Introduction

- Now introduce a simple model of a computer having a finite amount of memory.
- This type of machine will be known as a **finite-state machine** or **finite automaton**.
- Basic idea how a finite automaton works:
 - It is presented an input string w over an alphabet Σ; i.e., $w \in \Sigma^*$.
 - It reads in the symbols of w from left to right, one at a time.
 - After reading the last symbol, it indicates if it accepts or rejects the string.
- These machines are useful for string matching, compilers, etc.

Deterministic Finite Automata (DFA)

Example: DFA with alphabet $\Sigma = \{a, b\}$:

- q_1, q_2, q_3 are the **states**.
- q_1 is the **start state** as it has an arrow coming into it from nowhere.
- q_2 is an **accept state** as it is drawn with a double circle.
Deterministic Finite Automata

- Edges tell how to move when in a state and a symbol from Σ is read.
- DFA is fed input string $w \in \Sigma^*$. After reading last symbol of w,
 - if DFA is in an accept state, then string is accepted
 - otherwise, it is rejected.
- Process the following strings over $\Sigma = \{a, b\}$ on above machine:
 - $abaa$ is accepted
 - aba is rejected
 - ε is rejected

Formal Definition of DFA

Definition: A deterministic finite automaton (DFA) is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$, where

1. Q is a finite set of states.
2. Σ is an alphabet, and the DFA processes strings over Σ.
3. $\delta : Q \times \Sigma \rightarrow Q$ is the transition function.
 - δ defines label on each edge.
4. $q_0 \in Q$ is the start state (or initial state).
5. $F \subseteq Q$ is the set of accept states (or final states).

Remark: Sometimes refer to DFA as simply a finite automaton (FA).

Transition Function of DFA

Transition function $\delta : Q \times \Sigma \rightarrow Q$ works as follows:

- For each state and for each symbol of the input alphabet, the function δ tells which (one) state to go to next.
- Specifically, if $r \in Q$ and $\ell \in \Sigma$, then $\delta(r, \ell)$ is the state that the DFA goes to when it is in state r and reads in ℓ, e.g., $\delta(q_2, a) = q_3$.
- For each pair of state $r \in Q$ and symbol $\ell \in \Sigma$,
 - there is exactly one arc leaving r labeled with ℓ.
- Thus, there is no choice in how to process a string.
 - So the machine is deterministic.

Example of DFA

$M = (Q, \Sigma, \delta, q_0, F)$ with

- $Q = \{q_1, q_2, q_3\}$
- $\Sigma = \{a, b\}$
- $\delta : Q \times \Sigma \rightarrow Q$ is described as

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1</td>
<td>q_1</td>
<td>q_1</td>
</tr>
<tr>
<td>q_2</td>
<td>q_2</td>
<td>q_2</td>
</tr>
<tr>
<td>q_3</td>
<td>q_3</td>
<td>q_2</td>
</tr>
</tbody>
</table>

- q_1 is the start state
- $F = \{q_2\}$.
How a DFA Computes

- DFA is presented with an input string \(w \in \Sigma^* \).
- DFA begins in the start state.
- DFA reads the string one symbol at a time, starting from the left.
- The symbols read in determine the sequence of states visited.
- Processing ends after the last symbol of \(w \) has been read.
- After reading the entire input string
 - if DFA ends in an accept state, then input string \(w \) is accepted;
 - otherwise, input string \(w \) is rejected.

Formal Definition of DFA Computation

- Let \(M = (Q, \Sigma, \delta, q_0, F) \) be a DFA.
- String \(w = w_1w_2 \cdots w_n \in \Sigma^* \), where each \(w_i \in \Sigma \) and \(n \geq 0 \).
- Then \(M \) accepts \(w \) if there exists a sequence of states
 \(r_0, r_1, r_2, \ldots, r_n \in Q \) such that
 1. \(r_0 = q_0 \)
 - first state \(r_0 \) in the sequence is the start state of DFA;
 2. \(r_n \in F \)
 - last state \(r_n \) in the sequence is an accept state;
 3. \(\delta(r_i, w_{i+1}) = r_{i+1} \) for each \(i = 0, 1, 2, \ldots, n - 1 \)
 - sequence of states corresponds to valid transitions for string \(w \).

Language of Machine

- Definition: If \(A \) is the set of all strings that machine \(M \) accepts, then we say
 - \(A = L(M) \) is the language of machine \(M \), and
 - \(M \) recognizes \(A \).

- If machine \(M \) has input alphabet \(\Sigma \), then \(L(M) \subseteq \Sigma^* \).

- Definition: A language is regular if it is recognized by some DFA.

Examples of Deterministic Finite Automata

Example: Consider the following DFA \(M_1 \) with alphabet \(\Sigma = \{0, 1\} \):

- \(q_1 \) to \(q_2 \) on 1
- \(q_2 \) to \(q_1 \) on 1

Remarks:

- 010110 is accepted, but 0101 is rejected.
- \(L(M_1) \) is the language of strings over \(\Sigma \) in which the total number of 1's is odd.
- Can you come up with a DFA that recognizes the language of strings over \(\Sigma \) having an even number of 1's?
Example: Consider the following DFA M_2 with alphabet $\Sigma = \{0, 1\}$:

$$
\begin{array}{c}
q_1 \quad 0, 1 \quad q_2 \quad 0, 1 \quad q_3 \quad 0, 1
\end{array}
$$

Remarks:
- $L(M_2)$ is the language of strings over Σ that have length 1, i.e.,
 $$L(M_2) = \{ w \in \Sigma^* \mid |w| = 1 \}$$
- Recall that $\overline{L(M_2)}$, the complement of $L(M_2)$, is the set of strings over Σ not in $L(M_2)$, i.e.,
 $$\overline{L(M_2)} = \Sigma^* - L(M_2).$$
 Can you come up with a DFA that recognizes $\overline{L(M_2)}$?

Example: Consider the following DFA M_3 with alphabet $\Sigma = \{0, 1\}$:

$$
\begin{array}{c}
q_1 \quad 0, 1 \quad q_2 \quad 0, 1 \quad q_3 \quad 0, 1
\end{array}
$$

Remarks:
- $L(M_3)$ is the language of strings over Σ that do not have length 1, i.e.,
 $$L(M_3) = L(M_2) = \{ w \in \Sigma^* \mid |w| \neq 1 \}$$
- DFA can have more than one accept state.
- Start state can also be an accept state.
- In general, a DFA accepts ϵ if and only if the start state is also an accept state.

Constructing DFA for Complement

- In general, given a DFA M for language A, we can make a DFA \overline{M} for A from M by
 - changing all accept states in M into non-accept states in \overline{M},
 - changing all non-accept states in M into accept states in \overline{M},
- More formally, suppose language A over alphabet Σ has a DFA $M = (Q, \Sigma, \delta, q_1, F)$.
 - Then, a DFA for the complementary language \overline{A} is
 $$\overline{M} = (Q, \Sigma, \delta, q_1, Q - F).$$
 where $Q, \Sigma, \delta, q_1, F$ are the same as in DFA M.
- Why does this work?

Example: Consider the following DFA M_4 with alphabet $\Sigma = \{a, b\}$:

$$
\begin{array}{c}
q_1 \quad a \quad q_2 \quad b \quad q_3 \quad b
\end{array}
$$

Remarks:
- $L(M_4)$ is the language of strings over Σ that end with bb, i.e.,
 $$L(M_4) = \{ w \in \Sigma^* \mid w = sbb \text{ for some } s \in \Sigma^* \}$$
- Note that $abb \in L(M_4)$ and $bba \notin L(M_4)$.
Example: Consider the following DFA M_5 with alphabet $\Sigma = \{a, b\}$:

$$
\begin{array}{ccc}
q_1 & \xrightarrow{a} & q_2 \\
\xrightarrow{b} & & \xrightarrow{a} \\
\xrightarrow{b} & & q_5 \\
q_3 & \xrightarrow{b} & q_4 \\
\end{array}
$$

$L(M_5) = \{ w \in \Sigma^+ | w = saa \text{ or } w = sbb \text{ for some string } s \in \Sigma^+ \}$. Note that $abbb \in L(M_5)$ and $bba \notin L(M_5)$.

Remarks:
- This DFA accepts all possible strings over Σ, i.e., $L(M_6) = \Sigma^*$.
- In general, any DFA in which all states are accept states recognizes the language Σ^*.

Example: Consider the following DFA M_7 with alphabet $\Sigma = \{a, b\}$:

$$
\begin{array}{ccc}
q_1 & \xrightarrow{a, b} & q_2 \\
\xrightarrow{a, b} & & \xrightarrow{a, b} \\
\xrightarrow{a, b} & & \xrightarrow{a, b} \\
q_3 & \xrightarrow{a, b} & q_4 \\
\end{array}
$$

Remarks:
- This DFA accepts no strings over Σ, i.e., $L(M_7) = \emptyset$.
- In general,
 - a DFA may have no accept states, i.e., $F = \emptyset \subseteq Q$.
 - any DFA with no accept states recognizes the language \emptyset.
Some Operations on Languages

- Let A and B be languages.
- Recall we previously defined the operations:
 - **Union:**
 \[A \cup B = \{ w \mid w \in A \text{ or } w \in B \} \]
 - **Concatenation:**
 \[A \circ B = \{ vw \mid v \in A, w \in B \} \]
 - **Kleene star:**
 \[A^* = \{ w_1 w_2 \cdots w_k \mid k \geq 0 \text{ and each } w_i \in A \} \]

Closed under Operation

- Recall that a collection S of objects is **closed** under operation f if applying f to members of S always returns an object still in S.
 - e.g., $\mathcal{N} = \{1, 2, 3, \ldots\}$ is closed under addition but not subtraction.

- Previously saw that given a DFA M_1 for language A, can construct DFA M_2 for complementary language \overline{A}.
 - Make all accept states in M_1 into non-accept states in M_2.
 - Make all non-accept states in M_1 into accept states in M_2.
- Thus, the class of regular languages is closed under complementation.
 - i.e., if A is a regular language, then \overline{A} is a regular language.

Regular Languages Closed Under Union

Theorem 1.25
The class of regular languages is closed under union.
- i.e., if A_1 and A_2 are regular languages, then so is $A_1 \cup A_2$.

Proof Idea:
- Suppose A_1 is regular, so it has a DFA M_1.
- Suppose A_2 is regular, so it has a DFA M_2.
- $w \in A_1 \cup A_2$ if and only if $w \in A_1$ or $w \in A_2$.
- $w \in A_1 \cup A_2$ if and only if w is accepted by M_1 or M_2.
- Need DFA M_3 to accept a string w iff w is accepted by M_1 or M_2.
- Construct M_3 to keep track of where the input would be if it were simultaneously running on both M_1 and M_2.
- Accept string if and only if M_1 or M_2 accepts.

Example: Consider the following DFAs and languages over $\Sigma = \{a, b\}$:
- DFA M_1 recognizes language $A_1 = L(M_1)$
- DFA M_2 recognizes language $A_2 = L(M_2)$

![DFA M1 for A1](image1)

DFA M_1 for A_1

![DFA M2 for A2](image2)

DFA M_2 for A_2

- We now want a DFA M_3 for $A_1 \cup A_2$.
Step 1 to build DFA M_3 for $A_1 \cup A_2$: Begin in start states for M_1 and M_2

Step 2: From (x_1, y_1) on input a, M_1 moves to x_1, and M_2 moves to y_2.

Step 3: From (x_1, y_1) on input b, M_1 moves to x_2, and M_2 moves to y_3.

Step 4: From (x_1, y_2) on input a, M_1 moves to x_1, and M_2 moves to y_1.
Proof that Regular Languages Closed Under Union

- Suppose A_1 and A_2 are defined over the same alphabet Σ.
- Suppose A_1 recognized by DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$.
- Suppose A_2 recognized by DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$.
- Define DFA $M_3 = (Q_3, \Sigma, \delta_3, q_3, F_3)$ for $A_1 \cup A_2$ as follows:
 - Set of states of M_3 is
 \[Q_3 = Q_1 \times Q_2 = \{ (x, y) \mid x \in Q_1, y \in Q_2 \}. \]
 - The alphabet of M_3 is Σ.
 - M_3 has transition function $\delta_3 : Q_3 \times \Sigma \rightarrow Q_3$ such that for $x \in Q_1, y \in Q_2$, and $\ell \in \Sigma$,
 \[\delta_3((x, y), \ell) = (\delta_1(x, \ell), \delta_2(y, \ell)) \]
 - The start state of M_3 is
 \[q_3 = (q_1, q_2) \in Q_3. \]
The set of accept states of M_3 is
\[F_3 = \{ (x, y) \in Q_1 \times Q_2 \mid x \in F_1 \text{ or } y \in F_2 \} \]
\[= [F_1 \times Q_2] \cup [Q_1 \times F_2]. \]

Because $Q_3 = Q_1 \times Q_2$,

- number of states in new machine M_3 is $|Q_3| = |Q_1| \cdot |Q_2|$.

Thus, $|Q_3| < \infty$ because $|Q_1| < \infty$ and $|Q_2| < \infty$.

Remark:
- We can leave out a state $(x, y) \in Q_1 \times Q_2$ from Q_3 if (x, y) is not reachable from M_3's initial state (q_1, q_2).
- This would result in fewer states in Q_3, but still we have $|Q_1| \cdot |Q_2|$ as an upper bound for $|Q_3|$; i.e., $|Q_3| \leq |Q_1| \cdot |Q_2| < \infty$.

Regular Languages Closed Under Intersection

Theorem
The class of regular languages is closed under intersection.

- i.e., if A_1 and A_2 are regular languages, then so is $A_1 \cap A_2$.

Proof Idea:
- A_1 has DFA M_1.
- A_2 has DFA M_2.
- $w \in A_1 \cap A_2$ if and only if $w \in A_1$ and $w \in A_2$.
- $w \in A_1 \cap A_2$ if and only if w is accepted by both M_1 and M_2.
- Need DFA M_3 to accept string w iff w is accepted by M_1 and M_2.
- Construct M_3 to simultaneously keep track of where the input would be if it were running on both M_1 and M_2.
- Accept string if and only if both M_1 and M_2 accept.

Regular Languages Closed Under Concatenation

Theorem 1.26
Class of regular languages is closed under concatenation.

- i.e., if A_1 and A_2 are regular languages, then so is $A_1 \circ A_2$.

Remark:
- It is possible (but cumbersome) to directly construct a DFA for $A_1 \circ A_2$ given DFAs for A_1 and A_2.
- There is a simpler way if we introduce a new type of machine.

Nondeterministic Finite Automata

- In any DFA, the next state the machine goes to on any given symbol is uniquely determined.
- This is why these machines are deterministic.
- Remember that the transition function in a DFA is defined as $\delta : Q \times \Sigma \rightarrow Q$.
- Because range of δ is Q, fcn δ always returns a single state.
- DFA has exactly one transition leaving each state for each symbol.
- $\delta(q, \ell)$ tells what state the edge out of q labeled with ℓ leads to.
Nondeterminism

- Nondeterministic finite automata (NFAs) allow for several or no choices to exist for the next state on a given symbol.
- For a state q and symbol $\ell \in \Sigma$, NFA can have
 - multiple edges leaving q labelled with the same symbol ℓ
 - no edge leaving q labelled with symbol ℓ
 - edges leaving q labelled with ε
 ▲ can take ε-edge without reading any symbol from input string.

Example: NFA N_1 with alphabet $\Sigma = \{0, 1\}$.

![Diagram of NFA N1]

- Suppose NFA is in a state with multiple ways to proceed, e.g., in state q_1 and the next symbol in input string is 1.
- The machine splits into multiple copies of itself (threads).
 ▪ Each copy proceeds with computation independently of others.
 ▪ NFA may be in a set of states, instead of a single state.
 ▪ NFA follows all possible computation paths in parallel.
 ▪ If a copy is in a state and next input symbol doesn’t appear on any outgoing edge from the state, then the copy dies or crashes.
- If any copy ends in an accept state after reading entire input string, the NFA accepts the string.
- If no copy ends in an accept state after reading entire input string, then NFA does not accept (rejects) the string.

- Similarly, if a state with an ε-transition is encountered,
 ▪ without reading an input symbol, NFA splits into multiple copies, each one following an exiting ε-transition (or staying put).
 ▪ Each copy proceeds independently of other copies.
 ▪ NFA follows all possible paths in parallel.
 ▪ NFA proceeds nondeterministically as before.
- What happens on input string 010110?
Example: NFA N

N accepts strings ε, a, aa, baa, $baba$,

- E.g., $aa = \varepsilon a \varepsilon a$

N does not accept (i.e., rejects) strings b, ba, bb, bbb,

Difference Between DFA and NFA

- DFA has transition function $\delta : Q \times \Sigma \rightarrow Q$.
- NFA has transition function $\delta : Q \times \Sigma_\varepsilon \rightarrow \mathcal{P}(Q)$.
 - Returns a set of states rather than a single state.
 - Allows for ε-transitions because $\Sigma_\varepsilon = \Sigma \cup \{\varepsilon\}$.
 - For state $q \in Q$ and $\ell \in \Sigma_\varepsilon$, $\delta(q, \ell)$ is set of states where edges out of q labeled with ℓ lead to.

Remark: Note that every DFA is also an NFA.

Formal Definition of NFA

Definition: For an alphabet Σ, define $\Sigma_\varepsilon = \Sigma \cup \{\varepsilon\}$.

- Σ_ε is set of possible labels on NFA edges.

Definition: A nondeterministic finite automaton (NFA) is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

1. Q is a finite set of states
2. Σ is an alphabet
3. $\delta : Q \times \Sigma_\varepsilon \rightarrow \mathcal{P}(Q)$ is the transition function, where
 - $\mathcal{P}(Q)$ is the power set of Q
 - δ defines label on each edge.
4. $q_0 \in Q$ is the start state
5. $F \subseteq Q$ is the set of accept states.

Formal description of above NFA $N = (Q, \Sigma, \delta, q_1, F)$

- $Q = \{q_1, q_2, q_3, q_4\}$ is the set of states
- $\Sigma = \{0, 1\}$ is the alphabet
- Transition function $\delta : Q \times \Sigma_\varepsilon \rightarrow \mathcal{P}(Q)$

\[
\begin{array}{c|ccc}
0 & 1 & \varepsilon \\
\hline
q_1 & \{q_1\} & \{q_1, q_2\} & \emptyset \\
q_2 & \{q_3\} & \emptyset & \{q_3\} \\
q_3 & \emptyset & \{q_4\} & \emptyset \\
q_4 & \{q_4\} & \{q_4\} & \emptyset \\
\end{array}
\]

- q_1 is the start state
- $F = \{q_4\}$ is the set of accept states
Formal Definition of NFA Computation

- Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA and $w \in \Sigma^*$.
- Then N accepts w if
 - we can write w as $w = y_1 y_2 \cdots y_m$ for some $m \geq 0$, where each $y_i \in \Sigma^*$, and
 - there is a sequence of states $r_0, r_1, r_2, \ldots, r_m$ in Q such that
 1. $r_0 = q_0$
 2. $r_{i+1} \in \delta(r_i, y_{i+1})$ for each $i = 0, 1, 2, \ldots, m - 1$
 3. $r_m \in F$

Definition: The set of all input strings that are accepted by NFA N is the **language recognized by N** and is denoted by $L(N)$.

Equivalence of DFAs and NFAs

Definition: Two machines (of any types) are **equivalent** if they recognize the same language.

Theorem 1.39
Every NFA N has an equivalent DFA M.

- i.e., if N is some NFA, then \exists DFA M such that $L(M) = L(N)$.

Proof Idea:
- NFA N splits into multiple copies of itself on nondeterministic moves.
- NFA can be in a set of states at any one time.
- Build DFA M whose set of states is the power set of the set of states of NFA N, keeping track of where N can be at any time.

Example: Convert NFA N into equivalent DFA.

N’s start state q_1 has no ε-edges out, so DFA has start state $\{q_1\}$.
Example: Convert NFA N into equivalent DFA.

On reading 0 from states in $\{q_1\}$, can reach states $\{q_1\}$.

On reading 1 from states in $\{q_1\}$, can reach states $\{q_1, q_2, q_3\}$.

On reading 0 from states in $\{q_1, q_2, q_3\}$, can reach states $\{q_1, q_3\}$.

On reading 1 from states in $\{q_1, q_2, q_3\}$, can reach $\{q_1, q_2, q_3, q_4\}$.
Example: Convert NFA N into equivalent DFA.

On reading 0 from states in $\{q_1, q_3\}$, can reach states $\{q_1\}$.

On reading 1 from states in $\{q_1, q_3\}$, can reach states $\{q_1, q_2, q_3, q_4\}$.

Continue until each DFA state has a 0-edge and a 1-edge leaving it. DFA accept states have ≥ 1 accept states from N.

Proof. (Theorem 1.39)

- Consider NFA $N = (Q, \Sigma, \delta, q_0, F)$:

 - Definition: The ε-closure of a set of states $R \subseteq Q$ is $E(R) = \{ q \mid q$ can be reached from R by travelling over 0 or more ε transitions $\}$.

 - e.g., $E(\{q_1, q_2\}) = \{q_1, q_2, q_3\}$.
Convert NFA to Equivalent DFA

Given NFA \(N = (Q, \Sigma, \delta, q_0, F) \), build an equivalent DFA \(M = (Q', \Sigma, \delta', q'_0, F') \) as follows:

1. Calculate the \(\varepsilon \)-closure of every subset \(R \subseteq Q \).
2. Define DFA \(M \)’s set of states \(Q' = \mathcal{P}(Q) \).
3. Define DFA \(M \)’s start state \(q'_0 = E(\{q_0\}) \).
4. Define DFA \(M \)’s set of accept states \(F' \) to be all DFA states in \(Q' \) that include an accept state of NFA \(N \); i.e.,
 \[
 F' = \{ R \in Q' \mid R \cap F \neq \emptyset \}.
 \]
5. Calculate DFA \(M \)’s transition function \(\delta' : Q' \times \Sigma \rightarrow Q' \) as
 \[
 \delta'(R, \ell) = \{ q \in Q \mid q \in E(\delta(r, \ell)) \text{ for some } r \in R \}
 \]
 for \(R \in Q' = \mathcal{P}(Q) \) and \(\ell \in \Sigma \).
6. Can leave out any state \(q' \in Q' \) not reachable from \(q'_0 \).
 e.g., \(\{q_2, q_3\} \) in our previous example.

Regular \(\iff \) NFA

Corollary 1.40
Language \(A \) is regular if and only if some NFA recognizes \(A \).

Proof.
(\(\Rightarrow \))
- If \(A \) is regular, then there is a DFA for it.
- But every DFA is also an NFA, so there is an NFA for \(A \).
(\(\Leftarrow \))
- Follows from previous theorem (1.39), which showed that every NFA has an equivalent DFA.

Class of Regular Languages Closed Under Union

Remark: Can use fact that every NFA has an equivalent DFA to simplify the proof that the class of regular languages is closed under union.

Remark: Recall union:
\[
A_1 \cup A_2 = \{ w \mid w \in A_1 \text{ or } w \in A_2 \}.
\]

Theorem 1.45
The class of regular languages is closed under union.

Proof Idea: Given NFAs \(N_1 \) and \(N_2 \) for \(A_1 \) and \(A_2 \), resp., construct NFA \(N \) for \(A_1 \cup A_2 \) as follows:
Construct NFA for $A_1 \cup A_2$ from NFAs for A_1 and A_2

- Let A_1 be language recognized by NFA $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$.
- Let A_2 be language recognized by NFA $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$.
- Construct NFA $N = (Q, \Sigma, \delta, q_0, F)$ for $A_1 \cup A_2$:
 - $Q = \{q_0\} \cup Q_1 \cup Q_2$ is set of states of N.
 - q_0 is start state of N.
 - Set of accept states $F = F_1 \cup F_2$.
 - For $q \in Q$ and $a \in \Sigma$, transition function δ satisfies

 $\delta(q, a) = \begin{cases}
 \delta_1(q, a) & \text{if } q \in Q_1, \\
 \delta_2(q, a) & \text{if } q \in Q_2, \\
 \{q_1, q_2\} & \text{if } q = q_0 \text{ and } a = \epsilon, \\
 \emptyset & \text{if } q = q_0 \text{ and } a \neq \epsilon.
 \end{cases}$

Class of Regular Languages Closed Under Concatenation

Remark: Recall concatenation:

$A \circ B = \{vw | v \in A, w \in B\}$.

Theorem 1.47
The class of regular languages is closed under concatenation.
Class of Regular Languages Closed Under Star

Remark: Recall Kleene star:

\[A^* = \{ x_1 x_2 \cdots x_k \mid k \geq 0 \text{ and each } x_i \in A \}. \]

Theorem 1.49
The class of regular languages is closed under the Kleene-star operation.

Proof Idea: Given NFA \(N_1 \) for \(A \), construct NFA \(N \) for \(A^* \) as follows:

Construct NFA for \(A^* \) from NFA for \(A \)

- Let \(A \) be language recognized by NFA \(N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \).
- Construct NFA \(N = (Q, \Sigma, \delta, q_0, F) \) for \(A^* \):
 - \(Q = \{q_0\} \cup Q_1 \) is set of states of \(N \).
 - \(q_0 \) is start state of \(N \).
 - \(F = \{q_0\} \cup F_1 \) is the set of accept states of \(N \).
 - For \(q \in Q \) and \(a \in \Sigma \), transition function \(\delta \) satisfies
 - \(\delta(q, a) = \delta_1(q, a) \cup \{q_1\} \) if \(q \in F_1 \) and \(a = \varepsilon \),
 - \(\delta(q, a) = \delta_1(q, a) \) if \(q \in F_1 \) and \(a \neq \varepsilon \),
 - \(\delta(q, a) = \emptyset \) if \(q = q_0 \) and \(a \neq \varepsilon \).

Regular Expressions

- Regular expressions are a way of describing certain languages.
- Consider alphabet \(\Sigma = \{0, 1\} \).
- Shorthand notation:
 - 0 means \{0\}
 - 1 means \{1\}
- Regular expressions use above shorthand notation and operations
 - union \(\cup \)
 - concatenation \(\circ \)
 - Kleene star \(\ast \)
- When using concatenation, will often leave out operator “\(\circ \)".
Interpreting Regular Expressions

Example: \(0 \cup 1 \) means \(\{0\} \cup \{1\} \), which equals \(\{0, 1\} \).

Example:
- Consider \((0 \cup 1)^0 \), which means \((0 \cup 1) \circ 0^* \).
- This equals \(\{0, 1\} \circ \{0\}^* \).
- Recall \(\{0\}^* = \{\varepsilon, 0, 00, 000, \ldots\} \).
- Thus, \(\{0, 1\} \circ \{0\}^* \) is the set of strings that
 - start with symbol 0 or 1, and
 - followed by zero or more 0’s.

Another Example of a Regular Expression

Example:
- \((0 \cup 1)^* \) means \((\{0\} \cup \{1\})^* \).
- This equals \(\{0, 1\}^* \), which is the set of all possible strings over the alphabet \(\Sigma = \{0, 1\} \).
- When \(\Sigma = \{0, 1\} \), often use shorthand notation \(\Sigma \) to denote regular expression \((0 \cup 1) \).

Hierarchy of Operations in Regular Expressions

- In most programming languages,
 - multiplication has precedence over addition
 \[2 + 3 \times 4 = 14 \]
 - parentheses change usual order
 \[(2 + 3) \times 4 = 20 \]
 - exponentiation has precedence over multiplication and addition
 \[4 + 2 \times 3^2 = \ldots, \quad 4 + (2 \times 3)^2 = \ldots \]
- Order of precedence for the regular operations:
 1. Kleene star
 2. concatenation
 3. union
- Parentheses change usual order.

More Examples of Regular Expressions

Example: \(00 \cup 101^* \) is language consisting of
- string 00
- strings that begin with 10 and followed by zero or more 1’s.

Example: \(0(0 \cup 101)^* \) is the language consisting of strings that
- start with 0
- concatenated to a string in \(\{0, 101\}^* \).

For example, \(0101001010 \) is in the language because
\[0101001010 = 0 \circ 101 \circ 0 \circ 0 \circ 101 \circ 0. \]
Formal Definition of Regular Expression

Definition: \(R \) is a regular expression with alphabet \(\Sigma \) if \(R \) is
1. \(a \) for some \(a \in \Sigma \)
2. \(\varepsilon \)
3. \(\emptyset \)
4. \((R_1 \cup R_2)\), where \(R_1 \) and \(R_2 \) are regular expressions
5. \((R_1) \circ (R_2)\), also denoted by \((R_1)(R_2)\), where \(R_1 \) and \(R_2 \) are regular expressions
6. \((R_1)^*\), where \(R_1 \) is a regular expression
7. \((R_1)\), where \(R_1 \) is a regular expression.

Can remove redundant parentheses, e.g., \(((0 \cup (1))(1) \rightarrow (0 \cup 1)1)\).

Definition: If \(R \) is a regular expression, then \(L(R) \) is the language generated (or described or defined) by \(R \).

Examples of Regular Expressions

Examples:
For \(\Sigma = \{0, 1\} \),
1. \((0 \cup 1) = \{0, 1\}\)
2. \(0^*10^* = \{w \mid w \text{ has exactly a single 1}\}\)
3. \(\Sigma^*1\Sigma^* = \{w \mid w \text{ has at least one 1}\}\)
4. \(\Sigma^*001\Sigma^* = \{w \mid w \text{ contains 001 as a substring}\}\)
5. \((\Sigma\Sigma)^* = \{w \mid |w| \text{ is even}\}\)
6. \((\Sigma\Sigma\Sigma)^* = \{w \mid |w| \text{ is a multiple of three}\}\)
7. \(0\Sigma^*0 \cup 1\Sigma^*1 \cup 0 \cup 1 = \{w \mid w \text{ starts and ends with the same symbol}\}\)
8. \(1^*\emptyset = \emptyset\), anything concatenated with \(\emptyset \) is equal to \(\emptyset \).
9. \(\emptyset^* = \{\varepsilon\}\)

Kleene’s Theorem

Theorem 1.54
Language \(A \) is regular iff \(A \) has a regular expression.

Lemma 1.55
If a language is described by a regular expression, then it is regular.

Proof. Procedure to convert regular expression \(R \) into NFA \(N : \)

1. If \(R = a \) for some \(a \in \Sigma \), then \(L(R) = \{a\} \), which has NFA

\[
\begin{array}{ccc}
q_1 & \xrightarrow{a} & q_2 \\
\end{array}
\]

\(N = (\{q_1, q_2\}, \Sigma, \delta, q_1, \{q_2\}) \) where transition function \(\delta \)

- \(\delta(q_1, a) = \{q_2\} \)
- \(\delta(r, b) = \emptyset \) for any state \(r \neq q_1 \) or any \(b \in \Sigma \) with \(b \neq a \).
2. If \(R = \varepsilon \), then \(L(R) = \{ \varepsilon \} \), which has NFA

\[
N = (\{q_1\}, \Sigma, \delta, q_1, \{q_1\}) \quad \text{where} \\
\bullet \delta(r, b) = \emptyset \text{ for any state } r \text{ and any } b \in \Sigma_{\varepsilon}.
\]

3. If \(R = \emptyset \), then \(L(R) = \emptyset \), which has NFA

\[
N = (\{q_1\}, \Sigma, \delta, q_1, \emptyset) \quad \text{where} \\
\bullet \delta(r, b) = \emptyset \text{ for any state } r \text{ and any } b \in \Sigma_{\varepsilon}.
\]

4. If \(R = (R_1 \cup R_2) \) and

- \(L(R_1) \) has NFA \(N_1 \)
- \(L(R_2) \) has NFA \(N_2 \),
then \(L(R) = L(R_1) \cup L(R_2) \) has NFA \(N \) below:

\[
N_1 \quad N \quad N_2
\]

5. If \(R = (R_1) \circ (R_2) \) and

- \(L(R_1) \) has NFA \(N_1 \)
- \(L(R_2) \) has NFA \(N_2 \),
then \(L(R) = L(R_1) \circ L(R_2) \) has NFA \(N \) below:

\[
N_1 \quad N_2 \quad N
\]

6. If \(R = (R_1)^* \) and \(L(R_1) \) has NFA \(N_1 \),
then \(L(R) = (L(R_1))^* \) has NFA \(N \) below:

\[
N_1 \quad N \quad N
\]

- Thus, can convert any regular expression \(R \) into an NFA.
- Hence, Corollary 1.40 implies that the language \(L(R) \) is regular.
Ex: Build NFA for \((ab \cup a)^*\)

∃ other correct NFAs

More of Kleene's Theorem

Lemma 1.60
If a language is regular, then it has a regular expression.

Proof Idea:
- Convert DFA into regular expression.
- Use generalized NFA (GNFA), which is an NFA with following modifications:
 - no edges into start state.
 - single accept state, with no edges out of it.
 - labels on edges are regular expressions instead of elements from \(\Sigma\).
 - can traverse edge on any string generated by its regular expression.

Method to convert DFA into regular expression

1. First convert DFA into equivalent GNFA.
2. Apply following iterative procedure:
 - In each step, eliminate one state from GNFA.
 - When state is eliminated, need to account for every path that was previously possible.
 - Can eliminate states in any order but end result will be different.
 - Never delete start or (unique) accept state.
 - Done when only 2 states remaining: start and accept.
 - Label on remaining arc between start and accept states is a regular expression for language of original DFA.

Remark: Method also can convert NFA into a regular expression.
1. Convert DFA $M = (Q, \Sigma, \delta, q_1, F)$ into equivalent GNFA G.
 - Introduce new start state s.
 - Add edge from s to q_1 with label ε.
 - Make q_1 no longer the start state.
 - Introduce new accept state t.
 - Add edge with label ε from each state $q \in F$ to t.
 - Make each state originally in F no longer an accept state.
 - Change edge labels into regular expressions.
 - e.g., "a, b" becomes "a \cup b".

2. Iteratively eliminate a state from GNFA G.
 - Need to take into account all possible previous paths.
 - Never eliminate new start state s or new accept state t.

 Example: Eliminate state q_2, which has no other in/out edges.

 ![Diagram of DFA and GNFA conversion]

 Example: Convert DFA M into regular expression.

 1) Convert DFA into GNFA

 2.1) Eliminate state q_2
 2.2) Eliminate state q_3
 2.3) Eliminate state q_1

 ![Diagram of elimination process]

 Example:

 Eliminate state x, which has no other in/out edges.

 - Let $C = \{v, z\}$, which are states with arcs into x (except for x).
 - Let $D = \{v, y, z\}$, which are states with arcs from x (except for x).
 - When we eliminate x, need to account for paths
 - from each state in C directly into x
 - then from x directly to x
 - finally from x directly to each state in D
Recall $C = \{v, z\}$ and $D = \{v, y, z\}$.

So eliminating state x gives

- $v \xrightarrow{R_1} x \xrightarrow{R_2} (R_1)(R_2)^*(R_3)$
- $v \xrightarrow{R_3} (R_1)(R_2)^*(R_5)$

- $y \xrightarrow{R_4} z \xrightarrow{R_5} (R_6)(R_2)^*(R_4)$
- $y \xrightarrow{R_7} (R_1)(R_2)^*(R_3)$
- $z \xrightarrow{R_8} (R_6)(R_2)^*(R_4)$
- $z \xrightarrow{R_9} (R_6)(R_2)^*(R_5)$

E.g., for path $v \to x \to y$, add arc from v to y with label $(R_1)(R_2)^*(R_4)$

Step 1. Convert DFA into GNFA

Step 2.1. Eliminate state 1

$C = \{s, 2, 3\}$
$D = \{2, 3\}$

Step 2.2. Eliminate state 2

$C = \{s, 3\}$
$D = \{3, t\}$

Example: Convert DFA into Regular Expression
Step 2.3. Eliminate state 3

\[C' = \{s\}, \quad D = \{t\} \]

\[(a(aa \cup b)*ab \cup b) \cup (ba \cup a)(aa \cup b)* \cup \varepsilon \]

Finite Languages are Regular

Theorem
If \(A \) is a finite language, then \(A \) is regular.

Proof.
- Because \(A \) finite, we can write
 \[A = \{w_1, w_2, \ldots, w_n\} \]
 for some \(n < \infty \).
- A regular expression for \(A \) is then
 \[R = w_1 \cup w_2 \cup \cdots \cup w_n \]
- Kleene’s Theorem then implies \(A \) has a DFA, so \(A \) is regular.

Remark: The converse is **not** true.
e.g., \(1^* \) generates a regular language, but it’s infinite.

Pumping Lemma for Regular Languages

Example: DFA with alphabet \(\Sigma = \{0, 1\} \) for language \(A \).

- DFA has 5 states.
- DFA accepts string \(s = 0011 \), which has length 4.
- On \(s = 0011 \), DFA visits all of the states.
For any string s with $|s| \geq 5$, guaranteed to visit some state twice by the pigeonhole principle.

String $s = 0011011$ is accepted by DFA, i.e., $s \in A$.

q_2 is first state visited twice.

Using q_2, divide string s into 3 parts x, y, z such that $s = xyz$.
- $x = 0$, the symbols read until first visit to q_2.
- $y = 0110$, the symbols read from first to second visit to q_2.
- $z = 11$, the symbols read after second visit to q_2.

Recall DFA accepts string $\begin{align*}
s &= 0\, \text{x}\, 0110\, \text{y}\, 11\, \text{z}.
\end{align*}$

DFA also accepts strings
- $x y y z = 0\, \text{x}\, 0110\, 0110\, \text{y}\, 11\, \text{z}$,
- $x y y y z = 0\, \text{x}\, 0110\, 0110\, 0110\, \text{y}\, 11\, \text{z}$,
- $x z = 0\, \text{x}\, 11\, \text{z}$.

String $x y^i z \in A$ for each $i \geq 0$.

More generally, consider
- language A with DFA M having p states,
- string $s \in A$ with $|s| \geq p$.

When processing s on M, guaranteed to visit some state twice.
- Let r be first state visited twice.
- Using state r, can divide s as $s = xyz$.
 - x are symbols read until first visit to r.
 - y are symbols read from first to second visit to r.
 - z are symbols read from second visit to r to end of s.

Because y corresponds to starting in r and returning to r,

$x y^i z \in A$ for each $i \geq 1$.

Also, note $x y^0 z = x z \in A$, so $x y^i z \in A$ for each $i \geq 0$.

$|y| > 0$ because
- y corresponds to starting in r and coming back;
- this consumes at least one symbol (because DFA), so y can’t be empty.
Length of xy

- $|xy| \leq p$, where p is number of states in DFA, because
 - xy are symbols read up to second visit to r.
 - Because r is the first state visited twice, all states visited before second visit to r are unique.
 - So just before visiting r for second time, DFA visited at most p states, which corresponds to reading at most $p - 1$ symbols.
 - The second visit to r, which is after reading 1 more symbol, corresponds to reading at most p symbols.

Pumping Lemma

Theorem 1.70

If A is regular language, then \exists number p (pumping length) where, if $s \in A$ with $|s| \geq p$, then s can be split into 3 pieces, $s = xyz$, satisfying the conditions

1. $xy^i z \in A$ for each $i \geq 0$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

Remarks:

- y^i denotes i copies of y concatenated together, and $y^0 = \varepsilon$.
- $|y| > 0$ means $y \neq \varepsilon$.
- $|xy| \leq p$ means x and y together have no more than p symbols total.

Understanding the Pumping Lemma

- If A is regular language, then \exists number p (pumping length) where, if $s \in A$ with $|s| \geq p$, then s can be split into 3 pieces, $s = xyz$, satisfying conditions
 1. $xy^i z \in A$ for each $i \geq 0$,
 2. $|y| > 0$, and
 3. $|xy| \leq p$.

Nonregular Languages

Definition: Language is **nonregular** if there is no DFA for it.

Remarks:

- Pumping Lemma (PL) is a result about regular languages.
- But PL mainly used to prove that certain language A is nonregular.
- Typically done using **proof by contradiction**.

- Assume language A is regular.
- PL says that all strings $s \in A$ that are at least a certain length must satisfy some conditions.
- By appropriately choosing $s \in A$, will eventually get contradiction.
- PL: can split s into $s = xyz$ satisfying all of Conditions 1–3.
- To get contradiction, show cannot split $s = xyz$ satisfying 1–3.
- Because Condition 3 of PL states $|xy| \leq p$, often choose $s \in A$ so that all of its first p symbols are the same.
Language $A = \{ 0^n 1^n \mid n \geq 0 \}$ is Nonregular

Proof.
- Suppose A is regular, so PL implies A has “pumping length” p.
- Consider string $s = 0^p 1^p \in A$.
- $|s| = 2p \geq p$, so Pumping Lemma will hold.
- So can split s into 3 pieces $s = xyz$ satisfying conditions
 1. $xy^i z \in A$ for each $i \geq 0$,
 2. $|y| > 0$, and
 3. $|xy| \leq p$.
- To get contradiction, must show cannot split $s = xyz$ satisfying 1–3.
 - Show all splits $s = xyz$ satisfying Conditions 2 and 3 will violate 1.
 - Because the first p symbols of $s = \underbrace{00 \cdots 0}_{p} \underbrace{11 \cdots 1}_{p}$ are all 0’s
 - Condition 3 implies that x and y consist only of 0’s.
 - z will be the rest of the 0’s, followed by all p 1’s.
 - Key: y has some 0’s, and z contains all the 1’s (and maybe some 0’s), so pumping y changes # of 0’s but not # of 1’s.

Language $B = \{ w w \mid w \in \{0, 1\}^* \}$ is Nonregular

Proof.
- Suppose B is regular, so PL implies B has “pumping length” p.
- Consider string $s = 0^p 1^p \in B$.
- $|s| = 2p + 2 \geq p$, so Pumping Lemma will hold.
- So can split s into 3 pieces $s = xyz$ satisfying conditions
 1. $xy^i z \in A$ for each $i \geq 0$,
 2. $|y| > 0$, and
 3. $|xy| \leq p$.
- For contradiction, show cannot split $s = xyz$ so that 1–3 hold.
 - Show all splits $s = xyz$ satisfying Conditions 2 and 3 will violate 1.
 - Because first p symbols of $s = \underbrace{00 \cdots 0}_{p} \underbrace{11 \cdots 1}_{p}$ are all 0’s
 - Condition 3 implies that x and y consist only of 0’s.
 - z will be the rest of first set of 0’s, followed by 10p 1.
 - Key: y has some of first 0’s, and z has all of second 0’s, so pumping y changes only # of first 0’s.
Important Steps in Proving Language is Nonregular

Pumping Lemma (PL):
If \(A \) is a regular language, then \(\exists \) number \(p \) (pumping length) where, if \(s \in A \) with \(|s| \geq p \), then \(s \) can be split into 3 pieces, \(s = xyz \), with
1. \(xy^iz \in A \) for each \(i \geq 0 \),
2. \(|y| > 0 \), and
3. \(|xy| \leq p \).

Remarks:
- Must choose appropriate string \(s \in A \) to get contradiction.
 - Some strings \(s \in A \) might not lead to contradiction.
- Because Condition 3 of PL states \(|xy| \leq p \), often choose \(s \in A \) so that all of its first \(p \) symbols are the same.
- Once appropriate \(s \) is chosen, need to show every possible split of \(s = xyz \) leads to contradiction.

Examples:
1. Let \(C = \{ w \in \{a, b\}^* \mid w = w^R \} \), where \(w^R \) is the reverse of \(w \).
 - To show \(C \) is nonregular, can choose \(s = a^p b a^p \in C \).
 - Choosing \(s = a^p \in C \) does not work. Why?
2. To show \(D = \{ a^{2n} b^{3n} a^n \mid n \geq 0 \} \) is nonregular, can choose \(s = a^{2p} b^{3p} a^p \in D \).
3. Consider language \(E = \{ w \in \{a, b\}^* \mid w \) has more \(a \)'s than \(b \)'s \}. For example, \(baaba \in E \).
 - To show \(E \) is nonregular, can choose \(s = b^p a^{p+1} \in E \).

Common Mistake
- Consider \(D = \{ a^{2n} b^{3n} a^n \mid n \geq 0 \} \).
- To show \(D \) is nonregular, can choose \(s = a^{2p} b^{3p} a^p \in D \).
- Common mistake: try to apply Pumping Lemma with \(x = a^{2p}, \ y = b^{3p}, \ z = a^p \).
 - For this split, \(|xy| = 5p \leq p \).
 - But Pumping Lemma states “If \(D \) is a regular language, then \(\ldots \) can split \(s = xyz \) satisfying Conditions 1–3.”
 - To get contradiction, need to show cannot split \(s = xyz \) satisfying Conditions 1–3.
 - Need to show every split \(s = xyz \) doesn’t satisfy all of 1–3.
 - Every split \(s = xyz \) satisfying Conditions 2 and 3 must have \(x = a^j, \ y = a^k, \ z = a^m b^{3p} a^p \),
 where \(j + k + m = 2p \) and \(k \geq 1 \).

Conclusion: \(F \) is not regular.
Hierarchy of Languages (so far)

All languages

Examples

Regular (DFA, NFA, Reg Exp)

Finite

{0^n1^n \mid n \geq 0}

(0 \cup 1)^*

{110, 01}

Summary of Chapter 1

- DFA is a deterministic machine for recognizing certain languages.
- A language is **regular** if it has a DFA.
- The class of regular languages is closed under union, intersection, concatenation, Kleene-star, complementation.
- NFA can be **nondeterministic**: allows choice in how to process string.
- Every NFA has an equivalent DFA.
- Regular expression is a way of generating certain languages.
- Kleene’s Theorem: Language A has DFA iff A has regular expression.
- Every finite language is regular, but not every regular language is finite.
- Use pumping lemma to prove certain languages are not regular.