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Introduction

• Now introduce a simple model of a computer having a finite amount of
memory.

• This type of machine will be known as a finite-state machine or
finite automaton.

• Basic idea how a finite automaton works:

It is presented an input string w over an alphabet Σ; i.e., w ∈ Σ∗.

It reads in the symbols of w from left to right, one at a time.

After reading the last symbol, it indicates if it accepts or rejects the
string.

• These machines are useful for string matching, compilers, etc.
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Deterministic Finite Automata (DFA)

Example: State diagram of DFA with alphabet Σ = {a, b}:

q1 q2 q3

a

b

b

a

a, b

• q1, q2, q3 are the states.

• q1 is the start state as it has an arrow coming into it from nowhere.

• q2 is an accept state as it is drawn with a double circle.
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Deterministic Finite Automata

q1 q2 q3

a

b

b

a

a, b

• Edges tell how to move when in a state and a symbol from Σ is read.

• DFA is fed input string w ∈ Σ∗. After reading last symbol of w,

if DFA is in an accept state, then string is accepted

otherwise, it is rejected.

• Process the following strings over Σ = {a, b} on above machine:

abaa is accepted

aba is rejected

ε is rejected

q1 q1 q2 q3 q2
a b a a

q1 q1 q2 q3
a b a

q1
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Formal Definition of DFA

Definition: A deterministic finite automaton (DFA) is a 5-tuple

M = (Q,Σ, δ, q0, F),

where

1. Q is a finite set of states.

2. Σ is an alphabet, and the DFA processes strings over Σ.

3. δ : Q×Σ → Q is the transition function.

• δ defines label on each edge.

4. q0 ∈ Q is the start state (or initial state).

5. F ⊆ Q is the set of accept states (or final states).

Remark: Sometimes refer to DFA as simply a finite automaton (FA).
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Transition Function of DFA

q1 q2 q3

a

b

b

a

a, b

Transition function δ : Q×Σ → Q works as follows:

• For each state and for each symbol of the input alphabet,
the function δ tells which (one) state to go to next.

• Specifically, if r ∈ Q and � ∈ Σ, then δ(r, �) is the state that the DFA
goes to when it is in state r and reads in �, e.g., δ(q2, a) = q3.

• For each pair of state r ∈ Q and symbol � ∈ Σ,

there is exactly one edge leaving r labeled with �.

• Thus, there is no choice in how to process a string.

So the machine is deterministic.
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Example of DFA

q1 q2 q3

a

b

b

a

a, b
M = (Q,Σ, δ, q1, F) with

•Q = {q1, q2, q3}

•Σ = {a, b}

• δ : Q×Σ → Q is described as

a b

q1 q1 q2
q2 q3 q2
q3 q2 q2

• q1 is the start state

• F = {q2}.
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How a DFA Computes

• DFA is presented with an input string w ∈ Σ∗.

• DFA begins in the start state.

• DFA reads the string one symbol at a time, starting from the left.

• The symbols read in determine the sequence of states visited.

• Processing ends after the last symbol of w has been read.

• After reading the entire input string

if DFA ends in an accept state, then input string w is accepted;

otherwise, input string w is rejected.
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Formal Definition of DFA Computation

• Let M = (Q,Σ, δ, q0, F) be a DFA.

• String w = w1w2 · · ·wn ∈ Σ∗, where each wi ∈ Σ and n ≥ 0.

• Then M accepts w if there exists a sequence of states
r0, r1, r2, . . . , rn ∈ Q such that

1. r0 = q0

first state r0 in the sequence is the start state of DFA;

2. rn ∈ F

last state rn in the sequence is an accept state;

3. δ(ri, wi+1) = ri+1 for each i = 0,1,2, . . . , n− 1

sequence of states corresponds to valid transitions for string w.

r0 r1 r2 · · · rn−1 rn
w1 w2 wn
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Language of Machine

•Definition: If A is the set of all strings that machine M accepts,
then we say

A = L(M) is the language of machine M , and

M recognizes A.

� M accepts each string w ∈ A.

� M rejects (does not accept) each string w ∈ Σ∗ −A.

• If machine M has input alphabet Σ, then L(M) ⊆ Σ∗.

Σ∗ is universe of problem instances (possible input strings)

Each w ∈ L(M) is a YES instance.

Each w ∈ Σ∗ − L(M) is a NO instance.

•Definition: A language is regular if it is recognized by some DFA.
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Examples of Deterministic Finite Automata

Example: Consider the following DFA M1 with alphabet Σ = {0,1} :

q1 q2

0

1

0

1
Remarks:

• 010110 is accepted, but 0101 is rejected.

• L(M1) is the language of strings over Σ in which the total number of
1’s is odd.

• Can you come up with a DFA that recognizes the language of strings
over Σ having an even number of 1’s ?
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Example: Consider the following DFA M2 with alphabet Σ = {0,1} :

q1 q2 q3
0,1 0,1

0,1

Remarks:

• L(M2) is language of strings over Σ that have length 1, i.e.,

L(M2) = {w ∈ Σ∗ | |w| = 1 }

• Recall that L(M2), the complement of L(M2), is the set of strings
over Σ not in L(M2), i.e.,

L(M2) = Σ∗ − L(M2).

Can you come up with a DFA that recognizes L(M2) ?
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Example: Consider the following DFA M3 with alphabet Σ = {0,1} :

q1 q2 q3
0,1 0,1

0,1

Remarks:

• L(M3) is the language of strings over Σ that do not have length 1,
i.e.

L(M3) = L(M2) = {w ∈ Σ∗ | |w| �= 1}

• DFA can have more than one accept state.

• Start state can also be an accept state.

• In general, a DFA accepts ε if and only if the start state is also an
accept state.
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Constructing DFA for Complement

• In general, given a DFA M for language A,
we can make a DFA M for A from M by

changing all accept states in M into non-accept states in M ,

changing all non-accept states in M into accept states in M ,

•More formally, suppose language A over alphabet Σ has a DFA

M = (Q, Σ, δ, q1, F ).

• Then, a DFA for the complementary language A is

M = (Q, Σ, δ, q1, Q− F ).

where Q,Σ, δ, q1, F are the same as in DFA M .

•Why does this work?
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Example: Consider the following DFA M4 with alphabet Σ = {a, b} :

q1 q2 q3

a

b

a

b

a

b

Remarks:

• L(M4) is the language of strings over Σ that end with bb, i.e.,

L(M4) = {w ∈ Σ∗ | w = sbb for some s ∈ Σ∗ }.

• Note that abbb ∈ L(M4) and bba �∈ L(M4).
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Example: Consider the following DFA M5 with alphabet Σ = {a, b} :

q1

q2

q3

q4

q5

a

b

a

b
a

b

a
b

b

a

L(M5) = {w ∈ Σ∗ | w = saa or w = sbb for some string s ∈ Σ∗ }.

Note that abbb ∈ L(M5) and bba �∈ L(M5).

CS 341: Chapter 1 1-18

Example: Consider the following DFA M6 with alphabet Σ = {a, b} :

q1

a, b

Remarks:

• This DFA accepts all possible strings over Σ, i.e.,

L(M6) = Σ∗.

• In general, any DFA in which all states are accept states recognizes the
language Σ∗.
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Example: Consider the following DFA M7 with alphabet Σ = {a, b} :

q1

a, b

Remarks:

• This DFA accepts no strings over Σ, i.e.,

L(M7) = ∅.

• In general,

a DFA may have no accept states, i.e., F = ∅ ⊆ Q.

any DFA with no accept states recognizes the language ∅.
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Example: Consider the following DFA M8 with alphabet Σ = {a, b} :

q1 q2

q3 q4

a

b

a

b

a

b

a

b

• DFA moves left or right on a.

• DFA moves up or down on b.

• DFA recognizes the language EVEN-EVEN of strings over Σ having

even number of a’s and

even number of b’s.

• Note that ababaa ∈ L(M8) and bba �∈ L(M8).
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Some Operations on Languages

• Let A and B be languages, each with alphabet Σ.

• Recall we previously defined the operations:

Union:
A ∪B = {w | w ∈ A or w ∈ B }

Concatenation:

A ◦B = { vw | v ∈ A, w ∈ B }

Kleene star:

A∗ = {w1w2 · · · wk | k ≥ 0 and each wi ∈ A }

Complement:

A = {w ∈ Σ∗ | w �∈ A } = Σ∗ −A
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Closed under Operation

• Recall that a collection S of objects is closed under operation f if
applying f to members of S always returns an object still in S.

e.g., N = {1,2,3, . . .} is closed under addition but not
subtraction.

• Previously saw that given a DFA M1 for language A,
can construct DFA M2 for complementary language A.

Make all accept states in M1 into non-accept states in M2.

Make all non-accept states in M1 into accept states in M2.

• Thus, the class of regular languages is closed under complementation.

i.e., if A is a regular language, then A is a regular language.
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Regular Languages Closed Under Union

Theorem 1.25
The class of regular languages is closed under union.

• i.e., if A1 and A2 are regular languages, then so is A1 ∪A2.

Proof Idea:

• Suppose A1 is regular, so it has a DFA M1.

• Suppose A2 is regular, so it has a DFA M2.

• w ∈ A1 ∪A2 if and only if w ∈ A1 or w ∈ A2.

• w ∈ A1 ∪A2 if and only if w is accepted by M1 or M2.

• Need DFA M3 to accept a string w iff w is accepted by M1 or M2.

• Construct M3 to keep track of where the input would be if it were
simultaneously running on both M1 and M2.

• Accept string if and only if M1 or M2 accepts.
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Example: Consider the following DFAs and languages over Σ = {a, b} :

• DFA M1 recognizes language A1 = L(M1)

• DFA M2 recognizes language A2 = L(M2)

DFA M1 for A1

x1 x2

b

a

a

b

DFA M2 for A2

y1 y2

y3

a

b
a, b

a, b

•We now want a DFA M3 for A1 ∪A2.
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DFA M1 for A1

x1 x2

b

a

a

b

DFA M2 for A2

y1 y2

y3

a

b
a, b

a, b

Step 1 to build DFA M3 for A1 ∪A2: Begin in start states for M1 and M2

(x1, y1)
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DFA M1 for A1

x1 x2

b

a

a

b

DFA M2 for A2

y1 y2

y3

a

b
a, b

a, b

Step 2: From (x1, y1) on input a, M1 moves to x1, and M2 moves to y2.

(x1, y1) (x1, y2)

a
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DFA M1 for A1

x1 x2

b

a

a

b

DFA M2 for A2

y1 y2

y3

a

b
a, b

a, b

Step 3: From (x1, y1) on input b, M1 moves to x2, and M2 moves to y3.

(x1, y1) (x1, y2)

(x2, y3)

a

b
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DFA M1 for A1

x1 x2

b

a

a

b

DFA M2 for A2

y1 y2

y3

a

b
a, b

a, b

Step 4: From (x1, y2) on input a, M1 moves to x1, and M2 moves to y1.

(x1, y1) (x1, y2)

(x2, y3)

a

b

a
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DFA M1 for A1

x1 x2

b

a

a

b

DFA M2 for A2

y1 y2

y3

a

b
a, b

a, b

Step 5: From (x1, y2) on input b, M1 moves to x2, and M2 moves to y1, . . . .

(x1, y1) (x1, y2)

(x2, y3) (x2, y1)

a

b

a

b
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DFA M1 for A1

x1 x2

b

a

a

b

DFA M2 for A2

y1 y2

y3

a

b
a, b

a, b

Continue until each state has outgoing edge for each symbol in Σ.

(x1, y1) (x1, y2)

(x2, y3) (x2, y1)

(x2, y2)

(x1, y3)

a

b

a

b

a
b

a

b

a

b

a

b
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DFA M1 for A1

x1 x2

b

a

a

b

DFA M2 for A2

y1 y2

y3

a

b
a, b

a, b

Accept states for DFA M3 for A1 ∪A2 have accept state from M1 or M2

(x1, y1) (x1, y2)

(x2, y3) (x2, y1)

(x2, y2)

(x1, y3)

a

b

a

b

a

b

a

b

a

b

a

b
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Proof that Regular Languages Closed Under Union

• Suppose A1 and A2 are defined over the same alphabet Σ.

• Suppose A1 recognized by DFA M1 = (Q1,Σ, δ1, q1, F1).

• Suppose A2 recognized by DFA M2 = (Q2,Σ, δ2, q2, F2).

• Define DFA M3 = (Q3,Σ, δ3, q3, F3) for A1 ∪A2 as follows:

Set of states of M3 is

Q3 = Q1 ×Q2 = { (x, y) | x ∈ Q1, y ∈ Q2 }.

The alphabet of M3 is Σ.

M3 has transition function δ3 : Q3 ×Σ → Q3 such that for
x ∈ Q1, y ∈ Q2, and � ∈ Σ,

δ3( (x, y), � ) = ( δ1(x, �), δ2(y, �) ) .

The start state of M3 is

q3 = (q1, q2) ∈ Q3.
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The set of accept states of M3 is

F3 = { (x, y) ∈ Q1 ×Q2 | x ∈ F1 or y ∈ F2 }

= [F1 ×Q2] ∪ [Q1 × F2].

• Because Q3 = Q1 ×Q2,

number of states in new machine M3 is |Q3| = |Q1| · |Q2|.

• Thus, |Q3| < ∞ because |Q1| < ∞ and |Q2| < ∞.

Remark:

•We can leave out a state (x, y) ∈ Q1 ×Q2 from Q3 if (x, y) is not
reachable from M3’s initial state (q1, q2).

• This would result in fewer states in Q3, but still we have |Q1| · |Q2| as
an upper bound for |Q3|; i.e., |Q3| ≤ |Q1| · |Q2| < ∞.

CS 341: Chapter 1 1-34

Regular Languages Closed Under Intersection

Theorem
The class of regular languages is closed under intersection.

• i.e., if A1 and A2 are regular languages, then so is A1 ∩A2.

Proof Idea:

• A1 has DFA M1.

• A2 has DFA M2.

• w ∈ A1 ∩A2 if and only if w ∈ A1 and w ∈ A2.

• w ∈ A1 ∩A2 if and only if w is accepted by both M1 and M2.

• Need DFA M3 to accept string w iff w is accepted by M1 and M2.

• Construct M3 to simultaneously keep track of where the input would
be if it were running on both M1 and M2.

• Accept string if and only if both M1 and M2 accept.
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Regular Languages Closed Under Concatenation

Theorem 1.26
Class of regular languages is closed under concatenation.

• i.e., if A1 and A2 are regular languages, then so is A1 ◦A2.

Remark:

• It is possible (but cumbersome) to directly construct a DFA for
A1 ◦A2 given DFAs for A1 and A2.

• There is a simpler way if we introduce a new type of machine.
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Nondeterministic Finite Automata

• In any DFA, the next state the machine goes to is uniquely determined
by current state and next symbol read.

q1 q2 q3

b

a

b

a

a b

• This is why these machines are deterministic.

• DFA’s determinism expressed through its transition function

δ : Q×Σ → Q.

• Because range of δ is Q, fcn δ always returns a single state.

• DFA has exactly one transition leaving each state for each symbol.

δ(q, �) tells what state the edge out of q labeled with � leads to.
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Nondeterminism

•Nondeterministic finite automata (NFAs) allow for several or no
choices to exist for the next state on a given symbol.

• For a state q and symbol � ∈ Σ, NFA can have

multiple edges leaving q labelled with the same symbol �

no edge leaving q labelled with symbol �

edges leaving q labelled with ε

� can take ε-edge without reading any symbol from input string.

� can also choose not to take ε-edge.

Example: NFA N1 with alphabet Σ = {0,1}.

q1 q2 q3 q4

0,1

1 0, ε 1 0,1
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q1 q2 q3 q4

0,1

1 0, ε 1 0,1

• Suppose NFA is in a state with multiple ways to proceed,
e.g., in state q1 and the next symbol in input string is 1.

• The machine splits into multiple copies of itself (threads).

Each copy proceeds with computation independently of others.

NFA may be in a set of states, instead of a single state.

NFA follows all possible computation paths in parallel.

If a copy is in a state and next input symbol doesn’t appear on any
outgoing edge from the state, then the copy dies or crashes.

• If any copy ends in an accept state after reading entire input string
without crashing, the NFA accepts the string.

• If no copy ends in an accept state after reading entire input string
without crashing, then NFA does not accept (rejects) the string.
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q1 q2 q3 q4

0,1

1 0, ε 1 0,1

• Similarly, if a state with an ε-transition is encountered,

without reading an input symbol, NFA splits into multiple copies,
each one following an exiting ε-transition (or staying put).

Each copy proceeds independently of other copies.

NFA follows all possible paths in parallel.

NFA proceeds nondeterministically as before.

•What happens on input string 010110 ?
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q1 q2 q3 q4

0,1

1 0, ε 1
0,1

Symbol read Startq1

0
q1

1
q1 q2 q3

0
q1 q3

1
q1 q2 q3 q4

1
q1 q2 q3 q4 q4

0
q1 q3 q4 q4
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Example: NFA N

q1

q2 q3

b
ε

a

a, b

a

•N accepts strings ε, a, aa, baa, baba, . . . .

e.g., aa = εaεa

q1 q3 q1 q3 q1ε a ε a

•N does not accept (i.e., rejects) strings b, ba, bb, bbb, . . . .

CS 341: Chapter 1 1-42

Formal Definition of NFA

Definition: For an alphabet Σ, define Σε = Σ ∪ {ε}.

•Σε is set of possible labels on NFA edges.

Definition: A nondeterministic finite automaton (NFA) is a
5-tuple (Q,Σ, δ, q0, F), where

1. Q is a finite set of states

2. Σ is an alphabet

3. δ : Q×Σε → P(Q) is the transition function, where

• P(Q) is the power set of Q

• for each edge, δ specifies label from Σε.

4. q0 ∈ Q is the start state

5. F ⊆ Q is the set of accept states.
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Difference Between DFA and NFA

• DFA has transition function δ : Q×Σ → Q.

q1 q2

1

0

0 1

• NFA has transition function δ : Q×Σε → P(Q).

Returns a set of states rather than a single state.

Allows for ε-transitions because Σε = Σ ∪ {ε}.

For state q ∈ Q and � ∈ Σε, δ(q, �) is set of states where edges
out of q labeled with � lead to.

q1 q2 q3 q4

0,1

1 0, ε 1 0,1

• Remark: Note that every DFA is also an NFA.

CS 341: Chapter 1 1-44

q1 q2 q3 q4

0,1

1 0, ε 1 0,1

Formal description of above NFA N = (Q, Σ, δ, q1, F)

• Q = {q1, q2, q3, q4} is the set of states

• Σ = {0,1} is the alphabet

• Transition function δ : Q×Σε → P(Q)

0 1 ε

q1 {q1} {q1, q2} ∅
q2 {q3} ∅ {q3}
q3 ∅ {q4} ∅
q4 {q4} {q4} ∅

• q1 is the start state

• F = {q4} is the set of accept states
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Formal Definition of NFA Computation

• Let N = (Q,Σ, δ, q0, F) be an NFA and w ∈ Σ∗.

• Then N accepts w if

we can write w as w = y1 y2 · · · ym for some m ≥ 0,
where each yi ∈ Σε, and

there is a sequence of states r0, r1, r2, . . . , rm in Q such that

1. r0 = q0

2. ri+1 ∈ δ(ri, yi+1) for each i = 0,1,2, . . . ,m− 1

3. rm ∈ F

r0 r1 r2 · · · rm−1 rm
y1

y1

y2

y2

y2

ym

ym

Definition: The set of all input strings that are accepted by NFA N is
the language recognized by N and is denoted by L(N).
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Equivalence of DFAs and NFAs

Definition: Two machines (of any types) are equivalent if they
recognize the same language.

Theorem 1.39
Every NFA N has an equivalent DFA M .

• i.e., if N is some NFA, then ∃ DFA M such that L(M) = L(N).

Proof Idea:

• NFA N splits into multiple copies of itself on nondeterministic moves.

• NFA can be in a set of states at any one time.

• Build DFA M whose set of states is the power set of the set of states
of NFA N , keeping track of where N can be at any time.
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q1 q2 q3 q4

0,1

1 0, ε 1
0,1

Symbol read Startq1

0
q1

1
q1 q2 q3

0
q1 q3

1
q1 q2 q3 q4

1
q1 q2 q3 q4 q4

0
q1 q3 q4 q4
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Example: Convert NFA N into equivalent DFA.

q1 q2 q3 q4

0,1

1 0, ε 1
0,1

N ’s start state q1 has no ε-edges out, so DFA has start state {q1}.

{q1}
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Example: Convert NFA N into equivalent DFA.

q1 q2 q3 q4

0,1

1 0, ε 1
0,1

On reading 0 from states in {q1}, can reach states {q1}.

{q1}

0
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Example: Convert NFA N into equivalent DFA.

q1 q2 q3 q4

0,1

1 0, ε 1
0,1

On reading 1 from states in {q1}, can reach states {q1, q2, q3}.

{q1} {q1, q2, q3}

0

1
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Example: Convert NFA N into equivalent DFA.

q1 q2 q3 q4

0,1

1 0, ε 1
0,1

On reading 0 from states in {q1, q2, q3}, can reach states {q1, q3}.

{q1} {q1, q2, q3}

{q1, q3}

0

1

0
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Example: Convert NFA N into equivalent DFA.

q1 q2 q3 q4

0,1

1 0, ε 1
0,1

On reading 1 from states in {q1, q2, q3}, can reach {q1, q2, q3, q4}.

{q1} {q1, q2, q3}

{q1, q3}

{q1, q2, q3, q4}

0

1

0

1
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Example: Convert NFA N into equivalent DFA.

q1 q2 q3 q4

0,1

1 0, ε 1
0,1

On reading 0 from states in {q1, q3}, can reach states {q1}.

{q1} {q1, q2, q3}

{q1, q3}

{q1, q2, q3, q4}

0

1

0

1

0
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Example: Convert NFA N into equivalent DFA.

q1 q2 q3 q4

0,1

1 0, ε 1
0,1

On reading 1 from states in {q1, q3}, can reach states {q1, q2, q3, q4}.

{q1} {q1, q2, q3}

{q1, q3}

{q1, q2, q3, q4}

0

1

0

1

0 1
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Example: Convert NFA N into equivalent DFA.

q1 q2 q3 q4

0,1

1 0, ε 1
0,1

Continue until each DFA state has a 0-edge and a 1-edge leaving it.
DFA accept states have ≥ 1 accept states from N .

{q1} {q1, q2, q3}

{q1, q3}

{q1, q2, q3, q4} {q1, q3, q4}

{q1, q4}

0

1

0

1

0 1

0

1

0

1

0

1
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Proof. (Theorem 1.39: NFA ⇒ DFA)

• Consider NFA N = (Q,Σ, δ, q0, F):

q1 q2 q3 q4

0,1

1 0, ε 1 0,1

•Definition: The ε-closure of a set of states R ⊆ Q is

E(R) = { q | q can be reached from R by

travelling over 0 or more ε transitions }.

e.g., E({q1, q2}) = {q1, q2, q3}.
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Convert NFA to Equivalent DFA

Given NFA N = (Q,Σ, δ, q0, F), build an equivalent DFA
M = (Q′,Σ, δ′, q′0, F

′) as follows:

1. Calculate the ε-closure of every subset R ⊆ Q.

2. Define DFA M ’s set of states Q′ = P(Q).

3. Define DFA M ’s start state q′0 = E({q0}).

4. Define DFA M ’s set of accept states F ′ to be all DFA states in Q′ that
include an accept state of NFA N ; i.e.,

F ′ = {R ∈ Q′ | R ∩ F �= ∅ }.

5. Calculate DFA M ’s transition function δ′ : Q′ ×Σ → Q′ as

δ′(R, �) = { q ∈ Q | q ∈ E(δ(r, �)) for some r ∈ R }

for R ∈ Q′ = P(Q) and � ∈ Σ.

6. Can leave out any state q′ ∈ Q′ not reachable from q′0,
e.g., {q2, q3} in our previous example.
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Regular ⇐⇒ NFA

Corollary 1.40
Language A is regular if and only if some NFA recognizes A.

Proof.

(⇒)

• If A is regular, then there is a DFA for it.

• But every DFA is also an NFA, so there is an NFA for A.

(⇐)

• Follows from previous theorem (1.39), which showed that every NFA
has an equivalent DFA.
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Class of Regular Languages Closed Under Union

Remark: Can use fact that every NFA has an equivalent DFA to simplify
the proof that the class of regular languages is closed under union.

Remark: Recall union:

A1 ∪A2 = {w | w ∈ A1 or w ∈ A2 }.

Theorem 1.45
The class of regular languages is closed under union.
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Proof Idea: Given NFAs N1 and N2 for A1 and A2, resp.,
construct NFA N for A1∪A2 = {w | w ∈ A1 or w ∈ A2 } as follows:

ε

ε

N1

N2

N
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Construct NFA for A1 ∪A2 from NFAs for A1 and A2

• Let A1 be language recognized by NFA N1 = (Q1,Σ, δ1, q1, F1).

• Let A2 be language recognized by NFA N2 = (Q2,Σ, δ2, q2, F2).

• Assume Q1 ∩Q2 = ∅.

• Construct NFA N = (Q,Σ, δ, q0, F) for A1 ∪A2 :

Q = {q0} ∪Q1 ∪Q2 is set of states of N .

q0 is start state of N , where q0 �∈ Q1 ∪Q2.

Set of accept states F = F1 ∪ F2.

For q ∈ Q and a ∈ Σε, transition function δ satisfies

δ(q, a) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δ1(q, a) if q ∈ Q1,

δ2(q, a) if q ∈ Q2,

{q1, q2} if q = q0 and a = ε,

∅ if q = q0 and a �= ε.
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Class of Regular Languages Closed Under Concatenation

Remark: Recall concatenation:

A1 ◦A2 = { vw | v ∈ A1, w ∈ A2 }.

Theorem 1.47
The class of regular languages is closed under concatenation.
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Proof Idea: Given NFAs N1 and N2 for A1 and A2, resp.,
construct NFA N for A1 ◦A2 = { vw | v ∈ A1, w ∈ A2 } as follows:

N1 N2

N

ε
ε
ε
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Construct NFA for A1 ◦A2 from NFAs for A1 and A2

• Let A1 be language recognized by NFA N1 = (Q1,Σ, δ1, q1, F1).

• Let A2 be language recognized by NFA N2 = (Q2,Σ, δ2, q2, F2).

• Assume Q1 ∩Q2 = ∅.

• Construct NFA N = (Q,Σ, δ, q1, F2) for A1 ◦A2 :

Q = Q1 ∪Q2 is set of states of N .

Start state of N is q1, which is start state of N1.

Set of accept states of N is F2, which is same as for N2.

For q ∈ Q and a ∈ Σε, transition function δ satisfies

δ(q, a) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δ1(q, a) if q ∈ Q1 − F1,

δ1(q, a) if q ∈ F1 and a �= ε,

δ1(q, a) ∪ {q2} if q ∈ F1 and a = ε,

δ2(q, a) if q ∈ Q2.
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Class of Regular Languages Closed Under Star

Remark: Recall Kleene star:

A∗ = { x1 x2 · · · xk | k ≥ 0 and each xi ∈ A }.

Theorem 1.49
The class of regular languages is closed under the Kleene-star operation.
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Proof Idea: Given NFA N1 for A,
construct NFA N for A∗ = { x1 x2 · · · xk | k ≥ 0 and each xi ∈ A }
as follows:

N1
N

ε

εε
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Construct NFA for A∗ from NFA for A

• Let A be language recognized by NFA N1 = (Q1,Σ, δ1, q1, F1).

• Construct NFA N = (Q,Σ, δ, q0, F) for A∗ :

Q = {q0} ∪Q1 is set of states of N .

q0 is start state of N , where q0 �∈ Q1.

F = {q0} ∪ F1 is the set of accept states of N .

For q ∈ Q and a ∈ Σε, transition function δ satisfies

δ(q, a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ1(q, a) if q ∈ Q1 − F1,

δ1(q, a) if q ∈ F1 and a �= ε,

δ1(q, a) ∪ {q1} if q ∈ F1 and a = ε,

{q1} if q = q0 and a = ε,

∅ if q = q0 and a �= ε.
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Regular Expressions

• Regular expressions are a way of describing certain languages.

• Consider alphabet Σ = {0,1}.

• Shorthand notation:

0 means {0}

1 means {1}

• Regular expressions use above shorthand notation and operations

union ∪

concatenation ◦

Kleene star ∗

•When using concatenation, will often leave out operator “◦”.



CS 341: Chapter 1 1-69

Interpreting Regular Expressions

Example: 0 ∪ 1 means {0} ∪ {1}, which equals {0,1}.

Example:

• Consider (0 ∪ 1)0∗, which means (0 ∪ 1) ◦ 0∗.

• This equals {0,1} ◦ {0}∗.

• Recall {0}∗ = { ε, 0, 00, 000, . . . }.

• Thus, {0,1} ◦ {0}∗ is the set of strings that

start with symbol 0 or 1, and

followed by zero or more 0’s.
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Another Example of a Regular Expression

Example:

• (0 ∪ 1)∗ means ({0} ∪ {1})∗.

• This equals {0,1}∗, which is the set of all possible strings over the
alphabet Σ = {0,1}.

•When Σ = {0,1}, often use shorthand notation Σ to denote regular
expression (0 ∪ 1).
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Hierarchy of Operations in Regular Expressions

• In most programming languages,

multiplication has precedence over addition

2+ 3× 4 = 14

parentheses change usual order

(2 + 3)× 4 = 20

exponentiation has precedence over multiplication and addition

4+ 2× 32 = , 4+ (2× 3)2 = .

• Order of precedence for the regular operations:

1. Kleene star

2. concatenation

3. union

• Parentheses change usual order.
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More Examples of Regular Expressions

Example: 00 ∪ 101∗ is language consisting of

• string 00

• strings that begin with 10 and followed by zero or more 1’s.

Example: 0(0 ∪ 101)∗ is the language consisting of strings that

• start with 0

• concatenated to a string in {0,101}∗.

For example, 0101001010 is in the language because

0101001010 = 0 ◦ 101 ◦ 0 ◦ 0 ◦ 101 ◦ 0.
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Formal (Inductive) Definition of Regular Expression

Definition: R is a regular expression with alphabet Σ if R is

1. a for some a ∈ Σ

2. ε

3. ∅

4. (R1 ∪R2), where R1 and R2 are regular expressions

5. (R1) ◦ (R2), also denoted by (R1)(R2),
where R1 and R2 are regular expressions

6. (R1)
∗, where R1 is a regular expression

7. (R1), where R1 is a regular expression.

Can remove redundant parentheses, e.g., ((0) ∪ (1))(1) −→ (0 ∪ 1)1.

Definition: If R is a regular expression, then L(R) is the language
generated (or described or defined) by R.
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Examples of Regular Expressions

Examples: For Σ = {0,1},

1. (0 ∪ 1) = {0,1}

2. 0∗10∗ = {w | w has exactly a single 1 }

3. Σ∗1Σ∗ = {w | w has at least one 1 }

4. Σ∗001Σ∗ = {w | w contains 001 as a substring }

5. (ΣΣ)∗ = {w | |w| is even }

6. (ΣΣΣ)∗ = {w | |w| is a multiple of three }

7. 0Σ∗0 ∪ 1Σ∗1 ∪ 0 ∪ 1

= {w | w �= ε starts and ends with same symbol }

8. 1∗∅ = ∅,
anything concatenated with ∅ is equal to ∅.

9. ∅∗ = {ε}
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Examples:

1. R ∪ ∅ = ∅ ∪R = R

2. R ◦ ε = ε ◦ R = R

3. R ◦ ∅ = ∅ ◦R = ∅

4. R1(R2 ∪R3) = R1R2 ∪R1R3.
Concatenation distributes over union.

q1 q2

q3 q4

a

b

a

b

a
b

a

b

DFA for EVEN-EVEN.

Example:

• Define EVEN-EVEN over alphabet Σ = {a, b} as strings with an even
number of a’s and an even number of b’s; see slide 1-20 for a DFA.

• For example, aababbaaababab ∈ EVEN-EVEN.

• Regular expression:(
aa ∪ bb ∪ (ab ∪ ba)(aa ∪ bb)∗(ab ∪ ba)

)∗
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Kleene’s Theorem

Theorem 1.54
Language A is regular iff A has a regular expression.

Lemma 1.55
If a language is described by a regular expression, then it is regular.

Proof. Procedure to convert regular expression R into NFA N :

1. If R = a for some a ∈ Σ, then L(R) = {a}, which has NFA

q1 q2a

N = ({q1, q2}, Σ, δ, q1, {q2}) where transition function δ

• δ(q1, a) = {q2},

• δ(r, b) = ∅ for any state r �= q1 or any b ∈ Σε with b �= a.
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2. If R = ε, then L(R) = {ε}, which has NFA

q1

N = ({q1}, Σ, δ, q1, {q1}) where

• δ(r, b) = ∅ for any state r and any b ∈ Σε.

3. If R = ∅, then L(R) = ∅, which has NFA

q1

N = ({q1}, Σ, δ, q1, ∅) where

• δ(r, b) = ∅ for any state r and any b ∈ Σε.
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4. If R = (R1 ∪R2) and

• L(R1) has NFA N1

• L(R2) has NFA N2,

then L(R) = L(R1) ∪ L(R2) has NFA N below:

ε

ε

N1

N2

N
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5. If R = (R1) ◦ (R2) and

• L(R1) has NFA N1

• L(R2) has NFA N2,

then L(R) = L(R1) ◦ L(R2) has NFA N below:

N1 N2

N

ε
ε
ε

CS 341: Chapter 1 1-80

6. If R = (R1)
∗ and L(R1) has NFA N1,

then L(R) = (L(R1))
∗ has NFA N below:

N1
N

ε

εε

• Thus, can convert any regular expression R into an NFA.

• Hence, Corollary 1.40 implies that the language L(R) is regular.
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Ex: Build NFA
for (ab ∪ a)∗

∃ other correct NFAs

a a

b
b

ab
a ε b

ab ∪ a
ε

a ε b

ε a

(ab ∪ a)∗

ε

ε

a ε b

ε

a

ε
ε
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More of Kleene’s Theorem

Lemma 1.60
If a language is regular, then it has a regular expression.

Proof Idea:

• Convert DFA (or NFA) into regular expression.

Account for every path that starts in initial state
and ends in an accept state.

• Use generalized NFA (GNFA), which is an NFA with following
modifications:

no edges into start state.

single accept state, with no edges out of it.

labels on edges are regular expressions instead of
elements from Σε.

� can traverse edge on any string generated by its regular expression.
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Example: GNFA

q1 q2

q3

q4 q5
ε

(aa ∪ b)∗

(b ∪ a∗b)∗

ba∗

(ab)∗a∗

ε

• Can move from

q1 to q2 on string ε.

q2 to q3 on string aabaa.

q3 to q3 on string b or baaa.

q3 to q4 on string ε.

q4 to q5 on string ε.

• GNFA accepts string ε ◦ aabaa ◦ b ◦ baaa ◦ ε ◦ ε = aabaabbaaa.
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Method to convert DFA into regular expression

1. First convert DFA into equivalent GNFA.

2. Apply following iterative procedure to account for every path from
initial state to accept state.

• In each step, eliminate one state from GNFA.

When state is eliminated, need to account for every path that was
previously possible.

Can eliminate states in any order but end result will be different.

Never delete start or (unique) accept state.

• Done when only 2 states remaining: start and accept.

Label on remaining edge between start and accept states
is a regular expression for language of original DFA.

Remark: Method also can convert NFA into a regular expression.
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1. Convert DFA M = (Q,Σ, δ, q1, F) into equivalent GNFA G.

• Introduce new start state s.

Add edge from s to q1 with label ε.

Make q1 no longer the start state.

• Introduce new accept state t.

Add edge with label ε from each state q ∈ F to t.

Make each state originally in F no longer an accept state.

• Change edge labels into regular expressions.

e.g., “a, b” becomes “a ∪ b”.

ε
ε

ε

DFA M GNFA G
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2. Iteratively eliminate a state from GNFA G.

• Need to take into account all possible previous paths.

• Never eliminate new start state s or new accept state t.

Example: Eliminate state q2, which has no other in/out edges.

q1

q2

q3

R1

R4

R3

R2

=⇒ q1 q3
R4 ∪ (R1)(R2)∗(R3)
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Example: Convert DFA M into regular expression.

q1

q2

q3

a

b

b

a

a, b

1) Convert DFA
into GNFA

s q1

q2

q3 t
ε

a

b

b

a

a ∪ b

ε

2.1) Eliminate state q2 s q1 q3 t
b ∪ aa∗bε

a ∪ b

ε

2.2) Eliminate state q3 s q1 t
(b ∪ aa∗b)(a ∪ b)∗εε

2.3) Eliminate state q1 s t
(b ∪ aa∗b)(a ∪ b)∗
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Example:

Eliminate state x,
which has no other

in/out edges

v x

y z

R1
R2

R3

R4 R5 R6

R7

R8 R9

• Let C = {v, z}, which are states with edges into x (except for x).

• Let D = {v, y, z}, which are states with edges from x (except for x).

•When we eliminate x, need to account for paths

from each state in C directly into x

then from x directly to x

finally from x directly to each state in D
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• Recall C = {v, z} and D = {v, y, z}.

• So eliminating state x gives

v x

y z

R1
R2

R3

R4 R5 R6

R7

R8 R9

=⇒

v

y z

(R1)(R2)∗(R3)

(R1)(R2)∗(R4)

R7

R8 ∪ (R6)(R2)∗(R4)

(R1)(R2)∗(R5)

(R6)(R2)∗(R3)

R9 ∪ (R6)(R2)∗(R5)

• e.g., for path v → x → y, add edge from v to y with label
(R1)(R2)

∗(R4)
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Example: Convert DFA into Regular Expression

1 2

3

a

b

a

b

a
b Step 1. Convert DFA into GNFA

s

1 2

3

t

a

b

a

b

a
b

ε
ε

ε
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s

1 2

3

t

a

b

a

b

a
b

ε
ε

ε

Step 2.1. Eliminate state 1

C = {s,2,3}

D = {2,3} s

2

3

t

a

b

aa ∪ b

ab

ba ∪ a

ε

ε

bb
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s

2

3

t

a

b

aa ∪ b

ab
ba ∪ a

ε

ε

bb

Step 2.2. Eliminate state 2

C = {s,3}

D = {3, t}

s

3

t

a(aa ∪ b)∗ab ∪ b

a(aa ∪ b)∗

(ba ∪ a)(aa ∪ b)∗ ∪ ε

(ba ∪ a)(aa ∪ b)∗ab ∪ bb
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s

3

t

a(aa ∪ b)∗ab ∪ b

a(aa ∪ b)∗

(ba ∪ a)(aa ∪ b)∗ ∪ ε

(ba ∪ a)(aa ∪ b)∗ab ∪ bb

Step 2.3. Eliminate state 3

C = {s}, D = {t}

s t

(a(aa ∪ b)∗ab ∪ b) ((ba ∪ a)(aa ∪ b)∗ab ∪ bb)∗ ((ba ∪ a)(aa ∪ b)∗ ∪ ε)
∪ a(aa ∪ b)∗
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1 2

3

a

b

a

b

a
b

first visit to 3︷ ︸︸ ︷(
a(aa ∪ b)∗ab ∪ b

)
0 or more returns to 3︷ ︸︸ ︷(

(ba ∪ a)(aa ∪ b)∗ab ∪ bb

)∗

end in 2 or stay in 3︷ ︸︸ ︷(
(ba ∪ a)(aa ∪ b)∗ ∪ ε

)

∪ a(aa ∪ b)∗︸ ︷︷ ︸
ends in 2 with
no visits to 3

• Regular expression accounts for all paths starting in start state 1

and ending in accepting state (2 or 3):

visit state 3 at least once (ending in 2 or 3), or

never visit state 3 (ending in 2).
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Finite Languages are Regular

Theorem
If A is a finite language, then A is regular.

Proof.

• Because A finite, we can write

A = {w1, w2, . . . , wn }

for some n < ∞.

• A regular expression for A is then

R = w1 ∪ w2 ∪ · · · ∪ wn

• Kleene’s Theorem then implies A has a DFA, so A is regular.

Remark: The converse is not true.
e.g., 1∗ generates a regular language, but it’s infinite.
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Pumping Lemma for Regular Languages

Example: DFA with alphabet Σ = {0,1} for language A.

q1

q2

q3

q4

q5

0

1

0

1
0

1

0
1

1

0

• DFA has 5 states.

• DFA accepts string s = 0011, which has length 4.

• On s = 0011, DFA visits all of the states.
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q1

q2

q3

q4

q5

0

1

0

1
0

1

0
1

1

0

• For any string s with |s| ≥ 5, guaranteed to visit some state twice
by the pigeonhole principle.

• String s = 0011011 is accepted by DFA, i.e., s ∈ A.

q1 q2 q4 q3 q5 q2 q3 q5
0 0 1 1 0 1 1

• q2 is first state visited twice.

• Using q2, divide string s into 3 parts x, y, z such that s = xyz.

x = 0, the symbols read until first visit to q2.

y = 0110, the symbols read from first to second visit to q2.

z = 11, the symbols read after second visit to q2.
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q1

q2

q3

q4

q5

0

1

0

1
0

1

0
1

1

0

• Recall DFA accepts string

s = 0︸︷︷︸
x

0110︸ ︷︷ ︸
y

11︸︷︷︸
z

.

• DFA also accepts strings

xyyz = 0︸︷︷︸
x

0110︸ ︷︷ ︸
y

0110︸ ︷︷ ︸
y

11︸︷︷︸
z
,

xyyyz = 0︸︷︷︸
x

0110︸ ︷︷ ︸
y

0110︸ ︷︷ ︸
y

0110︸ ︷︷ ︸
y

11︸︷︷︸
z
,

xz = 0︸︷︷︸
x

11︸︷︷︸
z

.

• String xyiz ∈ A for each i ≥ 0.
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•More generally, consider

language A with DFA M having p states,

string s ∈ A with |s| ≥ p.

•When processing s on M , guaranteed to visit some state twice.

• Let r be first state visited twice.

• Using state r, can divide s as s = xyz.

x are symbols read until first visit to r.

y are symbols read from first to second visit to r.

z are symbols read from second visit to r to end of s.

r
x

y

z
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Pumping y

r
x

y

z

• Because y corresponds to starting in r and returning to r,

xyiz ∈ A for each i ≥ 1.

• Also, note xy0z = xz ∈ A, so

xyiz ∈ A for each i ≥ 0.

• |y| > 0 because

y corresponds to starting in r and coming back;

this consumes at least one symbol (because DFA),
so y can’t be empty.
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Length of xy

r
x

y

z

• |xy| ≤ p, where p is number of states in DFA, because

xy are symbols read up to second visit to r.

Because r is the first state visited twice,
all states visited before second visit to r are unique.

So just before visiting r for second time, DFA visited at most p
states, which corresponds to reading at most p− 1 symbols.

The second visit to r, which is after reading 1 more symbol,
corresponds to reading at most p symbols.
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Pumping Lemma

Theorem 1.70
If A is regular language, then ∃ number p (pumping length) where,
if s ∈ A with |s| ≥ p, then s can be split into 3 pieces, s = xyz,
satisfying the properties

1. xyiz ∈ A for each i ≥ 0,

2. |y| > 0, and

3. |xy| ≤ p.

Remarks:

• yi denotes i copies of y concatenated together, and y0 = ε.

• |y| > 0 means y �= ε.

• |xy| ≤ p means x and y together have no more than p symbols total.

• Key ideas: For each long enough string s in a regular language A,
can use s to construct infinitely many other strings in A.
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Understanding the Pumping Lemma

If

M1︷ ︸︸ ︷
A is regular language, then

M2︷ ︸︸ ︷
∃ number p (pumping length) where,

if

M3︷ ︸︸ ︷
s ∈ A with |s| ≥ p, then

s can be split into 3 pieces, s = xyz, satisfying properties
1. xyiz ∈ A for each i ≥ 0,
2. |y| > 0, and
3. |xy| ≤ p.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

M4

if (M1 is true), then
M2 is true
if (M3 is true), then

M4 is true
endif

endif
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Nonregular Languages

Definition: Language is nonregular if there is no DFA for it.

Remarks:

• Pumping Lemma (PL) is a result about regular languages.

• But PL mainly used to prove that certain language A is nonregular.

• Typically done using proof by contradiction.

Assume language A is regular.

PL says that all strings s ∈ A that are at least a certain length must
satisfy some properties

By appropriately choosing s ∈ A, will eventually get contradiction.

PL: can split s into s = xyz satisfying all of Properties 1–3.

To get contradiction, show cannot split s = xyz satisfying 1–3.

� Show all splits satisfying 2–3 violate Prop 1 (xyiz ∈ A ∀ i ≥ 0).

Because Property 3 of PL states |xy| ≤ p,
often choose s ∈ A so that all of its first p symbols are the same.
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Language A = {0n1n | n ≥ 0 } is Nonregular
Proof.

• Suppose A is regular, so PL implies A has “pumping length” p.

• Consider string s = 0p 1p ∈ A.

• |s| = 2p ≥ p, so Pumping Lemma will hold.

• So can split s into 3 pieces s = xyz satisfying properties
1. xyiz ∈ A for each i ≥ 0,
2. |y| > 0, and
3. |xy| ≤ p.

• To get contradiction, must show cannot split s = xyz satisfying 1–3.

Show all splits s = xyz satisfying Properties 2 and 3 will violate 1.

• Because the first p symbols of s = 00 · · ·0︸ ︷︷ ︸
p

11 · · ·1︸ ︷︷ ︸
p

are all 0’s

Property 3 implies that x and y consist of only 0’s.
z will be the rest of the 0’s, followed by all p 1’s.

• Key: y has some 0’s, and z contains all the 1’s (and maybe some 0’s),
so pumping y changes # of 0’s but not # of 1’s.
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• So we have

x = 0j for some j ≥ 0,

y = 0k for some k ≥ 0,

z = 0m1p for some m ≥ 0

• s = xyz implies

0p1p = 0j 0k 0m1p = 0j+k+m1p,

so j + k +m = p.

• Property 2 states that |y| > 0, so k > 0.

• Property 1 implies xyyz ∈ A, but

xyyz = 0j 0k 0k 0m1p

= 0j+k+k+m 1p

= 0p+k 1p �∈ A

because j + k +m = p and k > 0.

• Contradiction, so A = {0n1n | n ≥ 0 } is nonregular.
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Language B = {ww | w ∈ {0,1}∗ } is Nonregular
Proof.

• Suppose B is regular, so PL implies B has “pumping length” p.

• Consider string s = 0p10p1 ∈ B. (0p0p ∈ B won’t work. Why?)

• |s| = 2p+2 ≥ p, so Pumping Lemma will hold.

• So can split s into 3 pieces s = xyz satisfying properties
1. xyiz ∈ B for each i ≥ 0,
2. |y| > 0, and
3. |xy| ≤ p.

• For contradiction, show cannot split s = xyz so that 1–3 hold.

Show all splits s = xyz satisfying Properties 2 and 3 will violate 1.

• Because first p symbols of s = 00 · · ·0︸ ︷︷ ︸
p

100 · · ·0︸ ︷︷ ︸
p

1 are all 0’s,

Property 3 implies that x and y consist only of 0’s.
z will be the rest of first set of 0’s, followed by 10p1.

• Key: y has some of first 0’s, and z has all of second 0’s,
so pumping y changes only # of first 0’s.
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• So we have

x = 0j for some j ≥ 0,

y = 0k for some k ≥ 0,

z = 0m10p1 for some m ≥ 0

• s = xyz implies

0p10p1 = 0j 0k 0m10p1 = 0j+k+m10p1,

so j + k +m = p.

• Property 2 states that |y| > 0, so k > 0.

• Property 1 implies xyyz ∈ B, but

xyyz = 0j 0k 0k 0m10p1

= 0j+k+k+m10p1

= 0p+k 10p1 �∈ B

because j + k +m = p and k > 0.

• Contradiction, so B = {ww | w ∈ {0,1}∗ } is nonregular.
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Important Steps in Proving Language is Nonregular

Pumping Lemma (PL):
If A is a regular language, then ∃ number p (pumping length) where,
if s ∈ A with |s| ≥ p, then s can be split into 3 pieces, s = xyz, with

1. xyiz ∈ A for each i ≥ 0,

2. |y| > 0, and

3. |xy| ≤ p.

Remarks:

•Must choose appropriate string s ∈ A to get contradiction.

Some strings s ∈ A might not lead to contradiction;
e.g., 0p0p ∈ {ww | w ∈ {0,1}∗ }

• Because Property 3 of PL states |xy| ≤ p,
often choose s ∈ A so that all of its first p symbols are the same.

• Once appropriate s is chosen, need to show every possible split of
s = xyz leads to contradiction.
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Pumping Lemma (PL):
If A is a regular language, then ∃ number p (pumping length) where,
if s ∈ A with |s| ≥ p, then s can be split into 3 pieces, s = xyz, with

1. xyiz ∈ A for each i ≥ 0,

2. |y| > 0, and

3. |xy| ≤ p.

Examples:

1. Let C = {w ∈ {a, b}∗ | w = wR }, where wR is the reverse of w.

• To show C is nonregular, can choose s = ap b ap ∈ C.

• Choosing s = ap ∈ C does not work. Why?

2. To show D = { a2n b3n an | n ≥ 0 } is nonregular, can choose
s = a2p b3p ap ∈ D.

3. Consider language E = {w ∈ {a, b}∗ | w has more a’s than b’s }.
For example, baaba ∈ E.

• To show E is nonregular, can choose s = bp ap+1 ∈ E.
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Common Mistake

• Consider D = { a2n b3n an | n ≥ 0 }.

• To show D is nonregular, can choose s = a2p b3p ap ∈ D.

• Common mistake: try to apply Pumping Lemma with

x = a2p, y = b3p, z = ap.

• For this split, |xy| = 5p �≤ p.

• But Pumping Lemma states “If D is a regular language, then . . .
can split s = xyz satisfying Properties 1–3.”

• To get contradiction, need to show cannot split s = xyz

satisfying Properties 1–3.

Need to show every split s = xyz doesn’t satisfy all of 1–3.

Every split s = xyz satisfying Properties 2 and 3 must have

x = aj, y = ak, z = am b3p ap,

where j + k ≤ p, j + k +m = 2p, and k ≥ 1.
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F = {w | # of 0’s in w equals # of 1’s in w } is Nonregular

• Note that, e.g., 101100 ∈ F .

• Need to be careful when choosing string s ∈ F for Pumping Lemma.

If xyz ∈ F with y ∈ F , then xyiz ∈ F , so no contradiction.

• Another Approach: If F and G are regular, then F ∩G is regular.

• Solution: Suppose that F is regular.

Let G = {0n1m | n,m ≥ 0 }.

� G is regular: it has regular expression 0∗1∗.

Then F ∩G = {0n1n | n ≥ 0 }.

But know that F ∩G is not regular.

• Conclusion: F is not regular.
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Hierarchy of Languages (so far)

Finite {110, 01 }

Regular
(DFA, NFA, Reg Exp)

(0 ∪ 1)∗

{0n1n | n ≥ 0 }

All languages

Examples
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Summary of Chapter 1

• DFA is a deterministic machine for recognizing certain languages.

• A language is regular if it has a DFA.

• The class of regular languages is closed under union, intersection,
concatenation, Kleene-star, complementation.

• NFA can be nondeterministic: allows choice in how to process string.

• Every NFA has an equivalent DFA.

• Regular expression is a way of generating certain languages.

• Kleene’s Theorem: Language A has DFA iff A has regular expression.

• Every finite language is regular, but not every regular language is finite.

• Use pumping lemma to prove certain languages are not regular.


