Introduction

- Now introduce a simple model of a computer having a finite amount of memory.
- This type of machine will be known as a finite-state machine or finite automaton.
- Basic idea how a finite automaton works:
 - It is presented an input string \(w \) over an alphabet \(\Sigma \); i.e., \(w \in \Sigma^* \).
 - It reads in the symbols of \(w \) from left to right, one at a time.
 - After reading the last symbol, it indicates if it accepts or rejects the string.
- These machines are useful for string matching, compilers, etc.

Deterministic Finite Automata (DFA)

Example: State diagram of DFA with alphabet \(\Sigma = \{a, b\} \):

- \(q_1, q_2, q_3 \) are the states.
- \(q_1 \) is the start state as it has an arrow coming into it from nowhere.
- \(q_2 \) is an accept state as it is drawn with a double circle.
Deterministic Finite Automata

- Edges tell how to move when in a state and a symbol from Σ is read.
- DFA is fed input string $w \in \Sigma^*$. After reading last symbol of w,
 - if DFA is in an accept state, then string is accepted
 - otherwise, it is rejected.
- Process the following strings over $\Sigma = \{a, b\}$ on above machine:
 - aba is rejected
 - ϵ is rejected
 - $abaa$ is accepted

Formal Definition of DFA

Definition: A deterministic finite automaton (DFA) is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$, where

1. Q is a finite set of states.
2. Σ is an alphabet, and the DFA processes strings over Σ.
3. $\delta : Q \times \Sigma \to Q$ is the transition function.
 - δ defines label on each edge.
4. $q_0 \in Q$ is the start state (or initial state).
5. $F \subseteq Q$ is the set of accept states (or final states).

Remark: Sometimes refer to DFA as simply a finite automaton (FA).

Transition Function of DFA

Transition function $\delta : Q \times \Sigma \to Q$ works as follows:

- For each state and for each symbol of the input alphabet, the function δ tells which (one) state to go to next.
- Specifically, if $r \in Q$ and $\ell \in \Sigma$, then $\delta(r, \ell)$ is the state that the DFA goes to when it is in state r and reads in ℓ, e.g., $\delta(q_2, a) = q_3$.
- For each pair of state $r \in Q$ and symbol $\ell \in \Sigma$,
 - there is exactly one edge leaving r labeled with ℓ.
- Thus, there is no choice in how to process a string.
- So the machine is deterministic.

Example of DFA

$M = (Q, \Sigma, \delta, q_1, F)$ with

- $Q = \{q_1, q_2, q_3\}$
- $\Sigma = \{a, b\}$
- $\delta : Q \times \Sigma \to Q$ is described as

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1</td>
<td>q_1</td>
<td>q_2</td>
</tr>
<tr>
<td>q_2</td>
<td>q_3</td>
<td>q_2</td>
</tr>
<tr>
<td>q_3</td>
<td>q_2</td>
<td>q_2</td>
</tr>
</tbody>
</table>

- q_1 is the start state
- $F = \{q_2\}$.
How a DFA Computes

- DFA is presented with an input string $w \in \Sigma^*$.
- DFA begins in the start state.
- DFA reads the string one symbol at a time, starting from the left.
- The symbols read in determine the sequence of states visited.
- Processing ends after the last symbol of w has been read.
- After reading the entire input string
 - if DFA ends in an accept state, then input string w is accepted;
 - otherwise, input string w is rejected.

Formal Definition of DFA Computation

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA.
- String $w = w_1w_2 \cdots w_n \in \Sigma^*$, where each $w_i \in \Sigma$ and $n \geq 0$.
- Then M accepts w if there exists a sequence of states $r_0, r_1, r_2, \ldots, r_n \in Q$ such that
 1. $r_0 = q_0$
 - first state r_0 in the sequence is the start state of DFA;
 2. $r_n \in F$
 - last state r_n in the sequence is an accept state;
 3. $\delta(r_i, w_{i+1}) = r_{i+1}$ for each $i = 0, 1, 2, \ldots, n - 1$
 - sequence of states corresponds to valid transitions for string w.

Language of Machine

- **Definition:** If A is the set of all strings that machine M accepts, then we say
 - $A = L(M)$ is the language of machine M, and
 - M recognizes A.

- If machine M has input alphabet Σ, then $L(M) \subseteq \Sigma^*$.

- **Definition:** A language is regular if it is recognized by some DFA.

Examples of Deterministic Finite Automata

Example: Consider the following DFA M_1 with alphabet $\Sigma = \{0, 1\}$:

- **Remarks:**
 - 010110 is accepted, but 0101 is rejected.
 - $L(M_1)$ is the language of strings over Σ in which the total number of 1's is odd.
 - Can you come up with a DFA that recognizes the language of strings over Σ having an even number of 1's?
Example: Consider the following DFA M_2 with alphabet $\Sigma = \{0, 1\}$:

![Diagram of DFA M_2]

Remarks:
- $L(M_2)$ is the language of strings over Σ that have length 1, i.e.,
 \[L(M_2) = \{ w \in \Sigma^* \mid |w| = 1 \} \]
- Recall that $\overline{L(M_2)}$, the complement of $L(M_2)$, is the set of strings over Σ not in $L(M_2)$, i.e.,
 \[\overline{L(M_2)} = \Sigma^* - L(M_2). \]

Can you come up with a DFA that recognizes $\overline{L(M_2)}$?

Example: Consider the following DFA M_3 with alphabet $\Sigma = \{0, 1\}$:

![Diagram of DFA M_3]

Remarks:
- $L(M_3)$ is the language of strings over Σ that do not have length 1, i.e.,
 \[L(M_3) = \overline{L(M_2)} = \{ w \in \Sigma^* \mid |w| \neq 1 \} \]
- DFA can have more than one accept state.
- Start state can also be an accept state.
- In general, a DFA accepts ϵ if and only if the start state is also an accept state.

Constructing DFA for Complement

- In general, given a DFA M for language A, we can make a DFA \overline{M} for \overline{A} from M by
 - changing all accept states in M into non-accept states in \overline{M},
 - changing all non-accept states in M into accept states in \overline{M},
- More formally, suppose language A over alphabet Σ has a DFA $M = (Q, \Sigma, \delta, q_1, F)$.
- Then, a DFA for the complementary language \overline{A} is $\overline{M} = (Q, \Sigma, \delta, q_1, Q - F)$.
- Why does this work?

Example: Consider the following DFA M_4 with alphabet $\Sigma = \{a, b\}$:

![Diagram of DFA M_4]

Remarks:
- $L(M_4)$ is the language of strings over Σ that end with bb, i.e.,
 \[L(M_4) = \{ w \in \Sigma^* \mid w = sbb \text{ for some } s \in \Sigma^* \} \]
- Note that $abbb \in L(M_4)$ and $bba \notin L(M_4)$.
Example: Consider the following DFA M_5 with alphabet $\Sigma = \{a, b\}$:

$$L(M_5) = \{ w \in \Sigma^* | w = saa \text{ or } w = sbb \text{ for some string } s \in \Sigma^* \}.$$
Note that $abbb \in L(M_5)$ and $bba \notin L(M_5)$.

Example: Consider the following DFA M_6 with alphabet $\Sigma = \{a, b\}$:

Remarks:
- This DFA accepts all possible strings over Σ, i.e., $L(M_6) = \Sigma^*$.
- In general, any DFA in which all states are accept states recognizes the language Σ^*.

Example: Consider the following DFA M_7 with alphabet $\Sigma = \{a, b\}$:

Remarks:
- This DFA accepts no strings over Σ, i.e., $L(M_7) = \emptyset$.
- In general,
 - a DFA may have no accept states, i.e., $F = \emptyset \subseteq Q$.
 - any DFA with no accept states recognizes the language \emptyset.

Example: Consider the following DFA M_8 with alphabet $\Sigma = \{a, b\}$:

Remarks:
- DFA moves left or right on a.
- DFA moves up or down on b.
- DFA recognizes the language EVEN-EVEN of strings over Σ having
 - even number of a’s and
 - even number of b’s.
- Note that $ababaa \in L(M_8)$ and $bba \notin L(M_8)$.
Some Operations on Languages

• Let A and B be languages, each with alphabet Σ.
• Recall we previously defined the operations:
 - **Union:**
 \[A \cup B = \{ w \mid w \in A \text{ or } w \in B \} \]
 - **Concatenation:**
 \[A \circ B = \{ vw \mid v \in A, w \in B \} \]
 - **Kleene star:**
 \[A^* = \{ w_1 w_2 \cdots w_k \mid k \geq 0 \text{ and each } w_i \in A \} \]
 - **Complement:**
 \[\overline{A} = \{ w \in \Sigma^* \mid w \not\in A \} = \Sigma^* - A \]

Closed under Operation

• Recall that a collection S of objects is **closed** under operation f if applying f to members of S always returns an object still in S.
 - e.g., $\mathcal{N} = \{1, 2, 3, \ldots\}$ is closed under addition but not subtraction.

• Previously saw that given a DFA M_1 for language A, can construct DFA M_2 for complementary language \overline{A}.
 - Make all accept states in M_1 into non-accept states in M_2.
 - Make all non-accept states in M_1 into accept states in M_2.
• Thus, the class of regular languages is closed under complementation.
 - i.e., if A is a regular language, then \overline{A} is a regular language.

Regular Languages Closed Under Union

Theorem 1.25
The class of regular languages is closed under union.
• i.e., if A_1 and A_2 are regular languages, then so is $A_1 \cup A_2$.

Proof Idea:
• Suppose A_1 is regular, so it has a DFA M_1.
• Suppose A_2 is regular, so it has a DFA M_2.
• $w \in A_1 \cup A_2$ if and only if $w \in A_1$ or $w \in A_2$.
• $w \in A_1 \cup A_2$ if and only if w is accepted by M_1 or M_2.
• Need DFA M_3 to accept a string w iff w is accepted by M_1 or M_2.
• Construct M_3 to keep track of where the input would be if it were simultaneously running on both M_1 and M_2.
• Accept string if and only if M_1 or M_2 accepts.

Example: Consider the following DFAs and languages over $\Sigma = \{a, b\}$:
• DFA M_1 recognizes language $A_1 = L(M_1)$
• DFA M_2 recognizes language $A_2 = L(M_2)$

DFA M_1 for A_1

DFA M_2 for A_2

• We now want a DFA M_3 for $A_1 \cup A_2$.
Step 1 to build DFA M_3 for $A_1 \cup A_2$: Begin in start states for M_1 and M_2.

Step 2: From (x_1, y_1) on input a, M_1 moves to x_1, and M_2 moves to y_2.

Step 3: From (x_1, y_1) on input b, M_1 moves to x_2, and M_2 moves to y_3.

Step 4: From (x_1, y_2) on input a, M_1 moves to x_1, and M_2 moves to y_1.
Proof that Regular Languages Closed Under Union

- Suppose A_1 and A_2 are defined over the same alphabet Σ.
- Suppose A_1 recognized by DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$.
- Suppose A_2 recognized by DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$.
- Define DFA $M_3 = (Q_3, \Sigma, \delta_3, q_3, F_3)$ for $A_1 \cup A_2$ as follows:
 - Set of states of M_3 is
 $$Q_3 = Q_1 \times Q_2 = \{ (x, y) | x \in Q_1, y \in Q_2 \}.$$
 - The alphabet of M_3 is Σ.
 - M_3 has transition function $\delta_3 : Q_3 \times \Sigma \rightarrow Q_3$ such that for $x \in Q_1$, $y \in Q_2$, and $\ell \in \Sigma$,
 $$\delta_3((x, y), \ell) = (\delta_1(x, \ell), \delta_2(y, \ell)).$$
 - The start state of M_3 is
 $$q_3 = (q_1, q_2) \in Q_3.$$
The set of accept states of M_3 is

$$F_3 = \{ (x, y) \in Q_1 \times Q_2 \mid x \in F_1 \text{ or } y \in F_2 \} = [F_1 \times Q_2] \cup [Q_1 \times F_2].$$

• Because $Q_3 = Q_1 \times Q_2$,
 • number of states in new machine M_3 is $|Q_3| = |Q_1| \cdot |Q_2|$.
 • Thus, $|Q_3| < \infty$ because $|Q_1| < \infty$ and $|Q_2| < \infty$.

Remark:
• We can leave out a state $(x, y) \in Q_1 \times Q_2$ from Q_3 if (x, y) is not reachable from M_3’s initial state (q_1, q_2).
• This would result in fewer states in Q_3, but still we have $|Q_1| \cdot |Q_2|$ as an upper bound for $|Q_3|$; i.e., $|Q_3| \leq |Q_1| \cdot |Q_2| < \infty$.

Regular Languages Closed Under Concatenation

Theorem 1.26
Class of regular languages is closed under concatenation.
• i.e., if A_1 and A_2 are regular languages, then so is $A_1 \circ A_2$.

Remark:
• It is possible (but cumbersome) to directly construct a DFA for $A_1 \circ A_2$ given DFAs for A_1 and A_2.
• There is a simpler way if we introduce a new type of machine.

Nondeterministic Finite Automata

In any DFA, the next state the machine goes to is uniquely determined by current state and next symbol read.

- This is why these machines are deterministic.
- DFA’s determinism expressed through its transition function $
\delta : Q \times \Sigma \to Q$.
- Because range of δ is Q, fcn δ always returns a single state.
- DFA has exactly one transition leaving each state for each symbol.
 • $\delta(q, \ell)$ tells what state the edge out of q labeled with ℓ leads to.
Nondeterminism

- Nondeterministic finite automata (NFAs) allow for several or no choices to exist for the next state on a given symbol.
- For a state q and symbol $\ell \in \Sigma$, NFA can have
 - multiple edges leaving q labelled with the same symbol ℓ
 - no edge leaving q labelled with symbol ℓ
 - edges leaving q labelled with ε
 - can take ε-edge without reading any symbol from input string.

Example: NFA N_1 with alphabet $\Sigma = \{0, 1\}$.

$$
\begin{array}{c}
\rightarrow q_1 & 1 & q_2 & 0, \varepsilon & q_3 & 1 & (q_4) & 0, 1 \\
& 0, 1 & & & & & & \\
\end{array}
$$

- Suppose NFA is in a state with multiple ways to proceed, e.g., in state q_1 and the next symbol in input string is 1.
- The machine splits into multiple copies of itself (threads).
 - Each copy proceeds with computation independently of others.
 - NFA may be in a set of states, instead of a single state.
 - NFA follows all possible computation paths in parallel.
 - If a copy is in a state and next input symbol doesn’t appear on any outgoing edge from the state, then the copy dies or crashes.
- If any copy ends in an accept state after reading entire input string, the NFA accepts the string.
- If no copy ends in an accept state after reading entire input string, then NFA does not accept (rejects) the string.

- Similarly, if a state with an ε-transition is encountered,
 - without reading an input symbol, NFA splits into multiple copies, each one following an exiting ε-transition (or staying put).
 - Each copy proceeds independently of other copies.
 - NFA follows all possible paths in parallel.
 - NFA proceeds nondeterministically as before.

- What happens on input string 010110?
Example: NFA N

- N accepts strings $\varepsilon, a, aa, baa, baba, \ldots$.
 - e.g., $aa = \varepsilon a \varepsilon a$
- N does not accept (i.e., rejects) strings b, ba, bb, bbb, \ldots.

Difference Between DFA and NFA

- DFA has transition function $\delta : Q \times \Sigma \rightarrow Q$.
- NFA has transition function $\delta : Q \times \Sigma_\varepsilon \rightarrow \mathcal{P}(Q)$.

 - Returns a set of states rather than a single state.
 - Allows for ε-transitions because $\Sigma_\varepsilon = \Sigma \cup \{\varepsilon\}$.
 - For state $q \in Q$ and $\ell \in \Sigma_\varepsilon$, $\delta(q, \ell)$ is set of states where edges out of q labeled with ℓ lead to.

Remark: Note that every DFA is also an NFA.

Formal Definition of NFA

Definition: For an alphabet Σ, define $\Sigma_\varepsilon = \Sigma \cup \{\varepsilon\}$.

- Σ_ε is set of possible labels on NFA edges.

Definition: A nondeterministic finite automaton (NFA) is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

1. Q is a finite set of states
2. Σ is an alphabet
3. $\delta : Q \times \Sigma_\varepsilon \rightarrow \mathcal{P}(Q)$ is the transition function, where
 - $\mathcal{P}(Q)$ is the power set of Q
 - for each edge, δ specifies label from Σ_ε.
4. $q_0 \in Q$ is the start state
5. $F \subseteq Q$ is the set of accept states

Formal description of above NFA $N = (Q, \Sigma, \delta, q_1, F)$

- $Q = \{q_1, q_2, q_3, q_4\}$ is the set of states
- $\Sigma = \{0, 1\}$ is the alphabet
- Transition function $\delta : Q \times \Sigma_\varepsilon \rightarrow \mathcal{P}(Q)$

\[
\begin{array}{c|cccc}
& 0 & 1 & \varepsilon \\
\hline
q_1 & \{q_1\} & \{q_1, q_2\} & \emptyset \\
q_2 & \{q_3\} & \emptyset & \{q_4\} \\
q_3 & \emptyset & \{q_4\} & \emptyset \\
q_4 & \{q_4\} & \{q_4\} & \emptyset \\
\end{array}
\]

- q_1 is the start state
- $F = \{q_4\}$ is the set of accept states
Formal Definition of NFA Computation

- Let \(N = (Q, \Sigma, \delta, q_0, F) \) be an NFA and \(w \in \Sigma^* \).
- Then \(N \) accepts \(w \) if we can write \(w = y_1 y_2 \cdots y_m \) for some \(m \geq 0 \), where each \(y_i \in \Sigma^\ast \), and there is a sequence of states \(r_0, r_1, r_2, \ldots, r_m \) in \(Q \) such that
 1. \(r_0 = q_0 \)
 2. \(r_{i+1} \in \delta(r_i, y_{i+1}) \) for each \(i = 0, 1, 2, \ldots, m - 1 \)
 3. \(r_m \in F \)

Definition: The set of all input strings that are accepted by NFA \(N \) is the language recognized by \(N \) and is denoted by \(L(N) \).

Equivalence of DFAs and NFAs

Definition: Two machines (of any types) are equivalent if they recognize the same language.

Theorem 1.39

Every NFA \(N \) has an equivalent DFA \(M \).

- i.e., if \(N \) is some NFA, then \(\exists \) DFA \(M \) such that \(L(M) = L(N) \).

Proof Idea:

- NFA \(N \) splits into multiple copies of itself on nondeterministic moves.
- NFA can be in a set of states at any one time.
- Build DFA \(M \) whose set of states is the power set of the set of states of NFA \(N \), keeping track of where \(N \) can be at any time.

Example: Convert NFA \(N \) into equivalent DFA.

\(N \)'s start state \(q_1 \) has no \(\varepsilon \)-edges out, so DFA has start state \(\{q_1\} \).
Example: Convert NFA N into equivalent DFA.

On reading 0 from states in $\{q_1\}$, can reach states $\{q_1\}$.

On reading 1 from states in $\{q_1\}$, can reach states $\{q_1, q_2, q_3\}$.

On reading 0 from states in $\{q_1, q_2, q_3\}$, can reach states $\{q_1, q_3\}$.

On reading 1 from states in $\{q_1, q_2, q_3\}$, can reach $\{q_1, q_2, q_3, q_4\}$.
Example: Convert NFA N into equivalent DFA.

On reading 0 from states in $\{q_1, q_3\}$, can reach states $\{q_1\}$.

Continue until each DFA state has a 0-edge and a 1-edge leaving it. DFA accept states have ≥ 1 accept states from N.

Proof. (Theorem 1.39)

- Consider NFA $N = (Q, \Sigma, \delta, q_0, F)$:

 - Definition: The ε-closure of a set of states $R \subseteq Q$ is
 \[E(R) = \{ q \mid q \text{ can be reached from } R \text{ by travelling over 0 or more } \varepsilon \text{ transitions } \}. \]

 - e.g., $E(\{q_1, q_2\}) = \{q_1, q_2, q_3\}$.

Convert NFA to Equivalent DFA

Given NFA \(N = (Q, \Sigma, \delta, q_0, F) \), build an equivalent DFA \(M = (Q', \Sigma, \delta', q'_0, F') \) as follows:

1. Calculate the \(\varepsilon \)-closure of every subset \(R \subseteq Q \).
2. Define DFA \(M \)'s set of states \(Q' = \mathcal{P}(Q) \).
3. Define DFA \(M \)'s start state \(q'_0 = E(\{q_0\}) \).
4. Define DFA \(M \)'s set of accept states \(F' \) to be all DFA states in \(Q' \) that include an accept state of NFA \(N \); i.e.,
 \[
 F' = \{ R \in Q' \mid R \cap F \neq \emptyset \}.
 \]
5. Calculate DFA \(M \)'s transition function \(\delta' : Q' \times \Sigma \rightarrow Q' \) as
 \[
 \delta'(R, \ell) = \{ q \in Q \mid q \in E(\delta(r, \ell)) \text{ for some } r \in R \}
 \]
 for \(R \in Q' = \mathcal{P}(Q) \) and \(\ell \in \Sigma \).
6. Can leave out any state \(q' \in Q' \) not reachable from \(q'_0 \), e.g., \(\{q_2, q_3\} \) in our previous example.

Class of Regular Languages Closed Under Union

Remark: Can use fact that every NFA has an equivalent DFA to simplify the proof that the class of regular languages is closed under union.

Remark: Recall union:

\[
A_1 \cup A_2 = \{ w \mid w \in A_1 \text{ or } w \in A_2 \}.
\]

Theorem 1.45

The class of regular languages is closed under union.

Regular \(\iff \) NFA

Corollary 1.40

Language \(A \) is regular if and only if some NFA recognizes \(A \).

Proof.

(\(\Rightarrow \))

- If \(A \) is regular, then there is a DFA for it.
- But every DFA is also an NFA, so there is an NFA for \(A \).

(\(\Leftarrow \))

- Follows from previous theorem (1.39), which showed that every NFA has an equivalent DFA.

Proof Idea: Given NFAs \(N_1 \) and \(N_2 \) for \(A_1 \) and \(A_2 \), resp., construct NFA \(N \) for \(A_1 \cup A_2 = \{ w \mid w \in A_1 \text{ or } w \in A_2 \} \) as follows:
Construct NFA for $A_1 \cup A_2$ from NFAs for A_1 and A_2

- Let A_1 be language recognized by NFA $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$.
- Let A_2 be language recognized by NFA $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$.
- Assume $Q_1 \cap Q_2 = \emptyset$.

Construct NFA $N = (Q, \Sigma, \delta, q_0, F)$ for $A_1 \cup A_2$:

- $Q = \{q_0\} \cup Q_1 \cup Q_2$ is set of states of N.
- q_0 is start state of N, where $q_0 \notin Q_1 \cup Q_2$.
- Set of accept states $F = F_1 \cup F_2$.
- For $q \in Q$ and $a \in \Sigma \epsilon$, transition function δ satisfies
 \[
 \delta(q, a) = \begin{cases}
 \delta_1(q, a) & \text{if } q \in Q_1, \\
 \delta_2(q, a) & \text{if } q \in Q_2, \\
 \{q_1, q_2\} & \text{if } q = q_0 \text{ and } a = \epsilon, \\
 \emptyset & \text{if } q = q_0 \text{ and } a \neq \epsilon.
 \end{cases}
 \]

Class of Regular Languages Closed Under Concatenation

Remark: Recall concatenation:
\[
A_1 \circ A_2 = \{vw \mid v \in A_1, w \in A_2\}.
\]

Theorem 1.47
The class of regular languages is closed under concatenation.

Proof Idea: Given NFAs N_1 and N_2 for A_1 and A_2, resp., construct NFA N for $A_1 \circ A_2 = \{vw \mid v \in A_1, w \in A_2\}$ as follows:

\[N_1 \quad N_2 \quad N \]

Construct NFA for $A_1 \circ A_2$ from NFAs for A_1 and A_2

- Let A_1 be language recognized by NFA $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$.
- Let A_2 be language recognized by NFA $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$.
- Assume $Q_1 \cap Q_2 = \emptyset$.

Construct NFA $N = (Q, \Sigma, \delta, q_1, F_2)$ for $A_1 \circ A_2$:

- $Q = Q_1 \cup Q_2$ is set of states of N.
- Start state of N is q_1, which is start state of N_1.
- Set of accept states of N is F_2, which is same as for N_2.
- For $q \in Q$ and $a \in \Sigma \epsilon$, transition function δ satisfies
 \[
 \delta(q, a) = \begin{cases}
 \delta_1(q, a) & \text{if } q \in Q_1 - F_1, \\
 \delta_1(q, a) & \text{if } q \in F_1 \text{ and } a \neq \epsilon, \\
 \delta_1(q, a) \cup \{q_2\} & \text{if } q \in F_1 \text{ and } a = \epsilon, \\
 \delta_2(q, a) & \text{if } q \in Q_2.
 \end{cases}
 \]
Class of Regular Languages Closed Under Star

Remark: Recall Kleene star:

\[A^* = \{ x_1 x_2 \cdots x_k \mid k \geq 0 \text{ and each } x_i \in A \}. \]

Theorem 1.49
The class of regular languages is closed under the Kleene-star operation.

Proof Idea: Given NFA \(N_1 \) for \(A \), construct NFA \(N \) for \(A^* = \{ x_1 x_2 \cdots x_k \mid k \geq 0 \text{ and each } x_i \in A \} \) as follows:

Construct NFA for \(A^* \) from NFA for \(A \)

- Let \(A \) be language recognized by NFA \(N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \).
- Construct NFA \(N = (Q, \Sigma, \delta, q_0, F) \) for \(A^* \):
 - \(Q = \{ q_0 \} \cup Q_1 \) is set of states of \(N \).
 - \(q_0 \) is start state of \(N \), where \(q_0 \not\in Q_1 \).
 - \(F = \{ q_0 \} \cup F_1 \) is the set of accept states of \(N \).
 - For \(q \in Q \) and \(a \in \Sigma \), transition function \(\delta \) satisfies
 \[
 \delta(q, a) = \begin{cases}
 \delta_1(q, a) & \text{if } q \in Q_1 - F_1, \\
 \delta_1(q, a) & \text{if } q \in F_1 \text{ and } a \neq \epsilon, \\
 \delta_1(q, a) \cup \{ q_1 \} & \text{if } q \in F_1 \text{ and } a = \epsilon, \\
 \{ q_1 \} & \text{if } q = q_0 \text{ and } a = \epsilon, \\
 \emptyset & \text{if } q = q_0 \text{ and } a \neq \epsilon.
 \end{cases}
 \]

Regular Expressions

- Regular expressions are a way of describing certain languages.
- Consider alphabet \(\Sigma = \{0, 1\} \).
- Shorthand notation:
 - 0 means \(\{0\} \)
 - 1 means \(\{1\} \)
- Regular expressions use above shorthand notation and operations
 - union \(\cup \)
 - concatenation \(\circ \)
 - Kleene star \(* \)
- When using concatenation, will often leave out operator “\(\circ \)”.
Interpreting Regular Expressions

Example: $0 \cup 1$ means $\{0\} \cup \{1\}$, which equals $\{0, 1\}$.

Example:
- Consider $(0 \cup 1)^*$, which means $(0 \cup 1) \circ 0^*$.
- This equals $\{0, 1\} \circ \{0\}^*$.
- Recall $\{0\}^* = \{\varepsilon, 0, 00, 000, \ldots\}$.
- Thus, $\{0, 1\} \circ \{0\}^*$ is the set of strings that
 - start with symbol 0 or 1, and
 - followed by zero or more 0's.

Another Example of a Regular Expression

Example:
- $(0 \cup 1)^*$ means $(\{0\} \cup \{1\})^*$.
- This equals $\{0, 1\}^*$, which is the set of all possible strings over the alphabet $\Sigma = \{0, 1\}$.
- When $\Sigma = \{0, 1\}$, often use shorthand notation Σ to denote regular expression $(0 \cup 1)$.

Hierarchy of Operations in Regular Expressions

- In most programming languages,
 - multiplication has precedence over addition
 - $2 + 3 \times 4 = 14$
 - parentheses change usual order
 - $(2 + 3) \times 4 = 20$
 - exponentiation has precedence over multiplication and addition
 - $4 + 2 \times 3^2 = \ldots$, $4 + (2 \times 3)^2 = \ldots$
- Order of precedence for the regular operations:
 1. Kleene star
 2. concatenation
 3. union
- Parentheses change usual order.

More Examples of Regular Expressions

Example: $00 \cup 101^*$ is language consisting of
- string 00
- strings that begin with 10 and followed by zero or more 1’s.

Example: $0(0 \cup 101)^*$ is the language consisting of strings that
- start with 0
- concatenated to a string in $\{0, 101\}^*$.

For example, 0101001010 is in the language because $0101001010 = 0 \circ 101 \circ 0 \circ 0 \circ 101 \circ 0$.
Formal (Inductive) Definition of Regular Expression

Definition: \(R \) is a regular expression with alphabet \(\Sigma \) if \(R \) is
1. \(a \) for some \(a \in \Sigma \)
2. \(\epsilon \)
3. \(\emptyset \)
4. \((R_1 \cup R_2) \), where \(R_1 \) and \(R_2 \) are regular expressions
5. \((R_1) \circ (R_2) \), also denoted by \((R_1)(R_2) \), where \(R_1 \) and \(R_2 \) are regular expressions
6. \((R_1)^* \), where \(R_1 \) is a regular expression
7. \((R_1)^* \), where \(R_1 \) is a regular expression.

Can remove redundant parentheses, e.g., \(((0) \cup (1))(1) \rightarrow (0 \cup 1)1\).

Definition: If \(R \) is a regular expression, then \(L(R) \) is the language generated (or described or defined) by \(R \).

Examples of Regular Expressions

Examples:
For \(\Sigma = \{0, 1\} \),
1. \((0 \cup 1) = \{0, 1\} \)
2. \(0^{*}10^{*} = \{w | w \text{ has exactly a single } 1\} \)
3. \(\Sigma^{*}1\Sigma^{*} = \{w | w \text{ has at least one } 1\} \)
4. \(\Sigma^{*}001\Sigma^{*} = \{w | w \text{ contains } 001 \text{ as a substring}\} \)
5. \((\Sigma\Sigma)^* = \{w | |w| \text{ is even}\} \)
6. \((\Sigma\Sigma\Sigma)^* = \{w | |w| \text{ is a multiple of three}\} \)
7. \(0\Sigma^{*}0 \cup 1\Sigma^{*}1 \cup 0 \cup 1 \)
 \(= \{w | w \neq \epsilon \text{ starts and ends with same symbol}\} \)
8. \(1^{*}\emptyset = \emptyset \)
 anything concatenated with \(\emptyset \) is equal to \(\emptyset \).
9. \(\emptyset^{*} = \{\epsilon\} \)

Kleene’s Theorem

Theorem 1.54
Language \(A \) is regular iff \(A \) has a regular expression.

Lemma 1.55
If a language is described by a regular expression, then it is regular.

Proof. Procedure to convert regular expression \(R \) into NFA \(N : \)
1. If \(R = a \) for some \(a \in \Sigma \), then \(L(R) = \{a\} \), which has NFA
 \[
 \begin{array}{c}
 q_1 \\
 \overrightarrow{a} \\
 q_2
 \end{array}
 \]
 \(N = (\{q_1, q_2\}, \Sigma, \delta, q_1, \{q_2\}) \) where transition function \(\delta \)
 - \(\delta(q_1, a) = \{q_2\} \)
 - \(\delta(r, b) = \emptyset \) for any state \(r \neq q_1 \) or any \(b \in \Sigma \) with \(b \neq a \).
2. If $R = \varepsilon$, then $L(R) = \{\varepsilon\}$, which has NFA

$$\xrightarrow{q_1}$$

$N = (\{q_1\}, \Sigma, \delta, q_1, \{q_1\})$ where
- $\delta(r, b) = \emptyset$ for any state r and any $b \in \Sigma$.

3. If $R = \emptyset$, then $L(R) = \emptyset$, which has NFA

$$\xrightarrow{q_1}$$

$N = (\{q_1\}, \Sigma, \delta, q_1, \emptyset)$ where
- $\delta(r, b) = \emptyset$ for any state r and any $b \in \Sigma$.

4. If $R = (R_1 \cup R_2)$ and
- $L(R_1)$ has NFA N_1
- $L(R_2)$ has NFA N_2,
then $L(R) = L(R_1) \cup L(R_2)$ has NFA N below:

5. If $R = (R_1) \circ (R_2)$ and
- $L(R_1)$ has NFA N_1
- $L(R_2)$ has NFA N_2,
then $L(R) = L(R_1) \circ L(R_2)$ has NFA N below:

6. If $R = (R_1)^*$ and $L(R_1)$ has NFA N_1,
then $L(R) = (L(R_1))^*$ has NFA N below:

- Thus, can convert any regular expression R into an NFA.
- Hence, Corollary 1.40 implies that the language $L(R)$ is regular.
Ex: Build NFA for \((ab \cup a)^*\)

∃ other correct NFAs

More of Kleene’s Theorem

Lemma 1.60

If a language is regular, then it has a regular expression.

Proof Idea:

- Convert DFA into regular expression.
- Use **generalized NFA (GNFA)**, which is an NFA with following modifications:
 - no edges into start state.
 - single accept state, with no edges out of it.
 - labels on edges are **regular expressions** instead of elements from \(\Sigma\).
 - can traverse edge on any string generated by its regular expression.

Example: GNFA

- Can move from
 - \(q_1\) to \(q_2\) on string \(\varepsilon\).
 - \(q_2\) to \(q_3\) on string \(aabaa\).
 - \(q_3\) to \(q_3\) on string \(b\) or \(baaa\).
 - \(q_3\) to \(q_4\) on string \(\varepsilon\).
 - \(q_4\) to \(q_5\) on string \(\varepsilon\).
- GNFA accepts string \(\varepsilon \circ aabaa \circ b \circ baaa \circ \varepsilon \circ \varepsilon = aabaaabaaa\).

Method to convert DFA into regular expression

1. First convert DFA into equivalent GNFA.
2. Apply following iterative procedure:
 - In each step, eliminate one state from GNFA.
 - When state is eliminated, need to account for every path that was previously possible.
 - Can eliminate states in any order but end result will be different.
 - Never delete start or (unique) accept state.
 - Done when only 2 states remaining: start and accept.
 - Label on remaining edge between start and accept states is a regular expression for language of original DFA.

Remark: Method also can convert NFA into a regular expression.
1. Convert DFA $M = (Q, \Sigma, \delta, q_1, F)$ into equivalent GNFA G.
 - Introduce new start state s.
 - Add edge from s to q_1 with label ε.
 - Make q_1 no longer the start state.
 - Introduce new accept state t.
 - Add edge with label ε from each state $q \in F$ to t.
 - Make each state originally in F no longer an accept state.
 - Change edge labels into regular expressions.

 e.g., "a, b" becomes "$a \cup b$".

 Example:
 - Convert DFA M into regular expression.
 - Eliminate state q_2, which has no other in/out edges.

 ![Diagram](image1)

 ![Diagram](image2)

2. Iteratively eliminate a state from GNFA G.
 - Need to take into account all possible previous paths.
 - Never eliminate new start state s or new accept state t.

 Example: Eliminate state q_2, which has no other in/out edges.

 ![Diagram](image3)

 ![Diagram](image4)

Example:
- Eliminate state x, which has no other in/out edges

 - Let $C = \{v, z\}$, which are states with edges into x (except for x).
 - Let $D = \{v, y, z\}$, which are states with edges from x (except for x).
 - When we eliminate x, need to account for paths
 - from each state in C directly into x
 - then from x directly to x
 - finally from x directly to each state in D
Recall $C = \{v, z\}$ and $D = \{v, y, z\}$.

So eliminating state x gives

$$v \xrightarrow{(R_1)(R_2)^*(R_3)} y \xrightarrow{(R_1)(R_2)^*(R_5)} z \xrightarrow{R_6 (R_2)^*(R_4) + R_8} R_9 \xrightarrow{R_9 (R_2)^*(R_4)}$$

- e.g., for path $v \rightarrow x \rightarrow y$, add edge from v to y with label $(R_1)(R_2)^*(R_4)$

Step 1. Convert DFA into GNFA

Step 2.1. Eliminate state 1

$C = \{s, 2, 3\}$

$D = \{2, 3\}$

Step 2.2. Eliminate state 2

$C = \{s, 3\}$

$D = \{3, t\}$
Step 2.3. Eliminate state 3

\[C' = \{s\}, \quad D = \{t\} \]

\[(a(aa \cup b)^*ab \cup b) ((ba \cup a)(aa \cup b)^*ab \cup bb) (ba \cup a)(aa \cup b)^*ab \cup bb) (ba \cup a)(aa \cup b)^* \cup \varepsilon \]

\[\rightarrow s \cup a(aa \cup b)^* \rightarrow t \]

Finite Languages are Regular

Theorem
If \(A \) is a finite language, then \(A \) is regular.

Proof.
- Because \(A \) finite, we can write
 \[A = \{w_1, w_2, \ldots, w_n\} \]
 for some \(n < \infty \).
- A regular expression for \(A \) is then
 \[R = w_1 \cup w_2 \cup \cdots \cup w_n \]
- Kleene's Theorem then implies \(A \) has a DFA, so \(A \) is regular.

Remark: The converse is **not** true.

e.g., \(1^* \) generates a regular language, but it's infinite.

Pumping Lemma for Regular Languages

Example: DFA with alphabet \(\Sigma = \{0, 1\} \) for language \(A \).

\[q_0 \quad q_2 \quad q_4 \quad q_5 \quad q_1 \]

- DFA has 5 states.
- DFA accepts string \(s = 0011 \), which has length 4.
- On \(s = 0011 \), DFA visits all of the states.
• For any string s with $|s| \geq 5$, guaranteed to visit some state twice by the pigeonhole principle.
• String $s = 0011011$ is accepted by DFA, i.e., $s \in A$.
• q_2 is first state visited twice.
• Using q_2, divide string s into 3 parts x, y, z such that $s = xyz$.
 • $x = 0$, the symbols read until first visit to q_2.
 • $y = 0110$, the symbols read from first to second visit to q_2.
 • $z = 11$, the symbols read after second visit to q_2.

• More generally, consider
 • language A with DFA M having p states,
 • string $s \in A$ with $|s| \geq p$.
• When processing s on M, guaranteed to visit some state twice.
• Let r be first state visited twice.
• Using state r, can divide s as $s = xyz$.
 • x are symbols read until first visit to r.
 • y are symbols read from first to second visit to r.
 • z are symbols read from second visit to r to end of s.

• Recall DFA accepts string $s = 0 \text{ } 0110 \text{ } 11$.
• DFA also accepts strings
 $$xyyz = 0 \text{ } 0110 \text{ } 0110 \text{ } 11,$$
 $$xyyyz = 0 \text{ } 0110 \text{ } 0110 \text{ } 0110 \text{ } 11,$$
 $$xz = 0 \text{ } 11.$$
• String $xy^i z \in A$ for each $i \geq 0$.

• Because y corresponds to starting in r and returning to r,
 $$xy^i z \in A$$
 for each $i \geq 1$.
• Also, note $xy^0 z = xz \in A$, so
 $$xy^i z \in A$$
 for each $i \geq 0$.
• $|y| > 0$ because
 • y corresponds to starting in r and coming back;
 • this consumes at least one symbol (because DFA),
 so y can't be empty.
Length of xy

- $|xy| \leq p$, where p is number of states in DFA, because
 - xy are symbols read up to second visit to r.
 - Because r is the first state visited twice, all states visited before second visit to r are unique.
 - So just before visiting r for second time, DFA visited at most p states, which corresponds to reading at most $p - 1$ symbols.
 - The second visit to r, which is after reading 1 more symbol, corresponds to reading at most p symbols.

Pumping Lemma

Theorem 1.70

If A is regular language, then \exists number p (pumping length) where, if $s \in A$ with $|s| \geq p$, then s can be split into 3 pieces, $s = xyz$, satisfying the properties

1. $xy^iz \in A$ for each $i \geq 0$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

Remarks:

- y^i denotes i copies of y concatenated together, and $y^0 = \varepsilon$.
- $|y| > 0$ means $y \neq \varepsilon$.
- $|xy| \leq p$ means x and y together have no more than p symbols total.

Understanding the Pumping Lemma

If A is regular language, then \exists number p (pumping length) where, if $s \in A$ with $|s| \geq p$, then s can be split into 3 pieces, $s = xyz$, satisfying properties

1. $xy^iz \in A$ for each $i \geq 0$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

if (M_1 is true), then

M_2 is true
if (M_3 is true), then

M_4 is true
endif
endif

Nonregular Languages

Definition: Language is nonregular if there is no DFA for it.

Remarks:

- Pumping Lemma (PL) is a result about regular languages.
- But PL mainly used to prove that certain language A is nonregular.
- Typically done using proof by contradiction.

 - Assume language A is regular.
 - PL says that all strings $s \in A$ that are at least a certain length must satisfy some properties
 - By appropriately choosing $s \in A$, will eventually get contradiction.
 - PL: can split s into $s = xyz$ satisfying all of Properties 1–3.
 - To get contradiction, show cannot split $s = xyz$ satisfying 1–3.
 - Show all splits satisfying 2–3 violate Property 1.
 - Because Property 3 of PL states $|xy| \leq p$, often choose $s \in A$ so that all of its first p symbols are the same.
Language $A = \{ 0^n 1^n | n \geq 0 \}$ *is Nonregular*

Proof.
- Suppose A is regular, so PL implies A has “pumping length” p.
- Consider string $s = 0^p 1^p \in A$.
- $|s| = 2p \geq p$, so Pumping Lemma will hold.
- So can split s into 3 pieces $s = xyz$ satisfying properties
 1. $xy^iz \in A$ for each $i \geq 0$,
 2. $|y| > 0$, and
 3. $|xy| \leq p$.
- To get contradiction, must show cannot split $s = xyz$ satisfying 1–3.
 - Show all splits $s = xyz$ satisfying Properties 2 and 3 will violate 1.
 - Because the first p symbols of $s = \underbrace{00 \cdots 0}_{p} \underbrace{11 \cdots 1}_{p}$ are all 0’s
 - Property 3 implies that x and y consist of only 0’s.
 - z will be the rest of the 0’s, followed by all p 1’s.
 - Key: y has some 0’s, and z contains all the 1’s (and maybe some 0’s),
 so pumping y changes # of 0’s but not # of 1’s.

Language $B = \{ ww | w \in \{0,1\}^* \}$ *is Nonregular*

Proof.
- Suppose B is regular, so PL implies B has “pumping length” p.
- Consider string $s = 0^p 1^p \in B$. ($0^p 0^p \in B$ won’t work. Why?)
- $|s| = 2p + 2 \geq p$, so Pumping Lemma will hold.
- So can split s into 3 pieces $s = xyz$ satisfying properties
 1. $xy^iz \in B$ for each $i \geq 0$,
 2. $|y| > 0$, and
 3. $|xy| \leq p$.
- For contradiction, show cannot split $s = xyz$ so that 1–3 hold.
 - Show all splits $s = xyz$ satisfying Properties 2 and 3 will violate 1.
 - Because first p symbols of $s = \underbrace{00 \cdots 0}_{p} \underbrace{11 \cdots 1}_{p}$ are all 0’s,
 - Property 3 implies that x and y consist of only 0’s.
 - z will be the rest of first set of 0’s, followed by $1^p 1$.
 - Key: y has some of first 0’s, and z has all of second 0’s,
 so pumping y changes only # of first 0’s.
Important Steps in Proving Language is Nonregular

Pumping Lemma (PL):
If A is a regular language, then \exists number p (pumping length) where,
if $s \in A$ with $|s| \geq p$, then s can be split into 3 pieces, $s = xyz$, with
1. $xy^iz \in A$ for each $i \geq 0$,
2. $|y| > 0$, and
3. $|xy| \leq p$.

Remarks:
- Must choose appropriate string $s \in A$ to get contradiction.
 - Some strings $s \in A$ might not lead to contradiction;
 e.g., $0^p0^p \in \{ww \mid w \in \{0,1\}^*\}
 - Because Property 3 of PL states $|xy| \leq p$,
 often choose $s \in A$ so that all of its first p symbols are the same.
- Once appropriate s is chosen, need to show every possible split of $s = xyz$ leads to contradiction.

Examples:
1. Let $C = \{ w \in \{a,b\}^* \mid w = w^R \}$, where w^R is the reverse of w.
 - To show C is nonregular, can choose $s = a^p b a^p \in C$.
 - Choosing $s = a^p \in C$ does not work. Why?
2. To show $D = \{ a^{2n} b^{3n} a^n \mid n \geq 0 \}$ is nonregular, can choose $s = a^{2p} b^{3p} a^p \in D$.
3. Consider language $E = \{ w \in \{a,b\}^* \mid w$ has more a’s than b’s $\}$. For example, $baaba \in E$.
 - To show E is nonregular, can choose $s = b^p a^{p+1} \in E$.

Common Mistake
- Consider $D = \{ a^{2n} b^{3n} a^n \mid n \geq 0 \}$.
- To show D is nonregular, can choose $s = a^{2p} b^{3p} a^p \in D$.
- **Common mistake**: try to apply Pumping Lemma with

 \[x = a^{2p}, \quad y = b^{3p}, \quad z = a^p. \]
 - For this split, $|xy| = 5p \leq p$.
 - But Pumping Lemma states “If D is a regular language, then . . . can split $s = xyz$ satisfying Properties 1–3.”
- To get contradiction, need to show cannot split $s = xyz$ satisfying Properties 1–3.
 - Need to show every split $s = xyz$ doesn’t satisfy all of 1–3.
 - Every split $s = xyz$ satisfying Properties 2 and 3 must have
 \[x = a^j, \quad y = a^k, \quad z = a^m b^{3p} a^p, \]
 where $j + k \leq p$, $j + k + m = 2p$, and $k \geq 1$.

$F = \{ w \mid \# \text{ of 0's in } w \text{ equals } \# \text{ of 1's in } w \}$ is Nonregular

- Note that, e.g., $101100 \in F$.
- Need to be careful when choosing string $s \in F$ for Pumping Lemma.
 - If $xyz \in F$ with $y \in F$, then $xy^iz \in F$, so no contradiction.
- **Another Approach**: If F and G are regular, then $F \cap G$ is regular.
- **Solution**: Suppose that F is regular.
 - Let $G = \{ 0^n1^m \mid n, m \geq 0 \}$.
 - G is regular: it has regular expression 0^*1^*.
 - Then $F \cap G = \{ 0^n1^n \mid n \geq 0 \}$.
 - But know that $F \cap G$ is not regular.
- **Conclusion**: F is not regular.
Hierarchy of Languages (so far)

All languages

Regular
(DFA, NFA, Reg Exp)

Finite

Examples

\{ 0^n 1^n | n \geq 0 \}

(0 \cup 1)^*

\{ 110, 01 \}

Summary of Chapter 1

• DFA is a deterministic machine for recognizing certain languages.
• A language is regular if it has a DFA.
• The class of regular languages is closed under union, intersection, concatenation, Kleene-star, complementation.
• NFA can be nondeterministic: allows choice in how to process string.
• Every NFA has an equivalent DFA.
• Regular expression is a way of generating certain languages.
• Kleene's Theorem: Language \(A \) has DFA iff \(A \) has regular expression.
• Every finite language is regular, but not every regular language is finite.
• Use pumping lemma to prove certain languages are not regular.