

- q_{1} is the start state
- $F=\left\{q_{4}\right\}$ is the set of accept states

Formal Definition of NFA Computation

- Let $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be an NFA and $w \in \Sigma^{*}$.
- Then N accepts w if
- we can write w as $w=y_{1} y_{2} \cdots y_{m}$ for some $m \geq 0$, where each $y_{i} \in \Sigma_{\varepsilon}$, and
- there is a sequence of states $r_{0}, r_{1}, r_{2}, \ldots, r_{m}$ in Q such that

1. $r_{0}=q_{0}$
2. $r_{i+1} \in \delta\left(r_{i}, y_{i+1}\right)$ for each $i=0,1,2, \ldots, m-1$
3. $r_{m} \in F$

Definition: The set of all input strings that are accepted by NFA N is the language recognized by N and is denoted by $L(N)$.

Equivalence of DFAs and NFAs

Definition: Two machines (of any types) are equivalent if they recognize the same language.

Theorem 1.39

Every NFA N has an equivalent DFA M.

- i.e., if N is some NFA, then \exists DFA M such that $L(M)=L(N)$.

Proof Idea:

- NFA N splits into multiple copies of itself on nondeterministic moves.
- NFA can be in a set of states at any one time.
- Build DFA M whose set of states is the power set of the set of states of NFA N, keeping track of where N can be at any time.

CS 341: Chapter 1

CS 341: Chapter 1
Example: Convert NFA N into equivalent DFA.

N 's start state q_{1} has no ε-edges out, so DFA has start state $\left\{q_{1}\right\}$.

Example: Convert NFA N into equivalent DFA.

On reading 0 from states in $\left\{q_{1}\right\}$, can reach states $\left\{q_{1}\right\}$.

Example: Convert NFA N into equivalent DFA.

On reading 1 from states in $\left\{q_{1}\right\}$, can reach states $\left\{q_{1}, q_{2}, q_{3}\right\}$.

CS 341: Chapter 1
Example: Convert NFA N into equivalent DFA.

On reading 1 from states in $\left\{q_{1}, q_{2}, q_{3}\right\}$, can reach $\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}$.

Example: Convert NFA N into equivalent DFA.

On reading 0 from states in $\left\{q_{1}, q_{3}\right\}$, can reach states $\left\{q_{1}\right\}$.

Example: Convert NFA N into equivalent DFA.

On reading 1 from states in $\left\{q_{1}, q_{3}\right\}$, can reach states $\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}$.

CS 341: Chapter 1
Proof. (Theorem 1.39: NFA \Rightarrow DFA)

- Consider NFA $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$:

- Definition: The ε-closure of a set of states $R \subseteq Q$ is

$$
\begin{aligned}
E(R)=\{q \mid & q \text { can be reached from } R \text { by } \\
& \text { travelling over } 0 \text { or more } \varepsilon \text { transitions }\} .
\end{aligned}
$$

- e.g., $E\left(\left\{q_{1}, q_{2}\right\}\right)=\left\{q_{1}, q_{2}, q_{3}\right\}$.

Convert NFA to Equivalent DFA

Given NFA $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$, build an equivalent DFA $M=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$ as follows:

1. Calculate the ε-closure of every subset $R \subseteq Q$.
2. Define DFA M^{\prime} 's set of states $Q^{\prime}=\mathcal{P}(Q)$.
3. Define DFA M 's start state $q_{0}^{\prime}=E\left(\left\{q_{0}\right\}\right)$.
4. Define DFA M 's set of accept states F^{\prime} to be all DFA states in Q^{\prime} that include an accept state of NFA N; i.e.,

$$
F^{\prime}=\left\{R \in Q^{\prime} \mid R \cap F \neq \emptyset\right\} .
$$

5. Calculate DFA M^{\prime} 's transition function $\delta^{\prime}: Q^{\prime} \times \Sigma \rightarrow Q^{\prime}$ as

$$
\delta^{\prime}(R, \ell)=\{q \in Q \mid q \in E(\delta(r, \ell)) \text { for some } r \in R\}
$$ for $R \in Q^{\prime}=\mathcal{P}(Q)$ and $\ell \in \Sigma$.

6. Can leave out any state $q^{\prime} \in Q^{\prime}$ not reachable from q_{0}^{\prime}, e.g., $\left\{q_{2}, q_{3}\right\}$ in our previous example.

Corollary 1.40

Language A is regular if and only if some NFA recognizes A.

Proof.

(\Rightarrow)

- If A is regular, then there is a DFA for it.
- But every DFA is also an NFA, so there is an NFA for A.
(\Leftarrow)
- Follows from previous theorem (1.39), which showed that every NFA has an equivalent DFA.

Class of Regular Languages Closed Under Union

Remark: Can use fact that every NFA has an equivalent DFA to simplify the proof that the class of regular languages is closed under union.

Remark: Recall union:

$$
A_{1} \cup A_{2}=\left\{w \mid w \in A_{1} \text { or } w \in A_{2}\right\} .
$$

Theorem 1.45

The class of regular languages is closed under union.

Proof Idea: Given NFAs N_{1} and N_{2} for A_{1} and A_{2}, resp., construct NFA N for $A_{1} \cup A_{2}=\left\{w \mid w \in A_{1}\right.$ or $\left.w \in A_{2}\right\}$ as follows:

Construct NFA for $A_{1} \cup A_{2}$ from NFAs for A_{1} and A_{2}

- Let A_{1} be language recognized by NFA $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$.
- Let A_{2} be language recognized by NFA $N_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$.
- Assume $Q_{1} \cap Q_{2}=\emptyset$.
- Construct NFA $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ for $A_{1} \cup A_{2}$:
- $Q=\left\{q_{0}\right\} \cup Q_{1} \cup Q_{2}$ is set of states of N.
- q_{0} is start state of N, where $q_{0} \notin Q_{1} \cup Q_{2}$.
- Set of accept states $F=F_{1} \cup F_{2}$.
- For $q \in Q$ and $a \in \Sigma_{\varepsilon}$, transition function δ satisfies

$$
\delta(q, a)= \begin{cases}\delta_{1}(q, a) & \text { if } q \in Q_{1} \\ \delta_{2}(q, a) & \text { if } q \in Q_{2}, \\ \left\{q_{1}, q_{2}\right\} & \text { if } q=q_{0} \text { and } a=\varepsilon \\ \emptyset & \text { if } q=q_{0} \text { and } a \neq \varepsilon\end{cases}
$$

Class of Regular Languages Closed Under Concatenation

Remark: Recall concatenation:

$$
A_{1} \circ A_{2}=\left\{v w \mid v \in A_{1}, w \in A_{2}\right\}
$$

Theorem 1.47

The class of regular languages is closed under concatenation.

CS 341: Chapter 1

Proof Idea: Given NFAs N_{1} and N_{2} for A_{1} and A_{2}, resp., construct NFA N for $A_{1} \circ A_{2}=\left\{v w \mid v \in A_{1}, w \in A_{2}\right\}$ as follows:

Construct NFA for $A_{1} \circ A_{2}$ from NFAs for A_{1} and A_{2}

- Let A_{1} be language recognized by NFA $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$.
- Let A_{2} be language recognized by NFA $N_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$.
- Assume $Q_{1} \cap Q_{2}=\emptyset$.
- Construct NFA $N=\left(Q, \Sigma, \delta, q_{1}, F_{2}\right)$ for $A_{1} \circ A_{2}$:
- $Q=Q_{1} \cup Q_{2}$ is set of states of N.
- Start state of N is q_{1}, which is start state of N_{1}.
- Set of accept states of N is F_{2}, which is same as for N_{2}.
- For $q \in Q$ and $a \in \Sigma_{\varepsilon}$, transition function δ satisfies

$$
\delta(q, a)= \begin{cases}\delta_{1}(q, a) & \text { if } q \in Q_{1}-F_{1} \\ \delta_{1}(q, a) & \text { if } q \in F_{1} \text { and } a \neq \varepsilon \\ \delta_{1}(q, a) \cup\left\{q_{2}\right\} & \text { if } q \in F_{1} \text { and } a=\varepsilon \\ \delta_{2}(q, a) & \text { if } q \in Q_{2}\end{cases}
$$

Class of Regular Languages Closed Under Star

Remark: Recall Kleene star:

$$
A^{*}=\left\{x_{1} x_{2} \cdots x_{k} \mid k \geq 0 \text { and each } x_{i} \in A\right\}
$$

Theorem 1.49

The class of regular languages is closed under the Kleene-star operation.

Construct NFA for A^{*} from NFA for A

- Let A be language recognized by NFA $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$.
- Construct NFA $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ for A^{*} :
- $Q=\left\{q_{0}\right\} \cup Q_{1}$ is set of states of N.
- q_{0} is start state of N, where $q_{0} \notin Q_{1}$.
- $F=\left\{q_{0}\right\} \cup F_{1}$ is the set of accept states of N.
- For $q \in Q$ and $a \in \Sigma_{\varepsilon}$, transition function δ satisfies

$$
\delta(q, a)= \begin{cases}\delta_{1}(q, a) & \text { if } q \in Q_{1}-F_{1}, \\ \delta_{1}(q, a) & \text { if } q \in F_{1} \text { and } a \neq \varepsilon, \\ \delta_{1}(q, a) \cup\left\{q_{1}\right\} & \text { if } q \in F_{1} \text { and } a=\varepsilon, \\ \left\{q_{1}\right\} & \text { if } q=q_{0} \text { and } a=\varepsilon, \\ \emptyset & \text { if } q=q_{0} \text { and } a \neq \varepsilon .\end{cases}
$$

Proof Idea: Given NFA N_{1} for A,
construct NFA N for $A^{*}=\left\{x_{1} x_{2} \cdots x_{k} \mid k \geq 0\right.$ and each $\left.x_{i} \in A\right\}$ as follows:

Regular Expressions

- Regular expressions are a way of describing certain languages.
- Consider alphabet $\Sigma=\{0,1\}$.
- Shorthand notation:
- 0 means $\{0\}$
- 1 means $\{1\}$
- Regular expressions use above shorthand notation and operations
- union \cup
- concatenation ○
- Kleene star *
- When using concatenation, will often leave out operator "o".

Interpreting Regular Expressions

Example: $0 \cup 1$ means $\{0\} \cup\{1\}$, which equals $\{0,1\}$.

Example:

- Consider $(0 \cup 1) 0^{*}$, which means $(0 \cup 1) \circ 0^{*}$.
- This equals $\{0,1\} \circ\{0\}^{*}$.
- Recall $\{0\}^{*}=\{\varepsilon, 0,00,000, \ldots\}$.
- Thus, $\{0,1\} \circ\{0\}^{*}$ is the set of strings that
- start with symbol 0 or 1 , and
- followed by zero or more O's.

Another Example of a Regular Expression

Example:

- $(0 \cup 1)^{*}$ means $(\{0\} \cup\{1\})^{*}$.
- This equals $\{0,1\}^{*}$, which is the set of all possible strings over the alphabet $\Sigma=\{0,1\}$.
- When $\Sigma=\{0,1\}$, often use shorthand notation Σ to denote regular expression $(0 \cup 1)$.

Hierarchy of Operations in Regular Expressions

- In most programming languages,
- multiplication has precedence over addition

$$
2+3 \times 4=14
$$

- parentheses change usual order

$$
(2+3) \times 4=20
$$

- exponentiation has precedence over multiplication and addition

$$
4+2 \times 3^{2}=
$$

\qquad -.

- Order of precedence for the regular operations:

1. Kleene star
2. concatenation
3. union

- Parentheses change usual order.

Formal (Inductive) Definition of Regular Expression
Definition: R is a regular expression with alphabet Σ if R is

1. a for some $a \in \Sigma$
2. ε
3. \emptyset
4. ($R_{1} \cup R_{2}$), where R_{1} and R_{2} are regular expressions
5. $\left(R_{1}\right) \circ\left(R_{2}\right)$, also denoted by $\left(R_{1}\right)\left(R_{2}\right)$, where R_{1} and R_{2} are regular expressions
6. $\left(R_{1}\right)^{*}$, where R_{1} is a regular expression
7. (R_{1}), where R_{1} is a regular expression.

Can remove redundant parentheses, e.g., $((0) \cup(1))(1) \longrightarrow(0 \cup 1) 1$.
Definition: If R is a regular expression, then $L(R)$ is the language generated (or described or defined) by R.

Examples:

1. $R \cup \emptyset=\emptyset \cup R=R$
2. $R \circ \varepsilon=\varepsilon \circ R=R$
3. $R \circ \emptyset=\emptyset \circ R=\emptyset$
4. $R_{1}\left(R_{2} \cup R_{3}\right)=R_{1} R_{2} \cup R_{1} R_{3}$.

Concatenation distributes over union.

Example:

- Define EVEN-EVEN over alphabet $\Sigma=\{a, b\}$ as strings with an even number of a 's and an even number of b 's; see slide 1-20 for a DFA.
- For example, $a a b a b b a a a b a b a b \in$ EVEN-EVEN.
- Regular expression:

$$
\left(a a \cup b b \cup(a b \cup b a)(a a \cup b b)^{*}(a b \cup b a)\right)^{*}
$$

Examples of Regular Expressions
Examples: For $\Sigma=\{0,1\}$,

1. $(0 \cup 1)=\{0,1\}$
2. $0^{*} 10^{*}=\{w \mid w$ has exactly a single 1$\}$
3. $\Sigma^{*} 1 \Sigma^{*}=\{w \mid w$ has at least one 1$\}$
4. $\Sigma^{*} 001 \Sigma^{*}=\{w \mid w$ contains 001 as a substring $\}$
5. $(\Sigma \Sigma)^{*}=\{w| | w \mid$ is even $\}$
6. $(\Sigma \Sigma \Sigma)^{*}=\{w| | w \mid$ is a multiple of three $\}$
7. $0 \Sigma^{*} 0 \cup 1 \Sigma^{*} 1 \cup 0 \cup 1$
$=\{w \mid w \neq \varepsilon$ starts and ends with same symbol $\}$
8. $1^{*} \emptyset=\emptyset$,
anything concatenated with \emptyset is equal to \emptyset.
9. $\emptyset^{*}=\{\varepsilon\}$

Kleene's Theorem

Theorem 1.54

Language A is regular iff A has a regular expression.

Lemma 1.55

If a language is described by a regular expression, then it is regular.
Proof. Procedure to convert regular expression R into NFA N :

1. If $R=a$ for some $a \in \Sigma$, then $L(R)=\{a\}$, which has NFA

$N=\left(\left\{q_{1}, q_{2}\right\}, \Sigma, \delta, q_{1},\left\{q_{2}\right\}\right)$ where transition function δ

- $\delta\left(q_{1}, a\right)=\left\{q_{2}\right\}$,
- $\delta(r, b)=\emptyset$ for any state $r \neq q_{1}$ or any $b \in \Sigma_{\varepsilon}$ with $b \neq a$.

2. If $R=\varepsilon$, then $L(R)=\{\varepsilon\}$, which has NFA

$N=\left(\left\{q_{1}\right\}, \Sigma, \delta, q_{1},\left\{q_{1}\right\}\right)$ where

- $\delta(r, b)=\emptyset$ for any state r and any $b \in \Sigma_{\varepsilon}$.

3. If $R=\emptyset$, then $L(R)=\emptyset$, which has NFA

$N=\left(\left\{q_{1}\right\}, \Sigma, \delta, q_{1}, \emptyset\right)$ where

- $\delta(r, b)=\emptyset$ for any state r and any $b \in \Sigma_{\varepsilon}$.

CS 341: Chapter 1
5. If $R=\left(R_{1}\right) \circ\left(R_{2}\right)$ and

- $L\left(R_{1}\right)$ has NFA N_{1}
- $L\left(R_{2}\right)$ has NFA N_{2},
then $L(R)=L\left(R_{1}\right) \circ L\left(R_{2}\right)$ has NFA N below:

4. If $R=\left(R_{1} \cup R_{2}\right)$ and

- $L\left(R_{1}\right)$ has NFA N_{1}
- $L\left(R_{2}\right)$ has NFA N_{2},
then $L(R)=L\left(R_{1}\right) \cup L\left(R_{2}\right)$ has NFA N below:

CS 341: Chapter 1
6. If $R=\left(R_{1}\right)^{*}$ and $L\left(R_{1}\right)$ has NFA N_{1}, then $L(R)=\left(L\left(R_{1}\right)\right)^{*}$ has NFA N below:

- Thus, can convert any regular expression R into an NFA.
- Hence, Corollary 1.40 implies that the language $L(R)$ is regular.

Ex: Build NFA
a
for $(a b \cup a)^{*}$

b

$a b$

$a b \cup a$

$(a b \cup a)^{*}$
\exists other correct NFAs

Lemma 1.60

If a language is regular, then it has a regular expression.

Proof Idea:

- Convert DFA (or NFA) into regular expression.
- Account for every path that starts in initial state and ends in an accept state.
- Use generalized NFA (GNFA), which is an NFA with following modifications:
- no edges into start state.
- single accept state, with no edges out of it.
- labels on edges are regular expressions instead of elements from Σ_{ε}.
- can traverse edge on any string generated by its regular expression.

Method to convert DFA into regular expression

1. First convert DFA into equivalent GNFA.
2. Apply following iterative procedure to account for every path from initial state to accept state.

- In each step, eliminate one state from GNFA.
- When state is eliminated, need to account for every path that was previously possible.
- Can eliminate states in any order but end result will be different.
- Never delete start or (unique) accept state.
- Done when only 2 states remaining: start and accept.
- Label on remaining edge between start and accept states is a regular expression for language of original DFA.

Remark: Method also can convert NFA into a regular expression.

1. Convert DFA $M=\left(Q, \Sigma, \delta, q_{1}, F\right)$ into equivalent GNFA G.

- Introduce new start state s.
- Add edge from s to q_{1} with label ε.
- Make q_{1} no longer the start state.
- Introduce new accept state t.
- Add edge with label ε from each state $q \in F$ to t.
- Make each state originally in F no longer an accept state.
- Change edge labels into regular expressions.
- e.g., " a, b " becomes " $a \cup b$ ".

CS 341: Chapter 1
Example: Convert DFA M into regular expression.

1) Convert DFA into GNFA

2.1) Eliminate state q_{2}

2.2) Eliminate state q_{3}

2.3) Eliminate state q_{1}

CS 341: Chapter 1
2. Iteratively eliminate a state from GNFA G.

- Need to take into account all possible previous paths.
- Never eliminate new start state s or new accept state t.

Example: Eliminate state q_{2}, which has no other in/out edges.

CS 341: Chapter 1
1-88

Example:

Eliminate state x, which has no other in/out edges

- Let $C=\{v, z\}$, which are states with edges into x (except for x).
- Let $D=\{v, y, z\}$, which are states with edges from x (except for x).
- When we eliminate x, need to account for paths
- from each state in C directly into x
- then from x directly to x
- finally from x directly to each state in D
- Recall $C=\{v, z\}$ and $D=\{v, y, z\}$.
- So eliminating state x gives

- e.g., for path $v \rightarrow x \rightarrow y$, add edge from v to y with label $\left(R_{1}\right)\left(R_{2}\right)^{*}\left(R_{4}\right)$

CS 341: Chapter 1

1-91

Step 2.1. Eliminate state 1

$$
\begin{aligned}
& C=\{s, 2,3\} \\
& D=\{2,3\}
\end{aligned}
$$

Example: Convert DFA into Regular Expression

Step 1. Convert DFA into GNFA

CS 341: Chapter 1

Step 2.2. Eliminate state 2

$$
C=\{s, 3\}
$$

$$
D=\{3, t\}
$$

Step 2.3. Eliminate state 3

$$
C=\{s\}, \quad D=\{t\}
$$

$\left(a(a a \cup b)^{*} a b \cup b\right)\left((b a \cup a)(a a \cup b)^{*} a b \cup b b\right)^{*}\left((b a \cup a)(a a \cup b)^{*} \cup \varepsilon\right)$

Finite Languages are Regular

Theorem

If A is a finite language, then A is regular.

Proof.

- Because A finite, we can write

$$
A=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}
$$

for some $n<\infty$.

- A regular expression for A is then

$$
R=w_{1} \cup w_{2} \cup \cdots \cup w_{n}
$$

- Kleene's Theorem then implies A has a DFA, so A is regular.

Remark: The converse is not true.
e.g., 1* generates a regular language, but it's infinite.

$$
\overbrace{\left(a(a a \cup b)^{*} a b \cup b\right)}^{\text {first visit to } 3} \overbrace{\left((b a \cup a)(a a \cup b)^{*} a b \cup b b\right)^{*}}^{*} \overbrace{\left((b a \cup a)(a a \cup b)^{*} \cup \varepsilon\right)}^{0 \text { or more returns to } 3}
$$

- Regular expression accounts for all paths starting in start state 1 and ending in accepting state (2 or 3):
- visit state 3 at least once (ending in 2 or 3), or
- never visit state 3 (ending in 2).

Pumping Lemma for Regular Languages

Example: DFA with alphabet $\Sigma=\{0,1\}$ for language A.

- DFA has 5 states.
- DFA accepts string $s=0011$, which has length 4 .
- On $s=0011$, DFA visits all of the states.

CS 341: Chapter 1

- More generally, consider
- language A with DFA M having p states,
- string $s \in A$ with $|s| \geq p$.
- When processing s on M, guaranteed to visit some state twice.
- Let r be first state visited twice.
- Using state r, can divide s as $s=x y z$.
- x are symbols read until first visit to r.
- y are symbols read from first to second visit to r.
- z are symbols read from second visit to r to end of s.

- Recall DFA accepts string

$$
s=\underbrace{0}_{x} \underbrace{0110}_{y} \underbrace{11}_{z} .
$$

- DFA also accepts strings

$$
\begin{aligned}
x y y z & =\underbrace{0}_{x} \underbrace{0110}_{y} \underbrace{0110}_{y} \underbrace{11}_{z}, \\
x y y y z & =\underbrace{0}_{y} \underbrace{0110}_{y} \underbrace{0110}_{y} \underbrace{0110}_{y} \underbrace{11}_{z}, \\
x z & =\underbrace{0}_{x} \underbrace{11}_{z} .
\end{aligned}
$$

- String $x y^{i} z \in A$ for each $i \geq 0$.

CS 341: Chapter 1

- For any string s with $|s| \geq 5$, guaranteed to visit some state twice by the pigeonhole principle.
- String $s=0011011$ is accepted by DFA, i.e., $s \in A$.

- q_{2} is first state visited twice.
- Using q_{2}, divide string s into 3 parts x, y, z such that $s=x y z$.
- $x=0$, the symbols read until first visit to q_{2}.
- $y=0110$, the symbols read from first to second visit to q_{2}.
- $z=11$, the symbols read after second visit to q_{2}.

- $|x y| \leq p$, where p is number of states in DFA, because
- $x y$ are symbols read up to second visit to r.
- Because r is the first state visited twice,
all states visited before second visit to r are unique.
- So just before visiting r for second time, DFA visited at most p states, which corresponds to reading at most $p-1$ symbols.
- The second visit to r, which is after reading 1 more symbol, corresponds to reading at most p symbols.

Theorem 1.70

If A is regular language, then \exists number p (pumping length) where, if $s \in A$ with $|s| \geq p$, then s can be split into 3 pieces, $s=x y z$, satisfying the properties

1. $x y^{i} z \in A$ for each $i \geq 0$,
2. $|y|>0$, and
3. $|x y| \leq p$.

Remarks:

- y^{i} denotes i copies of y concatenated together, and $y^{0}=\varepsilon$.
- $|y|>0$ means $y \neq \varepsilon$.
- $|x y| \leq p$ means x and y together have no more than p symbols total.
- Key ideas: For each long enough string s in a regular language A, can use s to construct infinitely many other strings in A.

Understanding the Pumping Lemma

Nonregular Languages

Definition: Language is nonregular if there is no DFA for it.

Remarks:

- Pumping Lemma (PL) is a result about regular languages.
- But PL mainly used to prove that certain language A is nonregular.
- Typically done using proof by contradiction.
- Assume language A is regular.
- PL says that all strings $s \in A$ that are at least a certain length must satisfy some properties
- By appropriately choosing $s \in A$, will eventually get contradiction.
- PL: can split s into $s=x y z$ satisfying all of Properties 1-3.
- To get contradiction, show cannot split $s=x y z$ satisfying 1-3.
- Show all splits satisfying 2-3 violate Prop $1\left(x y^{i} z \in A \forall i \geq 0\right)$.
- Because Property 3 of PL states $|x y| \leq p$, often choose $s \in A$ so that all of its first p symbols are the same.

Language $A=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is Nonregular

Proof.

- Suppose A is regular, so PL implies A has "pumping length" p.
- Consider string $s=0^{p} 1^{p} \in A$.
- $|s|=2 p \geq p$, so Pumping Lemma will hold.
- So can split s into 3 pieces $s=x y z$ satisfying properties

1. $x y^{i} z \in A$ for each $i \geq 0$,
2. $|y|>0$, and
3. $|x y| \leq p$.

- To get contradiction, must show cannot split $s=x y z$ satisfying 1-3.
- Show all splits $s=x y z$ satisfying Properties 2 and 3 will violate 1 .
- Because the first p symbols of $s=\underbrace{00 \cdots 0}_{p} \underbrace{11 \cdots 1}_{p}$ are all 0 's
- Property 3 implies that x and y consist of only 0 's.
- z will be the rest of the 0 's, followed by all $p 1$'s.
- Key: y has some 0 's, and z contains all the 1 's (and maybe some 0 's), so pumping y changes $\#$ of 0 's but not $\#$ of 1 's.
- So we have

$$
\begin{aligned}
& x=0^{j} \text { for some } j \geq 0, \\
& y=0^{k} \text { for some } k \geq 0 \\
& z=0^{m} 1^{p} \text { for some } m \geq 0
\end{aligned}
$$

- $s=x y z$ implies

$$
0^{p} 1^{p}=0^{j} 0^{k} 0^{m} 1^{p}=0^{j+k+m} 1^{p}
$$

so $j+k+m=p$.

- Property 2 states that $|y|>0$, so $k>0$.
- Property 1 implies xyyz $\in A$, but

$$
\begin{aligned}
x y y z & =0^{j} 0^{k} 0^{k} 0^{m} 1^{p} \\
& =0^{j+k+k+m} 1^{p} \\
& =0^{p+k} 1^{p} \notin A
\end{aligned}
$$

because $j+k+m=p$ and $k>0$.

- Contradiction, so $A=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is nonregular.
- So we have

$$
\begin{aligned}
& x=0^{j} \text { for some } j \geq 0, \\
& y=0^{k} \text { for some } k \geq 0, \\
& z=0^{m} 10^{p} 1 \text { for some } m \geq 0
\end{aligned}
$$

- $s=x y z$ implies

$$
0^{p} 10^{p} 1=0^{j} 0^{k} 0^{m} 10^{p} 1=0^{j+k+m} 10^{p} 1
$$

$$
\text { so } j+k+m=p
$$

- Property 2 states that $|y|>0$, so $k>0$.
- Property 1 implies xyyz $\in B$, but

$$
\begin{aligned}
x y y z & =0^{j} 0^{k} 0^{k} 0^{m} 10^{p} 1 \\
& =0^{j+k+k+m} 10^{p} 1 \\
& =0^{p+k} 10^{p} 1 \notin B
\end{aligned}
$$

because $j+k+m=p$ and $k>0$.

- Contradiction, so $B=\left\{w w \mid w \in\{0,1\}^{*}\right\}$ is nonregular.

Important Steps in Proving Language is Nonregular

 Pumping Lemma (PL):If A is a regular language, then \exists number p (pumping length) where,
if $s \in A$ with $|s| \geq p$, then s can be split into 3 pieces, $s=x y z$, with

1. $x y^{i} z \in A$ for each $i \geq 0$,
2. $|y|>0$, and
3. $|x y| \leq p$.

Remarks:

- Must choose appropriate string $s \in A$ to get contradiction.
- Some strings $s \in A$ might not lead to contradiction; e.g., $O^{p} O^{p} \in\left\{w w \mid w \in\{0,1\}^{*}\right\}$
- Because Property 3 of PL states $|x y| \leq p$, often choose $s \in A$ so that all of its first p symbols are the same.
- Once appropriate s is chosen, need to show every possible split of $s=x y z$ leads to contradiction.

Pumping Lemma (PL):

If A is a regular language, then \exists number p (pumping length) where,
if $s \in A$ with $|s| \geq p$, then s can be split into 3 pieces, $s=x y z$, with

1. $x y^{i} z \in A$ for each $i \geq 0$,
2. $|y|>0$, and
3. $|x y| \leq p$.

Examples:

1. Let $C=\left\{w \in\{a, b\}^{*} \mid w=w^{\mathcal{R}}\right\}$, where $w^{\mathcal{R}}$ is the reverse of w.

- To show C is nonregular, can choose $s=a^{p} b a^{p} \in C$.
\bullet Choosing $s=a^{p} \in C$ does not work. Why?

2. To show $D=\left\{a^{2 n} b^{3 n} a^{n} \mid n \geq 0\right\}$ is nonregular, can choose $s=a^{2 p} b^{3 p} a^{p} \in D$.
3. Consider language $E=\left\{w \in\{a, b\}^{*} \mid w\right.$ has more a 's than b 's $\}$. For example, baaba $\in E$.

- To show E is nonregular, can choose $s=b^{p} a^{p+1} \in E$.

Common Mistake

- Consider $D=\left\{a^{2 n} b^{3 n} a^{n} \mid n \geq 0\right\}$.
- To show D is nonregular, can choose $s=a^{2 p} b^{3 p} a^{p} \in D$.
- Common mistake: try to apply Pumping Lemma with

$$
x=a^{2 p}, \quad y=b^{3 p}, \quad z=a^{p}
$$

- For this split, $|x y|=5 p \not \leq p$.
- But Pumping Lemma states "If D is a regular language, then ... can split $s=x y z$ satisfying Properties $1-3$."
- To get contradiction, need to show cannot split $s=x y z$ satisfying Properties 1-3.
- Need to show every split $s=x y z$ doesn't satisfy all of 1-3.
- Every split $s=x y z$ satisfying Properties 2 and 3 must have

$$
x=a^{j}, \quad y=a^{k}, \quad z=a^{m} b^{3 p} a^{p}
$$

where $j+k \leq p, j+k+m=2 p$, and $k \geq 1$.

Hierarchy of Languages (so far)

| All languages |
| :---: | :---: | :---: |
| (DFA, NFA, Reg Exp) |
| Finite |

Examples

$\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
$(0 \cup 1)^{*}$
\{110, 01 \}

Summary of Chapter 1

- DFA is a deterministic machine for recognizing certain languages.
- A language is regular if it has a DFA.
- The class of regular languages is closed under union, intersection, concatenation, Kleene-star, complementation.
- NFA can be nondeterministic: allows choice in how to process string.
- Every NFA has an equivalent DFA.
- Regular expression is a way of generating certain languages.
- Kleene's Theorem: Language A has DFA iff A has regular expression.
- Every finite language is regular, but not every regular language is finite.
- Use pumping lemma to prove certain languages are not regular.

