CS 341: Foundations of CS Il

Marvin K. Nakayama
Computer Science Department

New Jersey Institute of Technology
Newark, NJ 07102

CS 341: Chapter 1 1-2
Chapter 1
Regular Languages

Contents
e Finite Automata
o Class of Regular Languages is Closed Under Some Operations
e Nondeterminism
e Regular Expressions

e Nonregular Languages

CS 341: Chapter 1 1-3

Introduction

e Now introduce a simple model of a computer having a finite amount of
memory.

e This type of machine will be known as a finite-state machine or
finite automaton.

e Basic idea how a finite automaton works:

= It is presented an input string w over an alphabet 3_; i.e., w € X%,
= |t reads in the symbols of w from left to right, one at a time.

= After reading the last symbol, it indicates if it accepts or rejects the
string.

e These machines are useful for string matching, compilers, etc.

CS 341: Chapter 1 1-4
Deterministic Finite Automata (DFA)

Example: State diagram of DFA with alphabet >~ = {a, b}:

® g1, 92, q3 are the states.
e g1 is the start state as it has an arrow coming into it from nowhere.

e ¢- is an accept state as it is drawn with a double circle.

CS 341: Chapter 1 1-5

Deterministic Finite Automata

—()
a,b

e Edges tell how to move when in a state and a symbol from X is read.
e DFA is fed input string w € >*. After reading last symbol of w,

» if DFA is in an accept state, then string is accepted
= otherwise, it is rejected.

e Process the following strings over >~ = {a, b} on above machine:
@@ @)@ ~@)
»

—@

= abaa is accepted
= aba is rejected

= ¢ is rejected

CS 341: Chapter 1 1-6
Formal Definition of DFA

Definition: A deterministic finite automaton (DFA) is a 5-tuple
M == (Q’ Z’ 5’ q07 F)7

where

1. @ is a finite set of states.

2. X is an alphabet, and the DFA processes strings over 3.

3. 0:Q x X — Q is the transition function.
e J defines label on each edge.
4. qg € Q is the start state (or initial state).
5. F C Q is the set of accept states (or final states).

Remark: Sometimes refer to DFA as simply a finite automaton (FA).

CS 341: Chapter 1 1-7

Transition Function of DFA

Transition function § : Q X X — @ works as follows:

e For each state and for each symbol of the input alphabet,
the function ¢ tells which (one) state to go to next.

e Specifically, if r € Q and £ € X, then 6(r, £) is the state that the DFA
goes to when it is in state 7 and reads in £, e.g., (g2, a) = g¢3.

e For each pair of state » € Q and symbol £ € X,
= there is exactly one edge leaving r labeled with 2.
e Thus, there is no choice in how to process a string.

= So the machine is deterministic.

CS 341: Chapter 1 1-8
Example of DFA

M =(Q,%,6,q1, I) with
*Q={q1,92 3}

o> = {a,b}

00 :(Q XX — (@ is described as

® g1 is the start state
o F'={qo}.

CS 341: Chapter 1 1-9
How a DFA Computes

e DFA is presented with an input string w € X*.

e DFA begins in the start state.

e DFA reads the string one symbol at a time, starting from the left.
e The symbols read in determine the sequence of states visited.

e Processing ends after the last symbol of w has been read.

e After reading the entire input string

= if DFA ends in an accept state, then input string w is accepted;
= otherwise, input string w is rejected.

CS 341: Chapter 1 1-10
Formal Definition of DFA Computation
elet M = (Q,%,0,q0, F) be a DFA.
e String w = wqwy - - - wy, € *, where each w; € > and n > 0.

e Then M accepts w if there exists a sequence of states

T0sT1,72,---,Tn € Q such that
Lm0 = qo

n first state g in the sequence is the start state of DFA,
2. T™n € F

= last state 7, in the sequence is an accept state;
3.0(rj,wjq1) =riyq foreachi=0,1,2,...,n -1

= sequence of states corresponds to valid transitions for string w.

CS 341: Chapter 1 1-11

Language of Machine

e Definition: If A is the set of all strings that machine M accepts,
then we say

» A= L(M) is the language of machine M, and
= M recognizes A.

Ao M accepts each string w € A.
o M rejects (does not accept) each string w € =* — A.

e If machine M has input alphabet 3, then L(M) C *.
= > * is universe of problem instances (possible input strings)
» Each w € L(M) is a YES instance.
s Each w € X* — L(M) is a NO instance.

e Definition: A language is regular if it is recognized by some DFA.

CS 341: Chapter 1 1-12

Examples of Deterministic Finite Automata

Example: Consider the following DFA M7 with alphabet >~ = {0, 1} :
0 0

C) 1
—(@)

¢ 010110 is accepted, but 0101 is rejected.

Remarks:

e (M) is the language of strings over 3 in which the total number of
1's is odd.

e Can you come up with a DFA that recognizes the language of strings
over 3 having an even number of 1's 7

CS 341: Chapter 1 1-13

Example: Consider the following DFA M5 with alphabet >~ = {0, 1} :
0,1

_» 0,1 0,1

Remarks:

e L(M>) is language of strings over 3 that have length 1, i.e.,
L(Mz) ={weX||w =1}
e Recall that L(M>), the complement of L(M>), is the set of strings
over 3 not in L(M>), i.e.,
L(M3) = =¥ — L(M>).
Can you come up with a DFA that recognizes L(M>5) ?

CS 341: Chapter 1 1-14
Example: Consider the following DFA M3 with alphabet = = {0,1} :
0,1

O OW)

Remarks:

e L(M3) is the language of strings over 3 that do not have length 1,
ie.
L(M3) = L(Mz) = {weX"||w|# 1}
e DFA can have more than one accept state.

e Start state can also be an accept state.

e In general, a DFA accepts ¢ if and only if the start state is also an
accept state.

CS 341: Chapter 1 1-15
Constructing DFA for Complement

e In general, given a DFA M for language A,
we can make a DFA M for A from M by

» changing all accept states in M into non-accept states in M,

» changing all non-accept states in M into accept states in M,
e More formally, suppose language A over alphabet 3 has a DFA
M:(Q7 Z? 57 q1, F)

e Then, a DFA for the complementary language A is

Mz(Qa Za 5) q1, Q_F)
where), 2_, 9, q1, I are the same as in DFA M.

e Why does this work?

CS 341: Chapter 1 1-16

Example: Consider the following DFA M4 with alphabet X~ = {a, b} :

Remarks:

e L(Myp) is the language of strings over 3 that end with bb, i.e.,
L(Mg) ={w € Z*| w = sbb for some s € =" }.
e Note that abbb € L(My) and bba ¢ L(My).

CS 341: Chapter 1 1-17

Example: Consider the following DFA Mg with alphabet 3~ = {a, b} :

CS 341: Chapter 1 1-18
Example: Consider the following DFA Mg with alphabet 3~ = {a, b} :
a,b

Remarks:

e This DFA accepts all possible strings over 3, i.e.,
L(Mg) = =*.

e In general, any DFA in which all states are accept states recognizes the

language >_*.
L(Ms) = {w € Z*| w = saa or w = sbb for some string s € =* }.
Note that abbb € L(Ms) and bba ¢ L(Ms).
CS 341: Chapter 1 1-19 CS 341: Chapter 1 1-20

Example: Consider the following DFA M7 with alphabet 3~ = {a, b} :

a,b

—@)

e This DFA accepts no strings over X, i.e.,
L(M7) = 0.

Remarks:

e In general,

= a DFA may have no accept states, i.e., FF =0 C Q.

= any DFA with no accept states recognizes the language (.

Example: Consider the following DFA Mg with alphabet 3~ = {a, b} :

e DFA moves left or right on a.

e DFA moves up or down on b.

e DFA recognizes the language EVEN-EVEN of strings over 3 having

= even number of a's and

= even number of b's.

e Note that ababaa € L(Mg) and bba ¢ L(Mg).

CS 341: Chapter 1 1-21

Some Operations on Languages

e Let A and B be languages, each with alphabet .

e Recall we previously defined the operations:

= Union:
AUB={w|weAorwe B}

= Concatenation:

AoB={vw|veEeA weB}

s Kleene star:

A* ={wiws - wy| k>0 and each w; € A}

= Complement:

A={weX' |wgA}="-A

CS 341: Chapter 1 1-22

Closed under Operation
e Recall that a collection S of objects is closed under operation f if
applying f to members of S always returns an object still in S.

weg, N ={1,2,3,...} is closed under addition but not
subtraction.

e Previously saw that given a DFA M for language A,
can construct DFA M5 for complementary language A.

= Make all accept states in M7 into non-accept states in Mo.

= Make all non-accept states in M7 into accept states in Mo.

e Thus, the class of regular languages is closed under complementation.

= ie., if Ais a regular language, then A is a regular language.

CS 341: Chapter 1 1-23

Regular Languages Closed Under Union

Theorem 1.25

The class of regular languages is closed under union.

eie., if A1 and Ay are regular languages, then so is A1 U A».

Proof ldea:

e Suppose A7 is regular, so it has a DFA Mj.

e Suppose As is regular, so it has a DFA M.

ew € AU Ay if and only if w € A1 or w € As.

ew € Ay U A if and only if w is accepted by M1 or Mo.

e Need DFA M3 to accept a string w iff w is accepted by M1 or Mo.

e Construct M3 to keep track of where the input would be if it were
simultaneously running on both M7 and M>.

e Accept string if and only if M7 or My accepts.

CS 341: Chapter 1 1-24

Example: Consider the following DFAs and languages over >~ = {a, b} :

e DFA M7 recognizes language A1 = L(M+)
e DFA M5 recognizes language A> = L(M>)

DFA M1 for Al
a b
—@
a

e We now want a DFA M3 for A1 U As.

DFA M2 fOI’ AQ

CS 341: Chapter 1 1-25
DFA M2 for A2

DFA M1 for Al
a b

e
—@ @

Step 1 to build DFA M3 for A; U As: Begin in start states for M7 and M>

(51317 yl)

CS 341: Chapter 1 1-26
DFA MQ for A2

DFA M1 for Al
a b

e
—@ @

Step 2: From (z1,y1) on input a, M1 moves to x1, and M> moves to yo.

a

e
(z1,91) (z1,92)

CS 341: Chapter 1 1-27
DFA M2 for AQ

DFA M1 for Al
a b

e
—&- @

Step 3: From (x1,%y1) on input b, M7 moves to x», and M> moves to 3.

a
/—\
W (z1,92)
b
Y

(w27 y3)

CS 341: Chapter 1 1-28
DFA M5 for Ao

DFA M1 fOI’ Al
a b

e
—@- @

Step 4: From (z1,y2) on input a, M7 moves to x1, and M> moves to y;.

a
/\L
W4 a (1,92)
b
Y
($27y3)

CS 341: Chapter 1 1-29
DFA M2 for A2

DFA M1 for Al
a b

R
—@ @

Step 5: From (z1,y2) on input b, M1 moves to x>, and M> moves to y1,

CS 341: Chapter 1 1-30
DFA MQ for A2

DFA M1 for Al
a b

R
—@ @

a a
e e
(mlayl)[: a (51317y1)[:
a ‘CL\
b C) b
Y b Y
(z2,3) (z1,y3) 3))=
Y_a/
CS 341: Chapter 1 1-31 CS 341: Chapter 1 1-32

DFA M1 for Al
a b

e
—&- @

DFA M2 for AQ

_— T

~@
)

b

a
/b* Vﬂ
o () —

b

Proof that Regular Languages Closed Under Union

e Suppose A1 and As are defined over the same alphabet 3.

e Suppose A1 recognized by DFA M7 = (Q1, %, 01,491, F1).

e Suppose As recognized by DFA My = (Q2, X, 62, q2, F»).

e Define DFA M3 = (Q3, %, 03,q3, F3) for A1 U A as follows:

= Set of states of M3 is

Q3=Q1xQx={(z,y)|z€Q1,ycQa}

= The alphabet of M3 is 2.

= M3 has transition function 43 : Q3 X £ — @3 such that for
r€Q1,YyEQR2 and L € X,

53((le',y), E) = (61(337£)5 52(%5)) :
= The start state of M3 is

g3 = (q1,92) € Q3.

CS 341: Chapter 1 1-33
= The set of accept states of M3 is

F3 {(x,y) €eQ1 xQ2lx€eFrorye Fy}
[F1 X Q2] U [Q1 x F].

e Because Q3 = Q1 X Q»,
= number of states in new machine M3 is |Q3] = |Q1] - |Q2].

e Thus, |Q3| < 0o because |Q1]| < oo and |Q2] < 0.

Remark:

e We can leave out a state (z,y) € Q1 X Q> from Q3 if (x,y) is not
reachable from M3's initial state (g1, ¢2).

e This would result in fewer states in 03, but still we have |Q1| - |Q>| as
an upper bound for |Q3]; i.e., |Q3] < Q1] - |Q2] < 0.

CS 341: Chapter 1 1-34

Regular Languages Closed Under Intersection

Theorem
The class of regular languages is closed under intersection.

eie., if A1 and Ay are regular languages, then so is A1 N A».

Proof ldea:

e A1 has DFA M;.

e A5 has DFA Mo.

ewe Ay NAsifandonly if w € A7 and w € As.

ew € Ay N Ay if and only if w is accepted by both M1 and M>.

e Need DFA M3 to accept string w iff w is accepted by My and M.

e Construct M3 to simultaneously keep track of where the input would
be if it were running on both M7 and M>.

e Accept string if and only if both M1 and M> accept.

CS 341: Chapter 1 1-35

Regular Languages Closed Under Concatenation

Theorem 1.26

Class of regular languages is closed under concatenation.

eie, if A1 and A5 are regular languages, then so is A1 o Asp.

Remark:

e It is possible (but cumbersome) to directly construct a DFA for
A1 o Ao given DFAs for A1 and As.

e There is a simpler way if we introduce a new type of machine.

CS 341: Chapter 1 1-36

Nondeterministic Finite Automata

e In any DFA, the next state the machine goes to is uniquely determined
by current state and next symbol read.

e This is why these machines are deterministic.
e DFA'’s determinism expressed through its transition function
d:Q XX —Q.
e Because range of § is QQ, fcn § always returns a single state.
e DFA has exactly one transition leaving each state for each symbol.

= 0(q,?) tells what state the edge out of ¢ labeled with ¢ leads to.

CS 341: Chapter 1 1-37
Nondeterminism
e Nondeterministic finite automata (NFAs) allow for several or no
choices to exist for the next state on a given symbol.
e For a state ¢ and symbol £ € 3, NFA can have

= multiple edges leaving g labelled with the same symbol ¢
= no edge leaving ¢ labelled with symbol ¢
= edges leaving g labelled with

A can take e-edge without reading any symbol from input string.
A can also choose not to take e-edge.

Example: NFA N7 with alphabet > = {0,1}.

B S Cha ORa CA
0,1

CS 341: Chapter 1 1-38
—@ @ -@ @
0,1

e Suppose NFA is in a state with multiple ways to proceed,
e.g., in state g1 and the next symbol in input string is 1.
e The machine splits into multiple copies of itself (threads).
= Each copy proceeds with computation independently of others.
= NFA may be in a set of states, instead of a single state.
= NFA follows all possible computation paths in parallel.
= If a copy is in a state and next input symbol doesn't appear on any

outgoing edge from the state, then the copy dies or crashes.

e If any copy ends in an accept state after reading entire input string
without crashing, the NFA accepts the string.

e If no copy ends in an accept state after reading entire input string
without crashing, then NFA does not accept (rejects) the string.

CS 341: Chapter 1 1-39
1 0,e 1
— ()=~ —~E) Dr:
0,1

e Similarly, if a state with an e-transition is encountered,

= without reading an input symbol, NFA splits into multiple copies,
each one following an exiting e-transition (or staying put).

= Each copy proceeds independently of other copies.
= NFA follows all possible paths in parallel.

= NFA proceeds nondeterministically as before.

e What happens on input string 010110 ?

CS 341: Chapter 1 1-40

~@ @@ @
0,1

Symbol read

CS 341: Chapter 1 1-41 CS 341: Chapter 1 1-42
Formal Definition of NFA
Example: NFA N
Definition: For an alphabet 3, define . = > U {¢}.
® > . is set of possible labels on NFA edges.
a Definition: A nondeterministic finite automaton (NFA) is a
5-tuple (@, >, 6, qo, F'), where
1. @ is a finite set of states
2. X is an alphabet
e N accepts strings ¢, a, aa, baa, baba,
. eg. aa = caca 3. §:Q x X — P(Q) is the transition function, where
. " . u e P(Q) is the power set of @
’@ @ e for each edge, 9 specifies label from 3.
e N does not accept (i.e., rejects) strings b, ba, bb, bbb, 4. qo € Q s the start state
5. F C Q is the set of accept states.
CS 341: Chapter 1 1-43 CS 341: Chapter 1 1-44

Difference Between DFA and NFA
e DFA has transition function § : Q X X — Q.

e NFA has transition function 6 : Q x - — P(Q).

= Returns a set of states rather than a single state.
» Allows for e-transitions because > = > U {¢}.

s Forstateq € Q and £ € 3., 6(q, /) is set of states where edges
out of g labeled with £ lead to.

(@)~ ‘_> 0,¢ 1 0,1
0,1

e Remark: Note that every DFA is also an NFA.

B S5 el S
0,1

Formal description of above NFA N = (Q, %, 4, ¢q1, F)

Q = {q1,92, 93,94} is the set of states
> = {0, 1} is the alphabet
e Transition function § : Q X X — P(Q)

0 1 €
a1 {x1} {ar,2} 0
a2 {az} 0 {a3}
az | 0 {aa} 0
qs | {aa} {aa} 0
® (1 is the start state
o "= {qa} is the set of accept states

CS 341: Chapter 1 1-45

Formal Definition of NFA Computation

elet N =(Q,%,6,q0,F) be an NFA and w € Z*.
e Then N accepts w if
= We can write w as w = Y1 Yo - - - Ym for some m > 0,
where each y; € >, and
= there is a sequence of states rg,71,72,...,7m in @ such that
1. 70 = qo
2. riy1 €6(ri,y;41) foreachi=10,1,2,...,m—1
3. rm € F

Y2 Ym
—O-O 0 - ©
Y1 Y2

Definition: The set of all input strings that are accepted by NFA N is
the language recognized by N and is denoted by L(N).

CS 341: Chapter 1 1-46
Equivalence of DFAs and NFAs

Definition: Two machines (of any types) are equivalent if they
recognize the same language.

Theorem 1.39
Every NFA N has an equivalent DFA M.

eie., if N issome NFA, then 3 DFA M such that L(M) = L(N).

Proof ldea:

e NFA N splits into multiple copies of itself on nondeterministic moves.
e NFA can be in a set of states at any one time.

e Build DFA M whose set of states is the power set of the set of states
of NFA N, keeping track of where N can be at any time.

CS 341: Chapter 1 1-47

~@ @@ @O
0,1

Symbol read

®
®

CS 341: Chapter 1 1-48

Example: Convert NFA N into equivalent DFA.

~@ @0 @0
0,1

N's start state g1 has no e-edges out, so DFA has start state {q1 }.

CS 341: Chapter 1 1-49 CS 341: Chapter 1 1-50
Example: Convert NFA N into equivalent DFA. Example: Convert NFA N into equivalent DFA.
0,1 0,1
ﬂ‘—ﬁl @ @@ ﬂ‘—> @ @@
0,1 0,1
On reading O from states in {q1}, can reach states {q1}. On reading 1 from states in {q1}, can reach states {q1, g2, 493}
4’ 4’ {ql’q27q3}
0 0
CS 341: Chapter 1 1-51 CS 341: Chapter 1 1-52

Example: Convert NFA N into equivalent DFA.

N i
0,1

On reading O from states in {q1, g2, g3}, can reach states {q1, g3}

{q1,q3}

A
0

4’(‘[(11, 9, q3})
a,

0

Example: Convert NFA N into equivalent DFA.

—~@ 0@ @
0,1

On reading 1 from states in {q1, g2, g3}, can reach {q1, 92,93, 94}

{q1, 93}
A

0

0

CS 341: Chapter 1 1-53

Example: Convert NFA N into equivalent DFA.

0,1
()t (@) () (W

On reading O from states in {q1, g3}, can reach states {q1 }.

{a1,43}
o K
0

4’ 1 @—1» {qla g2, 43, q4}
Do

CS 341: Chapter 1 1-54

Example: Convert NFA N into equivalent DFA.

0,1
()t (@) () (W

On reading 1 from states in {q1, g3}, can reach states {q1, 92,93, 94}

{q1,q3}

/ |
0
o

Z

{qla q2, 43, q4}

CS 341: Chapter 1 1-55

Example: Convert NFA N into equivalent DFA.

—~@ 0@ @
0,1

Continue until each DFA state has a O-edge and a 1-edge leaving it.
DFA accept states have > 1 accept states from V.

{aq1, 43} {q1,q4}

/A
0
0

{a1,43,qa}

CS 341: Chapter 1 1-56
Proof. (Theorem 1.39: NFA = DFA)

e Consider NFA N = (Q, %, 6, qo, F):

_>—>1 ‘—> O.¢ 1 0,1
0,1

e Definition: The e-closure of a set of states R C Q is

E(R) = {q | q can be reached from R by
travelling over 0 or more ¢ transitions }.

= eg, E({q1,92}) = {91, 92,93}

CS 341: Chapter 1 1-57 CS 341: Chapter 1 1-58
Convert NFA to Equivalent DFA Regular <= NFA

Given NFA N = (Q, X, 9, q0, F), build an equivalent DFA

M= (Q',%,8,qp, F") as follows: Corollary 1.40
Language A is regular if and only if some NFA recognizes A.

1. Calculate the e-closure of every subset R C Q.

2. Define DFA M's set of states Q' = P(Q). Proof.
3. Define DFA M's start state g, = E({qo}). (=)
4. Define DFA M's set of accept states F” to be all DFA states in Q' that o If A'is regular, then there is a DFA for it.
include an accept state of NFA N; i.e., e But every DFA is also an NFA, so there is an NFA for A.
F'={RecQ|RNF#0}. (<)
5. Calculate DFA M's transition function ¢’ : Q" x X — Q" as e Follows from previous theorem (1.39), which showed that every NFA
§'(R,)={qe Q]| qec E(5(r L)) for somer € R} has an equivalent DFA.

for Re Q' =P(Q)and L e X.

6. Can leave out any state ¢’ € Q' not reachable from g,
e.g., {g2,q3} in our previous example.

CS 341: Chapter 1 1-59 CS 341: Chapter 1 1-60

Class of Regular Languages Closed Under Union
Proof Idea: Given NFAs N1 and N5 for A1 and Ao, resp.,

Remark: Can use fact that every NFA has an equivalent DFA to simplify construct NFA V-for Ay UAp = {w]w € Ay or w € Az} as follows:

the proof that the class of regular languages is closed under union.

N N
Remark: Recall union: 1 -0 © > O

@) @)
AJUAs ={w|we Ay or we Ay }. % © %

© ©

Theorem 1.45
The class of regular languages is closed under union. -0

—O
o

O
@
©0© ©
O
©0 ©

CS 341: Chapter 1 1-61
Construct NFA for A; U A5 from NFAs for A1 and A,

e Let Ay be language recognized by NFA Ny = (Q1, >, 61,91, F1).
e Let A be language recognized by NFA No = (Q»2, 2, 62, g2, F>).
e Assume Q1 N Q> = 0.

e Construct NFA N = (Q, X, 6, qq, F) for A1 U Ay :

» Q@ ={q0} UQ1UQ> is set of states of N.

m qq is start state of N, where gg € Q@1 U Q».

= Set of accept states F' = Fy U F5.

» For g € Q and a € X, transition function § satisfies
61(g,a) if g € Qq,
62(q,a) if q € Q2,

{91,492} if g=¢qo and a=c¢,
1) if q=gqo and a # .

6(g,a) =

CS 341: Chapter 1 1-62

Class of Regular Languages Closed Under Concatenation

Remark: Recall concatenation:

A1o0As ={vw]|v € A, w € As }.

Theorem 1.47
The class of regular languages is closed under concatenation.

CS 341: Chapter 1 1-63

Proof Idea: Given NFAs N1 and N5 for A1 and Ao, resp.,
construct NFA N for A1 0 Ao = {vw|v € A1, w € Ay } as follows:

N N
0° o 0o 2
©
o °c, ©
©
N
O—L_ ¢
—£ ©
0" o0
OO/ O©

CS 341: Chapter 1 1-64
Construct NFA for A1 o A, from NFAs for A1 and A,

e Let Ay be language recognized by NFA Ny = (Q1, >, 61,91, F1).
e Let A be language recognized by NFA Ny = (Q»2, 2, 62, g2, F>).
e Assume Q1 N Q> = 0.

e Construct NFA N = (Q, 3,6, qq1, F») for Aj o Ay :

s Q = Q1 UQ> is set of states of N.

= Start state of N is g7, which is start state of N7.

= Set of accept states of NV is F», which is same as for No.

» For ¢ € Q and a € X, transition function § satisfies

61(q, a) if ¢ €Q1— Fy,
01(q,a) if g€ F1 and a # ¢,
51(q,a) U{gp} if g€ F, and a =z¢,
62(q, a) if ¢ € Q2.

6(q,a) =

CS 341: Chapter 1 1-65

Class of Regular Languages Closed Under Star

Remark: Recall Kleene star:
A*={z1x0 -)| k> 0andeachz; € A}.

Theorem 1.49
The class of regular languages is closed under the Kleene-star operation.

CS 341: Chapter 1 1-66

Proof Idea: Given NFA Nq for A,
construct NFA N for A* = {xyxo --- x| k> 0 and each z; € A}
as follows:

CS 341: Chapter 1 1-67
Construct NFA for A* from NFA for A

e Let A be language recognized by NFA N1 = (Q1, %, 61,491, F1).
e Construct NFA N = (Q, %, 6, qq, F) for A* :

» Q@ = {qo} UQ1 is set of states of N,
= qq is start state of N, where qg &€ Q1.
s F'={qo} U F1 is the set of accept states of V.

= For g € Q and a € 3, transition function § satisfies
61(q,a) if ¢ €Qy— Fy,
91(q,a) if g€ Fy and a # &,
01(q,a) U{q1} if g€ F1 and a =z¢,
{aa} if g=gqo and a =c¢,
0 if q=qo and a #e.

6(g,a) =

CS 341: Chapter 1 1-68

Regular Expressions

e Regular expressions are a way of describing certain languages.
e Consider alphabet >~ = {0, 1}.

e Shorthand notation:

= O means {0}
» 1 means {1}

e Regular expressions use above shorthand notation and operations

= union U
m concatenation o

a Kleene star *

e When using concatenation, will often leave out operator “o”.

CS 341: Chapter 1 1-69 CS 341: Chapter 1 1-70
Interpreting Regular Expressions Another Example of a Regular Expression
Example: 0 U1 means {O} U {1}, which equals {0, 1}. Example:
e (OU1)* means ({0} U{1})*.
Example:
e Consider (0O U 1)0*, which means (O U 1) o 0*. e This equals {0, 1}*, which is the set of all possible strings over the
e This equals {0,1} o {O}*. alphabet 3~ = {0, 1}.
e Recall {0}* = {¢, 0, 00, 000, ... }. e When > = {0, 1}, often use shorthand notation 3 to denote regular
e Thus, {0,1} o {O}* is the set of strings that expression (O U 1).
= start with symbol O or 1, and
= followed by zero or more O's.
1-71 CS 341: Chapter 1 1-72

CS 341: Chapter 1
Hierarchy of Operations in Regular Expressions
e In most programming languages,

= multiplication has precedence over addition
2+3x4=14

= parentheses change usual order
(243)x4=20

= exponentiation has precedence over multiplication and addition

442x3%= 44+ (2x3)%=

Y
e Order of precedence for the regular operations:

1. Kleene star
2. concatenation

3. union

e Parentheses change usual order.

More Examples of Regular Expressions

Example: 00U 101* is language consisting of

e string 00

e strings that begin with 10 and followed by zero or more 1's.

Example: 0(0U 101)* is the language consisting of strings that

e start with O
e concatenated to a string in {0, 101}*.

For example, 0101001010 is in the language because
0101001010 =001010000010100.

CS 341: Chapter 1 1-73 CS 341: Chapter 1 1-74
Formal (Inductive) Definition of Regular Expression Examples of Regular Expressions
Definition: R is a regular expression with alphabet X if R is Examples: For ~ = {0, 1},
1. a for some a € X 1. (Oul) = {0,1}
2. € 2. 0*10* = {w| w has exactly a single 1}
3.0 3. X¥1X* = {w]| w has at least one 1 }
4. (R1 U Rp), where R1 and Ry are regular expressions 4. ¥*001X* = {w| w contains 001 as a substring }
5. (Ry) o (Rp), also denoted by (Ry)(Ro). 5. (£)* = {w] w] is even }
where Ry and Ry are regular expressions 6. (ZXX)* = {w]| |w]| is a multiple of three }
6. (R1)*, where R is a regular expression 7 0S*0U 11 U0 U 1
7. (R1), where Rq is a regular expression. = {w| w #* € starts and ends with same symbol }
kA —
Can remove redundant parentheses, e.g., ((0) U (1))(1) — (OU 1)1. 8. 170 - 0, _ _
anything concatenated with () is equal to .
Definition: If R is a regular expression, then L(R) is the language 9. 0* = {e}
generated (or described or defined) by R.
CS 341: Chapter 1 1-75 CS 341: Chapter 1 1-76
Examples: Kleene’s Theorem

1. Rubh =)UR = R
2. Roe = eo R = R
3. Ro) = poR = 0
4

. Ri{(RoUR3) = R1R»U R1R3.
Concatenation distributes over union.

DFA for EVEN-EVEN.

Example:

e Define EVEN-EVEN over alphabet > = {a, b} as strings with an even
number of a's and an even number of b's; see slide 1-20 for a DFA.

e For example, aababbaaababab € EVEN-EVEN.
e Regular expression:

(aa U bb U (abUba)(aa Ubb)*(abU ba))*

Theorem 1.54

Language A is regular iff A has a regular expression.

Lemma 1.55

If a language is described by a regular expression, then it is regular.
Proof. Procedure to convert regular expression R into NFA N :

1. If R = a for some a € X, then L(R) = {a}, which has NFA
a
—(®)

N = ({q1,92}, =, 9, q1, {g2}) where transition function §

e 3(q1,a) = {q2},
e 6(r,b) = () for any state r 7= g1 or any b € 3. with b # a.

CS 341: Chapter 1 1-77 CS 341: Chapter 1 1-78
2.If R = ¢, then L(R) = {e}, which has NFA 4.1f R= (R1UR>) and
e L(R1) has NFA N;
e L(R5) has NFA N»,
then L(R) = L(R1) U L(R5) has NFA N below:
N = ({Q1}7 2, (57 q1, {Q1}) where
e 6(r,b) = () for any state r and any b € X;. N N
! @O © e t~O ©
o
3.1f R = 0, then L(R) = 0, which has NFA % © % ®
N2 5
-0 © —0O ©
o o
N=({a}, =, 6 q1, 0) where o © 0 ©
e 6(r,b) = 0 for any state r and any b € ;. © ©
CS 341: Chapter 1 1-79 CS 341: Chapter 1 1-80
5.f R= (Rl) o (RQ) and 6.f R = (R]_)* and L(R]_) has NFA va
e L(Ry) has NFA N; then L(R) = (L(R1))* has NFA N below:
° L(RQ) has NFA NQ, N
N1
then L(R) = L(R1) o L(R>) has NFA N below:
g
N1 N> © e ©
00 o -0 9o =0
o)
5 © o o © o ©
©
N

:
197
8

e Thus, can convert any regular expression R into an NFA.

e Hence, Corollary 1.40 implies that the language L(R) is regular.

CS 341: Chapter 1 1-81

Ex: Build NFA a
for (abUa)*

ab —(O>0O—= O—b>©

3 other correct NFAs

CS 341: Chapter 1 1-82
More of Kleene's Theorem

Lemma 1.60

If a language is regular, then it has a regular expression.

Proof Idea:
e Convert DFA (or NFA) into regular expression.

= Account for every path that starts in initial state
and ends in an accept state.

e Use generalized NFA (GNFA), which is an NFA with following
modifications:

= no edges into start state.
= single accept state, with no edges out of it.

= labels on edges are regular expressions instead of
elements from ..

A can traverse edge on any string generated by its regular expression.

CS 341: Chapter 1 1-83
Example: GNFA

(aa Ub)* (ab)*a*

— @~

e Can move from

(bU a*b)

= g1 to go on string €.
q> to q3 on string aabaa.

q3 to g3 on string b or baaa.

q3 to q4 on string €.

q4 to g5 on string €.

e GNFA accepts string € o aabaa o b o baaa o € o e = aabaabbaaa.

CS 341: Chapter 1 1-84

Method to convert DFA into regular expression
1. First convert DFA into equivalent GNFA.

2. Apply following iterative procedure to account for every path from

initial state to accept state.

e In each step, eliminate one state from GNFA.
= When state is eliminated, need to account for every path that was

previously possible.

= Can eliminate states in any order but end result will be different.
= Never delete start or (unique) accept state.

e Done when only 2 states remaining: start and accept.

= Label on remaining edge between start and accept states
is a regular expression for language of original DFA.

Remark: Method also can convert NFA into a regular expression.

CS 341: Chapter 1 1-85 CS 341: Chapter 1 1-86
1. Convert DFA M = (Q, %, 6, q1, F') into equivalent GNFA G. 2. Iteratively eliminate a state from GNFA G.

e Introduce new start state s. e Need to take into account all possible previous paths.

» Add edge from s to ¢1 with label . e Never eliminate new start state s or new accept state .

= Make g1 no longer the start state.
e Introduce new accept state ¢. Example: Eliminate state g, which has no other in/out edges.

= Add edge with label £ from each state ¢ € F' to t.

= Make each state originally in F' no longer an accept state. R

a4

e Change edge labels into regular expressions. @

= e.g., “a,b’ becomes “aUDb". Ra U (RO)(R->) (R

3
DFA M GNFA G
© O
~O © ~Of~0 e [30
© SOTE R»
CS 341: Chapter 1 1-87 CS 341: Chapter 1 R R 1-88
1
Example: Convert DFA M into regular expression. Example:
a, b aUb R3
Eliminate state «
£ b £] ' R4
(> Q ’ which has no other Rs| | Re
1) Convert DFA “ o b in/out edges Ry
into GNFA O =
a R8 R9

2.1) Eliminate state ¢o

aUb
_>@ € . bUaa*b

_>C c @ (bU aa*b)(aUb)*

2.2) Eliminate state g3

~@)

2.3) Eliminate state ¢q —»@ (bU aab)(aUb)

~@)

e Let C' = {v, z}, which are states with edges into z (except for z).
e Let D = {v,y, z}, which are states with edges from z (except for z).
e When we eliminate x, need to account for paths

= from each state in C' directly into x

= then from x directly to =
= finally from x directly to each state in D

CS 341: Chapter 1
o Recall C' = {v, z} and D = {v, vy, z}.
e So eliminating state x gives
(R1)(R2)"(R3)
Ry

Ry

@/_\L

fts (R1)(R2)"(Ra)

RS R6 >
R7

@/—\x

R8 Rg

R4

1-89

(R1)(R2)*(Rs)

(Re)(R2)*(Rs3)

Rs U (Re)(R2)*(Ra) D

Ro U (Rs)(R2)*(Rs)

e e.g., for path v — = — vy, add edge from v to y with label

(R1)(R2)*(Ra)

CS 341: Chapter 1 1-90

Example: Convert DFA into Regular Expression

CS 341: Chapter 1

—_—

Step 2.1. Eliminate state 1

C ={s,2,3}
D ={2,3} —

bb

1-91

aa Ub

€
ab
ﬂ)aUa @
€

CS 341: Chapter 1 1-92

Step 2.2. Eliminate state 2

C ={s,3}
D={3,1
a(aa Ub)*

—_—

a(aa Ub)*abUb

(ba U a)(aa Ub)*ab U bb

(baUa)(aaUb)*Ue

CS 341: Chapter 1 1-93

a(aa Ub)*abUb
(baUa)(aaUb)*Ue

(ba U a)(aa Ub)*abU bb

Step 2.3. Eliminate state 3
C={s}, D={t}

(a(aa Ub)*abUb) ((baUa)(aa Ub)*abUbb)* ((baUa)(aaUb)* Ue)

_». U a(aa U b)*.

CS 341: Chapter 1 1-94

O or more returns to 3

first visit to 3 end in 2 or stay in 3

(a(aa Ub) abU b) <(ba Ua)(aaUb)*abU bb>* ((ba Ua)(aaUb)* U 8)
U a(aaUb)*

ends in 2 with
no visits to 3

e Regular expression accounts for all paths starting in start state 1
and ending in accepting state (2 or 3):

w visit state 3 at least once (ending in 2 or 3), or

= never visit state 3 (ending in 2).

CS 341: Chapter 1 1-95

Finite Languages are Regular

Theorem
If A is a finite language, then A is regular.
Proof.
e Because A finite, we can write
A={wi, wy, ..., wn}
for some n < oo.
e A regular expression for A is then

R=wiUwyU---Uwn

e Kleene's Theorem then implies A has a DFA, so A is regular.

Remark: The converse is not true.
e.g., 1™ generates a regular language, but it's infinite.

CS 341: Chapter 1 1-96

Pumping Lemma for Regular Languages

Example: DFA with alphabet > = {0, 1} for language A.

e DFA has 5 states.
e DFA accepts string s = 0011, which has length 4.
e On s = 0011, DFA visits all of the states.

1-98

CS 341: Chapter 1 1-97 CS 341: Chapter 1
e For any string s with |s| > 5, guaranteed to visit some state twice ® Recall DFA accepts string
by the pigeonhole principle. s — \mQ/OllOlz,l,
e String s = 0011011 is accepted by DFA, i.e, s € A. Y
0 0 0 e DFA also accepts strings
» @ 00110011011
e ¢o is first state visited twice. s = Y Ty oy X
e Using go, divide string s into 3 parts z, y, z such that s = xy=z. Tyyyz = \2’%1—0’@%@?}—0’%’
s x = O, the symbols read until first visit to go. Tz = \%l}
= y = 0110, the symbols read from first t.o.second visit to ¢o. e String 2z € A for each i > 0,
= 2z = 11, the symbols read after second visit to ¢5.
CS 341: Chapter 1 1-99 CS 341: Chapter 1 1-100
e More generally, consider Pumping y
» language A with DFA M having p states, y

» string s € A with |s| > p.
e When processing s on M, guaranteed to visit some state twice.
e Let r be first state visited twice.
e Using state r, can divide s as s = xyz.

= x are symbols read until first visit to r.
= y are symbols read from first to second visit to r.

= 2z are symbols read from second visit to r to end of s.

\ =~

/
i ! ,
_’Q Toeoeey b 4 /
3 /,’ *@\} Z//
\ ’ e

\

~-7

i ~
_>O Ty b 4 2
it ///’ \@\; Z//l
\ v 4
N L7

e Because y corresponds to starting in 7 and returning to r,

xyiz € A foreachi> 1.

e Also, note a:yoz =xz€ A, so

xyiz € A for each i > 0.

e |y| > O because

= y corresponds to starting in 7 and coming back;

a this consumes at least one symbol (because DFA),
so y can't be empty.

CS 341: Chapter 1 1-101

Length of zy

\\ ///’ *@\} Z///
\ ’ 4
N L7

e |zy| < p, where p is number of states in DFA, because
= xy are symbols read up to second visit to r.

= Because r is the first state visited twice,
all states visited before second visit to r are unique.

= So just before visiting r for second time, DFA visited at most p
states, which corresponds to reading at most p — 1 symbols.

= The second visit to r, which is after reading 1 more symbol,
corresponds to reading at most p symbols.

CS 341: Chapter 1 1-102

Pumping Lemma

Theorem 1.70
If Ais regular language, then 3 number p (pumping length) where,
if s € A with |s| > p, then s can be split into 3 pieces, s = zyz,
satisfying the properties

1. :cyiz € A for each © > 0,

2. ly| >0, and
3. |lzyl < p.
Remarks:

e 4/ denotes i copies of y concatenated together, and 40 = ¢.
e |y| > 0 means y # ¢.
e |zy| < p means x and y together have no more than p symbols total.

e Key ideas: For each long enough string s in a regular language A,
can use s to construct infinitely many other strings in A.

CS 341: Chapter 1 1-103

Understanding the Pumping Lemma

M4 M>
If ‘A is regular language, then 3 number p (pumping length) where,
M3

if s € A with |s| > p, then

s can be split into 3 pieces, s = xyz, satisfying properties
1. zy'z € A for each i > 0,
2. |ly| >0, and
3. Jzyl <p.

if (M7 is true), then
Mo is true
if (M3 is true), then
My is true
endif
endif

CS 341: Chapter 1 1-104

Nonregular Languages

Definition: Language is nonregular if there is no DFA for it.
Remarks:

e Pumping Lemma (PL) is a result about regular languages.
e But PL mainly used to prove that certain language A is nonregular.

e Typically done using proof by contradiction.

= Assume language A is regular.

» PL says that all strings s € A that are at least a certain length must
satisfy some properties

= By appropriately choosing s € A, will eventually get contradiction.
= PL: can split s into s = xyz satisfying all of Properties 1-3.
= To get contradiction, show cannot split s = xyz satisfying 1-3.

4 Show all splits satisfying 2-3 violate Prop 1 (zy’z € A Vi > 0).
s Because Property 3 of PL states |zy| < p,

often choose s € A so that all of its first p symbols are the same.

CS 341: Chapter 1 1-105 CS 341: Chapter 1 1-106
Language A = {0"1"| n > 0} is Nonregular e So we have
Proof. ;
roo _ o) _ § x = 0’ for some j > 0,
° Supp.ose A |.s regular, s? EL implies A has “pumping length” p. y = 0% for some k > 0,
o Consider string s = OV 17 ¢ A. z = 0™1P for some m > 0
e |s| = 2p > p, so Pumping Lemma will hold. o
L . L : e s = xyz implies
e So can split s into 3 pieces s = xyz satisfying properties ' _
1. 2yiz € A foreach i > 0, 0717 = 00" 0™ 1P = oI FFFTm P,
2. ly| > 0, and soj+k+m=np.
3. Jzyl <p.
o) o e Property 2 states that |y| > 0, so k > 0.
e To get contradiction, must show cannot split s = xyz satisfying 1-3.
. . . o e Property 1 implies zyyz € A, but
= Show all splits s = xyz satisfying Properties 2 and 3 will violate 1. "
_ , xyyz = 070707 Q"™ 1P
e Because the first p symbols of s = 00 }D- 011 ;3- -Lareall O's _ gitktktm 1p
= Property 3 implies that = and y consist of only O's. — QptFk 1P g A
. ill be th t of the O's, followed by all p 1's.
z will be the rest of the O's, followed by all p 1's because j + k +m = p and k > O.
e Key: y .has some QO's, and 2 c?ntalns all the 1 s, (and maybe some Q's), « Contradiction, so A = {0"1"| n > 0} is nonregular.
so pumping y changes # of O's but not # of 1's.
CS 341: Chapter 1 1-107 CS 341: Chapter 1 1-108

Language B = {ww | w € {0,1}* } is Nonregular
Proof.

e Suppose B is regular, so PL implies B has “pumping length” p.
e Consider string s = 071071 € B. (OPOP € B won't work. Why?)
e |s| =2p+ 2 > p, so Pumping Lemma will hold.
e So can split s into 3 pieces s = zyz satisfying properties
1. zy'z € B for each i > 0,
2. ly| >0, and
3. Jzyl <p.
e For contradiction, show cannot split s = zyz so that 1-3 hold.

= Show all splits s = xyz satisfying Properties 2 and 3 will violate 1.

e Because first p symbols of s =00---0100---01 are all O's,
p p

= Property 3 implies that = and y consist only of O's.
= 2z will be the rest of first set of O's, followed by 1 0P 1.

e Key: y has some of first O's, and z has all of second O’s,
so pumping y changes only # of first O's.

e So we have

z =0/ for some j > 0O,

y = 0F for some k > 0,

z = 0"10P1 for somem >0
e s = xyz implies

oP10P1 = 0/0F0™m10P1 = oitktmiory,
soj+k+m=np.

e Property 2 states that |y| > 0, so k > O.
e Property 1 implies zyyz € B, but

ryyz = 090F0Fo™m10P1
— 0j+k+k+m 1071

=oPtk10P1 ¢ B
because j + k+m = pand k > 0.

e Contradiction, so B = {ww| w € {0,1}* } is nonregular.

CS 341: Chapter 1 1-109

Important Steps in Proving Language is Nonregular
Pumping Lemma (PL):
If Ais a regular language, then 3 number p (pumping length) where,
if s € A with |s| > p, then s can be split into 3 pieces, s = xyz, with
1. zy'z € A for each i > 0,

2. |ly| >0, and
3. |zy| <p.
Remarks:

e Must choose appropriate string s € A to get contradiction.
= Some strings s € A might not lead to contradiction;
e.g., OPOP ¢ {ww| w e {0,1}*}
e Because Property 3 of PL states |zy| < p,
often choose s € A so that all of its first p symbols are the same.

e Once appropriate s is chosen, need to show every possible split of
s = xyz leads to contradiction.

CS 341: Chapter 1 1-110

Pumping Lemma (PL):

If Ais a regular language, then 3 number p (pumping length) where,

if s € A with |s| > p, then s can be split into 3 pieces, s = zyz, with
1. zy'z € A for each i > 0,

2. ly| >0, and
3. |zyl < p.
Examples:

1.Let C = {w € {a,b}* | w = w™}, where w” is the reverse of w.

e To show C is nonregular, can choose s = aPbaP € C.
e Choosing s = aP € C does not work. Why?

2. To show D = {a?"b3"a™ | n > 0} is nonregular, can choose
s=a%Pb3PaP € D.

3. Consider language £ = {w € {a,b}* | w has more a's than b's }.
For example, baaba € E.

e To show E is nonregular, can choose s = bP abtl e B

CS 341: Chapter 1 1-111
Common Mistake
e Consider D = {a?"b3"a™| n >0}.
e To show D is nonregular, can choose s = a?Pp3P aP € D.
e Common mistake: try to apply Pumping Lemma with

z=a?P, y=b3p,

z=dP.
e For this split, |zy| = 5p £ p.

e But Pumping Lemma states “If D is a regular language, then ...
can split s = zyz satisfying Properties 1-3."

e To get contradiction, need to show cannot split s = xyz
satisfying Properties 1-3.

= Need to show every split s = zyz doesn't satisfy all of 1-3.
= Every split s = zyz satisfying Properties 2 and 3 must have
y = a”, 2 =amb3PaP,

where j +k<p, j+k+m=2p,and k > 1.

x=al,

CS 341: Chapter 1 1-112

F = {w]| # of 0’s in w equals # of 1’s in w } is Nonregular

e Note that, e.g.,, 101100 € F.

e Need to be careful when choosing string s € F' for Pumping Lemma.

a If zyz € F with y € F, then zy’z € F, so no contradiction.

e Another Approach: If F' and G are regular, then F' N G is regular.
e Solution: Suppose that F' is regular.
s Let G={0"1"|n,m >0}
Ao G is regular: it has regular expression 0*1*.
s« Then FNG ={0"1"|n>0}.
= But know that F' N G is not regular.

e Conclusion: F'is not regular.

CS 341: Chapter 1

Hierarchy of Languages (so far)

All languages

Regular
(DFA, NFA, Reg Exp)

1-113

Examples

{0"1"|n >0}
(Ou1)*

{110, 01}

CS 341: Chapter 1 1-114

Summary of Chapter 1

e DFA is a deterministic machine for recognizing certain languages.
e A language is regular if it has a DFA.

e The class of regular languages is closed under union, intersection,
concatenation, Kleene-star, complementation.

e NFA can be nondeterministic: allows choice in how to process string.
e Every NFA has an equivalent DFA.

e Regular expression is a way of generating certain languages.

e Kleene's Theorem: Language A has DFA iff A has regular expression.
e Every finite language is regular, but not every regular language is finite.

e Use pumping lemma to prove certain languages are not regular.

