

How a DFA Computes

- DFA is presented with an input string $w \in \Sigma^*$.
- DFA begins in the start state.
- DFA reads the string one symbol at a time, starting from the left.
- The symbols read in determine the sequence of states visited.
- \bullet Processing ends after the last symbol of w has been read.
- After reading the entire input string
 - if DFA ends in an accept state, then input string w is **accepted**;
 - otherwise, input string w is **rejected**.

CS 341: Chapter 1

1-11

Language of Machine

- **Definition:** If A is the set of all strings that machine M accepts, then we say
 - A = L(M) is the language of machine M, and
 - $\blacksquare M \text{ recognizes } A.$
 - $\blacktriangle \ M \text{ accepts each string } w \in A.$
 - M rejects (does not accept) each string $w \in \Sigma^* A$.
- If machine M has input alphabet Σ , then $L(M) \subseteq \Sigma^*$.
 - Σ^* is **universe** of problem **instances** (possible input strings)
 - Each $w \in L(M)$ is a **YES instance**.
 - Each $w \in \Sigma^* L(M)$ is a **NO instance**.

• Definition: A language is regular if it is recognized by some DFA.

CS 341: Chapter 1

Formal Definition of DFA Computation

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA.
- String $w = w_1 w_2 \cdots w_n \in \Sigma^*$, where each $w_i \in \Sigma$ and $n \ge 0$.
- Then M accepts w if there exists a sequence of states $r_0, r_1, r_2, \ldots, r_n \in Q$ such that
 - 1. $r_0 = q_0$
 - first state r_0 in the sequence is the start state of DFA;

2. $r_n \in F$

- last state r_n in the sequence is an accept state;
- 3. $\delta(r_i, w_{i+1}) = r_{i+1}$ for each $i = 0, 1, 2, \dots, n-1$
 - $\hfill \,$ sequence of states corresponds to valid transitions for string w.

$$\xrightarrow{r_0} \underbrace{w_1}_{r_1} \underbrace{w_2}_{r_2} \underbrace{\cdots}_{r_{n-1}} \underbrace{w_n}_{r_n}$$

CS 341: Chapter 1

1-12

Examples of Deterministic Finite Automata

Example: Consider the following DFA M_1 with alphabet $\Sigma = \{0, 1\}$:

Remarks:

- 010110 is accepted, but 0101 is rejected.
- $L(M_1)$ is the language of strings over Σ in which the total number of 1's is odd.
- Can you come up with a DFA that recognizes the language of strings over Σ having an even number of 1's ?

Example: Consider the following DFA M_2 with alphabet $\Sigma = \{0, 1\}$:

Remarks:

• $L(M_2)$ is language of strings over Σ that have length 1, i.e.,

$$L(M_2) = \{ w \in \Sigma^* \mid |w| = 1 \}$$

Recall that L(M₂), the complement of L(M₂), is the set of strings over Σ not in L(M₂), i.e.,

$$\overline{L(M_2)} = \Sigma^* - L(M_2).$$

Can you come up with a DFA that recognizes $\overline{L(M_2)}$?

CS 341: Chapter 1

Constructing DFA for Complement

- In general, given a DFA M for language A, we can make a DFA \overline{M} for \overline{A} from M by
 - changing all accept states in M into non-accept states in \overline{M} ,
 - changing all non-accept states in M into accept states in \overline{M} ,
- ullet More formally, suppose language A over alphabet Σ has a DFA

 $M = (Q, \Sigma, \delta, q_1, F).$

• Then, a DFA for the complementary language \overline{A} is

$$\overline{M} = (Q, \Sigma, \delta, q_1, Q - F).$$

- where $Q, \Sigma, \delta, q_1, F$ are the same as in DFA M.
- Why does this work?

CS 341: Chapter 1

Example: Consider the following DFA M_3 with alphabet $\Sigma = \{0, 1\}$:

Remarks:

• $L(M_3)$ is the language of strings over Σ that **do not** have length 1, i.e.

$$L(M_3) = \overline{L(M_2)} = \{ w \in \Sigma^* \mid |w| \neq 1 \}$$

- DFA can have more than one accept state.
- Start state can also be an accept state.
- \bullet In general, a DFA accepts ε if and only if the start state is also an accept state.
- CS 341: Chapter 1

1-15

Example: Consider the following DFA M_4 with alphabet $\Sigma = \{a, b\}$:

Remarks:

- $L(M_4)$ is the language of strings over Σ that end with bb, i.e., $L(M_4) = \{ w \in \Sigma^* \mid w = sbb \text{ for some } s \in \Sigma^* \}.$
- Note that $abbb \in L(M_4)$ and $bba \notin L(M_4)$.

1-17

CS 341: Chapter 1

Example: Consider the following DFA M_5 with alphabet $\Sigma = \{a, b\}$: q_2 q_4 q_4 q_4 q_4 q_4 q_5	 Example: Consider the following DFA M₆ with alphabet Σ = {a, b} : a, b q1 Q
<i>CS 341: Chapter 1</i> 1-19	<i>CS 341: Chapter 1</i> 1-20
Example: Consider the following DFA M_7 with alphabet $\Sigma = \{a, b\}$:	Example: Consider the following DFA M_8 with alphabet $\Sigma = \{a, b\}$:
a, b $- q_1$ Remarks: • This DFA accepts no strings over Σ , i.e., $L(M_7) = \emptyset.$ • In general,	
• a DFA may have no accept states, i.e., $F = \emptyset \subseteq Q$.	 even number of a's and even number of b's.
\blacksquare any DFA with no accept states recognizes the language $\emptyset.$	• Note that $ababaa \in L(M_8)$ and $bba \notin L(M_8)$.

<i>CS 341: Chapter 1</i> 1-21	CS 341: Chapter 1 1-22		
Some Operations on Languages	Closed under Operation		
• Let A and B be languages, each with alphabet Σ .	• Recall that a collection S of objects is closed under operation f if applying f to members of S always returns an object still in S.		
 Recall we previously defined the operations: 	• e.g., $\mathcal{N} = \{1, 2, 3, \ldots\}$ is closed under addition but not		
Union:	subtraction.		
$A \cup B = \{ w \mid w \in A \text{ or } w \in B \}$ • Concatenation: $A \circ B = \{ vw \mid v \in A, w \in B \}$ • Kleene star: $A^* = \{ w_1 w_2 \cdots w_k \mid k \ge 0 \text{ and each } w_i \in A \}$ • Complement: $\overline{A} = \{ w \in \Sigma^* \mid w \notin A \} = \Sigma^* - A$	 Previously saw that given a DFA M₁ for language A, can construct DFA M₂ for complementary language A. Make all accept states in M₁ into non-accept states in M₂. Make all non-accept states in M₁ into accept states in M₂. Thus, the class of regular languages is closed under complementation. i.e., if A is a regular language, then A is a regular language. 		
<i>CS 341: Chapter 1</i> 1-23	CS 341: Chapter 1 1-24		
Regular Languages Closed Under Union	Example: Consider the following DFAs and languages over $\Sigma = \{a, b\}$:		
Theorem 1.25 The class of regular languages is closed under union.	• DFA M_1 recognizes language $A_1 = L(M_1)$ • DFA M_2 recognizes language $A_2 = L(M_2)$		
• i.e., if A_1 and A_2 are regular languages, then so is $A_1 \cup A_2$.	$DFA M_1 \text{ for } A_1 \qquad DFA M_2 \text{ for } A_2$		
Proof Idea:			
 Suppose A₁ is regular, so it has a DFA M₁. Suppose A₂ is regular, so it has a DFA M₂. w ∈ A₁ ∪ A₂ if and only if w ∈ A₁ or w ∈ A₂. w ∈ A₁ ∪ A₂ if and only if w is accepted by M₁ or M₂. Need DFA M₂ to accept a string w iff w is accepted by M₁ or M₂. 	$ \begin{array}{c} a \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		
 Construct M₃ to keep track of where the input would be if it were simultaneously running on both M₁ and M₂. Accept string if and only if M₁ or M₂ accepts. 	• We now want a DFA M_3 for $A_1 \cup A_2$.		

CS	341:	Chapter	1
----	------	---------	---

- The set of accept states of M_3 is
 - $F_3 = \{ (x, y) \in Q_1 \times Q_2 | x \in F_1 \text{ or } y \in F_2 \} \\ = [F_1 \times Q_2] \cup [Q_1 \times F_2].$
- Because $Q_3 = Q_1 \times Q_2$,
 - number of states in new machine M_3 is $|Q_3| = |Q_1| \cdot |Q_2|$.
- Thus, $|Q_3| < \infty$ because $|Q_1| < \infty$ and $|Q_2| < \infty$.

Remark:

- We can leave out a state $(x, y) \in Q_1 \times Q_2$ from Q_3 if (x, y) is not reachable from M_3 's initial state (q_1, q_2) .
- This would result in fewer states in Q_3 , but still we have $|Q_1| \cdot |Q_2|$ as an upper bound for $|Q_3|$; i.e., $|Q_3| \le |Q_1| \cdot |Q_2| < \infty$.

CS 341: Chapter 1

1-35

1-33

Regular Languages Closed Under Concatenation

Theorem 1.26

Class of regular languages is closed under concatenation.

• i.e., if A_1 and A_2 are regular languages, then so is $A_1 \circ A_2$.

Remark:

- It is possible (but cumbersome) to directly construct a DFA for $A_1 \circ A_2$ given DFAs for A_1 and A_2 .
- There is a simpler way if we introduce a new type of machine.

Regular Languages Closed Under Intersection

Theorem

The class of regular languages is closed under intersection.

• i.e., if A_1 and A_2 are regular languages, then so is $A_1 \cap A_2$.

Proof Idea:

- A_1 has DFA M_1 .
- A_2 has DFA M_2 .
- $w \in A_1 \cap A_2$ if and only if $w \in A_1$ and $w \in A_2$.
- $w \in A_1 \cap A_2$ if and only if w is accepted by both M_1 and M_2 .
- Need DFA M_3 to accept string w iff w is accepted by M_1 and M_2 .
- Construct M_3 to simultaneously keep track of where the input would be if it were running on both M_1 and M_2 .
- Accept string if and only if both M_1 and M_2 accept.
- CS 341: Chapter 1

Nondeterministic Finite Automata

• In any DFA, the next state the machine goes to is uniquely determined by current state and next symbol read.

- This is why these machines are **deterministic**.
- \bullet DFA's determinism expressed through its transition function

$$\delta: Q \times \Sigma \to Q.$$

- Because range of δ is Q, fcn δ always returns a **single state**.
- DFA has exactly one transition leaving each state for each symbol.
 - $\delta(q, \ell)$ tells what state the edge out of q labeled with ℓ leads to.

Nondeterminism

- Nondeterministic finite automata (NFAs) allow for several or no choices to exist for the next state on a given symbol.
- \bullet For a state q and symbol $\ell \in \Sigma,$ NFA can have
 - ${\scriptstyle \bullet }$ multiple edges leaving q labelled with the same symbol ℓ
 - \blacksquare no edge leaving q labelled with symbol ℓ
 - ${\scriptstyle \blacksquare}$ edges leaving q labelled with ε
 - \blacktriangle can take $\varepsilon\text{-edge}$ without reading any symbol from input string.
 - \blacktriangle can also choose not to take $\varepsilon\text{-edge}.$

1-38

• Suppose NFA is in a state with multiple ways to proceed, e.g., in state q_1 and the next symbol in input string is 1.

0.1

- The machine splits into multiple copies of itself (threads).
 - Each copy proceeds with computation independently of others.
 - NFA may be in a **set of states**, instead of a single state.
 - NFA follows all possible computation paths in parallel.
 - If a copy is in a state and next input symbol doesn't appear on any outgoing edge from the state, then the copy **dies** or **crashes**.
- If **any** copy ends in an accept state after reading entire input string without crashing, the NFA **accepts** the string.
- If **no** copy ends in an accept state after reading entire input string without crashing, then NFA does not accept (**rejects**) the string.

Example: NFA N_1 with alphabet $\Sigma = \{0, 1\}$.

- \bullet Similarly, if a state with an $\varepsilon\text{-transition}$ is encountered,
 - without reading an input symbol, NFA splits into multiple copies, each one following an exiting ε-transition (or staying put).
 - Each copy proceeds independently of other copies.
 - NFA follows all possible paths in parallel.
 - NFA proceeds **nondeterministically** as before.
- \bullet What happens on input string 010110 ?

37 CS 341: Chapter 1

Formal Definition of NFA **Example:** NFA N**Definition:** For an alphabet Σ , define $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$. • Σ_{ε} is set of possible labels on NFA edges. Definition: A nondeterministic finite automaton (NFA) is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where a.b1. Q is a finite set of states 2. Σ is an alphabet • N accepts strings ε , a, aa, baa, baba, 3. $\delta: Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$ is the transition function, where • e.g., $aa = \varepsilon a \varepsilon a$ • $\mathcal{P}(Q)$ is the power set of Q • for each edge, δ specifies label from Σ_{ε} . 4. $q_0 \in Q$ is the start state • N does not accept (i.e., rejects) strings b, ba, bb, bbb, 5. $F \subseteq Q$ is the set of accept states. CS 341: Chapter 1 1-43 CS 341: Chapter 1 1 - 44**Difference Between DFA and NFA** • DFA has transition function $\delta : Q \times \Sigma \to Q$. 0.1Formal description of above NFA $N = (Q, \Sigma, \delta, q_1, F)$ • $Q = \{q_1, q_2, q_3, q_4\}$ is the set of states • NFA has transition function $\delta : Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$. • $\Sigma = \{0, 1\}$ is the alphabet Returns a set of states rather than a single state. • Transition function $\delta : Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$ • Allows for ε -transitions because $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$. 0 1 • For state $q \in Q$ and $\ell \in \Sigma_{\varepsilon}$, $\delta(q, \ell)$ is set of states where edges Ø $\{q_1\}$ $\{q_1, q_2\}$ q_1 out of q labeled with ℓ lead to. $\{q_{3}\}$ Ø $\{q_{3}\}$ q_2 ${q_4}$ q_3 Ø Ø $\{q_4\}$ Ø $\{q_4\}$ q_4 0.1 • q_1 is the start state 0.1• $F = \{q_4\}$ is the set of accept states • Remark: Note that every DFA is also an NFA.

1-45

Formal Definition of NFA Computation

- Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA and $w \in \Sigma^*$.
- \bullet Then N accepts w if
 - we can write w as $w = y_1 y_2 \cdots y_m$ for some $m \ge 0$, where each $y_i \in \Sigma_{\varepsilon}$, and
 - \blacksquare there is a sequence of states r_0,r_1,r_2,\ldots,r_m in Q such that
 - 1. $r_0 = q_0$ 2. $r_{i+1} \in \delta(r_i, y_{i+1})$ for each i = 0, 1, 2, ..., m-13. $r_m \in F$

Definition: The set of all input strings that are accepted by NFA N is the **language recognized by** N and is denoted by L(N).

Equivalence of DFAs and NFAs

Definition: Two machines (of any types) are **equivalent** if they recognize the same language.

Theorem 1.39

Every NFA N has an equivalent DFA M.

• i.e., if N is some NFA, then \exists DFA M such that L(M) = L(N).

Proof Idea:

- \bullet NFA N splits into multiple copies of itself on nondeterministic moves.
- NFA can be in a set of states at any one time.
- Build DFA *M* whose set of states is the **power set** of the set of states of NFA *N*, keeping track of where *N* can be at any time.

Example: Convert NFA N into equivalent DFA.

N's start state q_1 has no $\varepsilon\text{-edges}$ out, so DFA has start state $\{q_1\}.$

1-55

1

Example: Convert NFA N into equivalent DFA.

On reading 0 from states in $\{q_1, q_3\}$, can reach states $\{q_1\}$.

CS 341: Chapter 1

On reading 1 from states in $\{q_1, q_3\}$, can reach states $\{q_1, q_2, q_3, q_4\}$.

CS 341: Chapter 1

Proof. (Theorem 1.39: NFA \Rightarrow DFA)

• Consider NFA
$$N = (Q, \Sigma, \delta, q_0, F)$$
:

Definition: The ε-closure of a set of states R ⊆ Q is
 E(R) = { q | q can be reached from R by travelling over 0 or more ε transitions }.

• e.g., $E(\{q_1, q_2\}) = \{q_1, q_2, q_3\}.$

CS 341: Chapter 1	1-57 <i>CS 341: Chapter 1</i>		1-58
Convert NFA to Equivalent DFA		Regular \iff NFA Corollary 1.40 Language <i>A</i> is regular if and only if some NFA recognizes <i>A</i> .	
Given NFA $N = (Q, \Sigma, \delta, q_0, F)$, build an equivalent DFA $M = (Q', \Sigma, \delta', q'_0, F')$ as follows:			
 Calculate the ε-closure of every subset R ⊆ Q. Define DFA M's set of states Q' = P(Q). Define DFA M's start state q'₀ = E({q₀}). Define DFA M's set of accept states F' to be all DFA states in Q' include an accept state of NFA N; i.e., 	 Proof. (⇒) If A is regular, then there is a DFA for it. But every DFA is also an NFA, so there is an NI 		A for A.
$F' = \{ R \in Q' \mid R \cap F \neq \emptyset \}.$ 5. Calculate DFA <i>M</i> 's transition function $\delta' : Q' \times \Sigma \rightarrow Q'$ as $\delta'(R, \ell) = \{ q \in Q \mid q \in E(\delta(r, \ell)) \text{ for some } r \in R \}$ for $R \in Q' = \mathcal{P}(Q)$ and $\ell \in \Sigma$. 6. Can leave out any state $q' \in Q'$ not reachable from q'_0 , e.g., $\{q_2, q_3\}$ in our previous example.		(⇐) • Follows from previous theorem (1.39), which showed that every NFA has an equivalent DFA.	
CS 341: Chapter 1 Class of Regular Languages Closed Under Union	1-59	CS 341: Chapter 1 1-	-60

Remark: Can use fact that every NFA has an equivalent DFA to simplify the proof that the class of regular languages is closed under union.

Remark: Recall union:

 $A_1 \cup A_2 = \{ w \mid w \in A_1 \text{ or } w \in A_2 \}.$

Proof Idea: Given NFAs N_1 and N_2 for A_1 and A_2 , resp., construct NFA N for $A_1 \cup A_2 = \{ w \mid w \in A_1 \text{ or } w \in A_2 \}$ as follows:

(O)

 N_1

<i>CS 341: Chapter 1</i> 1-61	<i>CS 341: Chapter 1</i> 1-62
Construct NFA for $A_1 \cup A_2$ from NFAs for A_1 and A_2	Class of Regular Languages Closed Under Concatenation
• Let A_1 be language recognized by NFA $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$. • Let A_2 be language recognized by NFA $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$. • Assume $Q_1 \cap Q_2 = \emptyset$. • Construct NFA $N = (Q, \Sigma, \delta, q_0, F)$ for $A_1 \cup A_2$: • $Q = \{q_0\} \cup Q_1 \cup Q_2$ is set of states of N . • q_0 is start state of N , where $q_0 \notin Q_1 \cup Q_2$. • Set of accept states $F = F_1 \cup F_2$. • For $q \in Q$ and $a \in \Sigma_{\varepsilon}$, transition function δ satisfies $\delta(q, a) = \begin{cases} \delta_1(q, a) & \text{if } q \in Q_1, \\ \delta_2(q, a) & \text{if } q \in Q_2, \\ \{q_1, q_2\} & \text{if } q = q_0 \text{ and } a = \varepsilon, \\ \emptyset & \text{if } q = q_0 \text{ and } a \neq \varepsilon. \end{cases}$	Remark: Recall concatenation: $A_1 \circ A_2 = \{vw \mid v \in A_1, w \in A_2\}.$ Theorem 1.47 The class of regular languages is closed under concatenation.
CS 341: Chapter 1 Proof Idea: Given NFAs N_1 and N_2 for A_1 and A_2 , resp., construct NFA N for $A_1 \circ A_2 = \{vw \mid v \in A_1, w \in A_2\}$ as follows: $N_1 \underbrace{\bigcirc}_{\circ \circ \circ}_{\circ \circ \circ} \bigotimes$ $N_2 \underbrace{\bigcirc}_{\circ \circ \circ \circ}_{\circ \circ \circ} \bigotimes$	CS 341: Chapter 1 Construct NFA for $A_1 \circ A_2$ from NFAs for A_1 and A_2 • Let A_1 be language recognized by NFA $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$. • Let A_2 be language recognized by NFA $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$. • Assume $Q_1 \cap Q_2 = \emptyset$. • Construct NFA $N = (Q, \Sigma, \delta, q_1, F_2)$ for $A_1 \circ A_2$: • $Q = Q_1 \cup Q_2$ is set of states of N . • Start state of N is q_1 , which is start state of N_1 .
$N \\ \hline \\ \bullet \\ \circ \\ \circ \\ \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet$	• Set of accept states of N is F_2 , which is same as for N_2 . • For $q \in Q$ and $a \in \Sigma_{\varepsilon}$, transition function δ satisfies $\delta(q, a) = \begin{cases} \delta_1(q, a) & \text{if } q \in Q_1 - F_1, \\ \delta_1(q, a) & \text{if } q \in F_1 \text{ and } a \neq \varepsilon, \\ \delta_1(q, a) \cup \{q_2\} & \text{if } q \in F_1 \text{ and } a = \varepsilon, \\ \delta_2(q, a) & \text{if } q \in Q_2. \end{cases}$

1-65

Class of Regular Languages Closed Under Star

Remark: Recall Kleene star:

 $A^* = \{ x_1 x_2 \cdots x_k \mid k \ge 0 \text{ and each } x_i \in A \}.$

Theorem 1.49

The class of regular languages is closed under the Kleene-star operation.

Proof Idea: Given NFA N_1 for A, construct NFA N for $A^* = \{ x_1 x_2 \cdots x_k \mid k \ge 0 \text{ and each } x_i \in A \}$ as follows:

CS 341: Chapter 1

1-67

Construct NFA for A^* from NFA for A

- Let A be language recognized by NFA $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$.
- Construct NFA $N = (Q, \Sigma, \delta, q_0, F)$ for A^* :
 - $Q = \{q_0\} \cup Q_1$ is set of states of N.
 - q_0 is start state of N, where $q_0 \not\in Q_1$.
 - $F = \{q_0\} \cup F_1$ is the set of accept states of N.
 - For $q \in Q$ and $a \in \Sigma_{\varepsilon}$, transition function δ satisfies

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & \text{if } q \in Q_1 - F_1, \\ \delta_1(q,a) & \text{if } q \in F_1 \text{ and } a \neq \varepsilon, \\ \delta_1(q,a) \cup \{q_1\} & \text{if } q \in F_1 \text{ and } a = \varepsilon, \\ \{q_1\} & \text{if } q = q_0 \text{ and } a = \varepsilon, \\ \emptyset & \text{if } q = q_0 \text{ and } a \neq \varepsilon. \end{cases}$$

CS 341: Chapter 1

Regular Expressions

- Regular expressions are a way of describing certain languages.
- Consider alphabet $\Sigma = \{0, 1\}$.
- Shorthand notation:
 - 0 means {0}
 - 1 means {1}
- Regular expressions use above shorthand notation and operations
 - \blacksquare union \cup
 - concatenation ○
 - Kleene star *
- \bullet When using concatenation, will often leave out operator "o".

<i>CS 341: Chapter 1</i> 1	-69	CS 341: Chapter 1	1-70	
Interpreting Regular Expressions		Another Example of a Regular Expression		
Example: $0 \cup 1$ means $\{0\} \cup \{1\}$, which equals $\{0, 1\}$.		Example:		
Example: • Consider $(0 \cup 1)0^*$, which means $(0 \cup 1) \circ 0^*$. • This equals $\{0, 1\} \circ \{0\}^*$. • Recall $\{0\}^* = \{\varepsilon, 0, 00, 000, \dots\}$. • Thus, $\{0, 1\} \circ \{0\}^*$ is the set of strings that • start with symbol 0 or 1, and • followed by zero or more 0's.		 (0 ∪ 1)* means ({0} ∪ {1})*. This equals {0, 1}*, which is the set of all possible strings over the alphabet Σ = {0, 1}. When Σ = {0, 1}, often use shorthand notation Σ to denote regular expression (0 ∪ 1). 		
<i>CS 341: Chapter 1</i> 1	71	CS 341: Chapter 1	1-72	
Hierarchy of Operations in Regular Expressions		More Examples of Regular Expressions		
 In most programming languages, multiplication has precedence over addition 2+3×4=14 parentheses change usual order (2+3)×4=20 exponentiation has precedence over multiplication and addition 4+2×3² =, 4+(2×3)² = Order of precedence for the regular operations: Kleene star concatenation union 		 Example: 00 ∪ 101* is language consisting of string 00 strings that begin with 10 and followed by zero or more 1's. Example: 0(0 ∪ 101)* is the language consisting of strings that start with 0 concatenated to a string in {0, 101}*. For example, 0101001010 is in the language because 0101001010 = 0 ∘ 101 ∘ 0 ∘ 0 ∘ 101 ∘ 0. 	:	
 Parentheses change usual order. 				

1-73

1-75

DFA for EVEN-EVEN.

Formal (Inductive) Definition of Regular Expression

Definition: R is a **regular expression** with alphabet Σ if R is

1.
$$a$$
 for some $a \in \Sigma$
2. ε
3. \emptyset
4. $(R_1 \cup R_2)$, where R

4. $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions 5. $(R_1) \circ (R_2)$, also denoted by $(R_1)(R_2)$,

where R_1 and R_2 are regular expressions

6. $(R_1)^*$, where R_1 is a regular expression

7. (R_1) , where R_1 is a regular expression.

Can remove redundant parentheses, e.g., $((0) \cup (1))(1) \longrightarrow (0 \cup 1)1$.

Definition: If R is a regular expression, then L(R) is the language **generated** (or **described** or **defined**) by R.

CS 341: Chapter 1

Examples:

- 1. $R \cup \emptyset = \emptyset \cup R = R$
- 2. $R \circ \varepsilon = \varepsilon \circ R = R$
- 3. $R \circ \emptyset = \emptyset \circ R = \emptyset$
- 4. $R_1(R_2 \cup R_3) = R_1R_2 \cup R_1R_3$. Concatenation distributes over union.

Example:

- Define EVEN-EVEN over alphabet $\Sigma = \{a, b\}$ as strings with an even number of a's and an even number of b's; see slide 1-20 for a DFA.
- For example, $aababbaaababab \in \mathsf{EVEN}\text{-}\mathsf{EVEN}$.
- Regular expression:

$$ig(aa \ \cup \ bb \ \cup \ (ab \cup ba)(aa \cup bb)^*(ab \cup ba) ig)^*$$

CS 341: Chapter 1

Examples of Regular Expressions

Examples: For $\Sigma = \{0, 1\}$, 1. $(0 \cup 1) = \{0, 1\}$ 2. $0^*10^* = \{w \mid w \text{ has exactly a single } 1\}$ 3. $\Sigma^*1\Sigma^* = \{w \mid w \text{ has at least one } 1\}$ 4. $\Sigma^*001\Sigma^* = \{w \mid w \text{ contains } 001 \text{ as a substring}\}$ 5. $(\Sigma\Sigma)^* = \{w \mid |w| \text{ is even }\}$ 6. $(\Sigma\Sigma\Sigma)^* = \{w \mid |w| \text{ is a multiple of three }\}$ 7. $0\Sigma^*0 \cup 1\Sigma^*1 \cup 0 \cup 1$ $= \{w \mid w \neq \varepsilon \text{ starts and ends with same symbol }\}$ 8. $1^*\emptyset = \emptyset$, anything concatenated with \emptyset is equal to \emptyset . 9. $\emptyset^* = \{\varepsilon\}$

CS 341: Chapter 1

Kleene's Theorem

Theorem 1.54

Language A is regular iff A has a regular expression.

Lemma 1.55

If a language is described by a regular expression, then it is regular.

Proof. Procedure to convert regular expression R into NFA N:

1. If R = a for some $a \in \Sigma$, then $L(R) = \{a\}$, which has NFA

 $N = (\{q_1, q_2\}, \Sigma, \delta, q_1, \{q_2\}) \text{ where transition function } \delta$ • $\delta(q_1, a) = \{q_2\},$

• $\delta(r,b) = \emptyset$ for any state $r \neq q_1$ or any $b \in \Sigma_{\varepsilon}$ with $b \neq a$.

CS 341: Chapter 1 1-77 CS 341: Chapter 1 4. If $R = (R_1 \cup R_2)$ and 2. If $R = \varepsilon$, then $L(R) = \{\varepsilon\}$, which has NFA • $L(R_1)$ has NFA N_1 • $L(R_2)$ has NFA N_2 , then $L(R) = L(R_1) \cup L(R_2)$ has NFA N below: $N = (\{q_1\}, \Sigma, \delta, q_1, \{q_1\})$ where • $\delta(r, b) = \emptyset$ for any state r and any $b \in \Sigma_{\varepsilon}$. N_1 N \bigcirc 00 3. If $R = \emptyset$, then $L(R) = \emptyset$, which has NFA (\bigcirc) N_2 \bigcirc 0 \bigcirc $N = (\{q_1\}, \Sigma, \delta, q_1, \emptyset)$ where \bigcirc \bigcirc • $\delta(r, b) = \emptyset$ for any state r and any $b \in \Sigma_{\varepsilon}$. CS 341: Chapter 1 CS 341: Chapter 1 1-79 5. If $R = (R_1) \circ (R_2)$ and 6. If $R = (R_1)^*$ and $L(R_1)$ has NFA N_1 , then $L(R) = (L(R_1))^*$ has NFA N below: • $L(R_1)$ has NFA N_1 • $L(R_2)$ has NFA N_2 , N N_1 then $L(R) = L(R_1) \circ L(R_2)$ has NFA N below: N_1 (O) N_2 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc • Thus, can convert any regular expression R into an NFA. N• Hence, Corollary 1.40 implies that the language L(R) is regular. \bigcirc 00 \bigcirc \bigcirc

1-78

- 1. Convert DFA $M = (Q, \Sigma, \delta, q_1, F)$ into equivalent GNFA G.
 - Introduce new start state s.
 - Add edge from s to q_1 with label ε .
 - Make q₁ no longer the start state.
 - \bullet Introduce new accept state t.
 - $\bullet \ \ \, {\rm Add} \ \, {\rm edge} \ \, {\rm with} \ \, {\rm label} \ \, \varepsilon \ \, {\rm from} \ \, {\rm each} \ \, {\rm state} \ \, q \in F \ {\rm to} \ t.$
 - $\hfill\blacksquare$ Make each state originally in F no longer an accept state.
 - Change edge labels into regular expressions.
 - e.g., "a, b" becomes " $a \cup b$ ".

CS 341: Chapter 1

CS 341: Chapter 1

1-85

- 2. Iteratively eliminate a state from GNFA G.
 - Need to take into account all possible previous paths.
 - \bullet Never eliminate new start state s or new accept state t.

Example: Eliminate state q_2 , which has no other in/out edges.

CS 341	: Cha	pter 1
--------	-------	--------

Pumping Lemma

Theorem 1.70

CS 341: Chapter 1

If A is regular language, then \exists number p (pumping length) where, if $s \in A$ with $|s| \ge p$, then s can be split into 3 pieces, s = xyz, satisfying the properties

- 1. $xy^i z \in A$ for each $i \ge 0$,
- 2. |y| > 0, and
- 3. $|xy| \leq p$.

Remarks:

- y^i denotes *i* copies of *y* concatenated together, and $y^0 = \varepsilon$.
- |y| > 0 means $y \neq \varepsilon$.
- $\bullet |xy| \leq p$ means x and y together have no more than p symbols total.
- Key ideas: For each long enough string s in a regular language A, can use s to construct infinitely many other strings in A.

CS 341: Chapter 1

Understanding the Pumping Lemma

Length of *xy*

• $|xy| \leq p$, where p is number of states in DFA, because

all states visited before second visit to r are unique.

• So just before visiting r for second time, DFA visited at most p

states, which corresponds to reading at most p-1 symbols.

• The second visit to r, which is after reading 1 more symbol,

• xy are symbols read up to second visit to r.

corresponds to reading at most p symbols.

Because r is the first state visited twice.

```
 \begin{array}{c} M_1 & M_2 \\ \hline M_1 & \overline{A \text{ is regular language, then } \exists \text{ number } p \text{ (pumping length) where,} \\ \hline M_3 & \overline{a \text{ if } s \in A \text{ with } |s| \geq p}, \text{ then} \\ \hline s \text{ can be split into 3 pieces, } s = xyz, \text{ satisfying properties} \\ 1. xy^i z \in A \text{ for each } i \geq 0, \\ 2. |y| > 0, \text{ and} \\ 3. |xy| \leq p. \end{array} \right\} M_4
```

if
$$(M_1 \text{ is true})$$
, then
 $M_2 \text{ is true}$
if $(M_3 \text{ is true})$, then
 $M_4 \text{ is true}$
endif
endif

CS 341: Chapter 1

1-104

Nonregular Languages

Definition: Language is **nonregular** if there is no DFA for it.

Remarks:

- Pumping Lemma (PL) is a result about regular languages.
- But PL mainly used to prove that certain language A is **nonregular**.
- Typically done using **proof by contradiction**.
 - Assume language A is regular.
 - \blacksquare PL says that all strings $s \in A$ that are at least a certain length must satisfy some properties
 - By appropriately choosing $s \in A$, will eventually get contradiction.
 - PL: can split s into s = xyz satisfying all of Properties 1–3.
 - To get contradiction, show **cannot** split s = xyz satisfying 1–3.
 - ▲ Show all splits satisfying 2–3 violate Prop 1 ($xy^i z \in A \ \forall i \ge 0$).
 - Because Property 3 of PL states $|xy| \le p$, often choose $s \in A$ so that all of its first p symbols are the same.

CS 341: Chapter 1 1 - 105CS 341: Chapter 1 1 - 106Language $A = \{ 0^n 1^n | n > 0 \}$ is Nonregular • So we have Proof. $x = 0^j$ for some i > 0. • Suppose A is regular, so PL implies A has "pumping length" p. $y = 0^k$ for some k > 0, • Consider string $s = 0^p 1^p \in A$. $z = 0^m 1^p$ for some m > 0• $|s| = 2p \ge p$, so Pumping Lemma will hold. • s = xyz implies • So can split s into 3 pieces s = xyz satisfying properties $0^{p}1^{p} = 0^{j}0^{k}0^{m}1^{p} = 0^{j+k+m}1^{p}$ 1. $xy^i z \in A$ for each i > 0, 2. |y| > 0, and so j + k + m = p. 3. $|xy| \le p$. • Property 2 states that |y| > 0, so k > 0. • To get contradiction, must show **cannot** split s = xyz satisfying 1–3. • Property 1 implies $xyyz \in A$, but • Show all splits s = xyz satisfying Properties 2 and 3 will violate 1. $xyyz = 0^{j} 0^{k} 0^{k} 0^{m} 1^{p}$ • Because the first p symbols of $s = \underbrace{00 \cdots 0}_{p} \underbrace{11 \cdots 1}_{p}$ are all 0's $= 0^{j+k+k+m} \mathbf{1}^p$ $= 0^{p+k} 1^p \notin A$ • Property 3 implies that x and y consist of only 0's. • z will be the rest of the O's, followed by all p 1's. because j + k + m = p and k > 0. • Key: y has some O's, and z contains all the 1's (and maybe some O's), • **Contradiction**, so $A = \{ 0^n 1^n | n \ge 0 \}$ is nonregular. so pumping y changes # of 0's but not # of 1's. CS 341: Chapter 1 1-107 CS 341: Chapter 1 1 - 108Language $B = \{ ww \mid w \in \{0, 1\}^* \}$ is Nonregular • So we have Proof. $x = 0^j$ for some i > 0. • Suppose *B* is regular, so PL implies *B* has "pumping length" p. $y = 0^k$ for some k > 0, • Consider string $s = 0^p 1 0^p 1 \in B$. $(0^p 0^p \in B \text{ won't work. Why?})$ $z = 0^m 1 0^p 1$ for some m > 0• $|s| = 2p + 2 \ge p$, so Pumping Lemma will hold. • s = xyz implies • So can split s into 3 pieces s = xyz satisfying properties 1. $xy^i z \in B$ for each i > 0, $0^{p} 1 0^{p} 1 = 0^{j} 0^{k} 0^{m} 1 0^{p} 1 = 0^{j+k+m} 1 0^{p} 1.$ 2. |y| > 0, and so j + k + m = p. 3. $|xy| \le p$. • Property 2 states that |y| > 0, so k > 0. • For contradiction, show **cannot** split s = xyz so that 1–3 hold. • Property 1 implies $xyyz \in B$, but • Show all splits s = xyz satisfying Properties 2 and 3 will violate 1. $xyyz = 0^{j} 0^{k} 0^{k} 0^{m} 1 0^{p} 1$ • Because first p symbols of $s = \underbrace{00\cdots 0}_{p} 1 \underbrace{00\cdots 0}_{p} 1$ are all 0's, $= 0^{j+k+k+m} 1 0^{p} 1$ Property 3 implies that x and y consist only of 0's. $= 0^{p+k} 1 0^p 1 \notin B$ • z will be the rest of first set of O's, followed by $10^p 1$. because i + k + m = p and k > 0. • Key: y has some of first O's, and z has all of second O's, • Contradiction, so $B = \{ww \mid w \in \{0, 1\}^*\}$ is nonregular. so pumping y changes only # of first O's.

1-109

Important Steps in Proving Language is Nonregular

Pumping Lemma (PL):

If A is a regular language, then \exists number p (pumping length) where, if $s \in A$ with $|s| \ge p$, then s can be split into 3 pieces, s = xyz, with 1. $xy^iz \in A$ for each i > 0,

- 2. |y| > 0, and
- 3. $|xy| \leq p$.

Remarks:

• Must choose **appropriate** string $s \in A$ to get contradiction.

- Some strings $s \in A$ might not lead to contradiction; e.g., $0^p 0^p \in \{ ww \mid w \in \{0, 1\}^* \}$
- Because Property 3 of PL states $|xy| \le p$, often choose $s \in A$ so that all of its first p symbols are the same.
- Once appropriate s is chosen, need to show every possible split of s = xyz leads to contradiction.

CS 341: Chapter 1

1-111

Common Mistake

- Consider $D = \{ a^{2n} b^{3n} a^n | n \ge 0 \}.$
- To show D is nonregular, can choose $s = a^{2p} b^{3p} a^p \in D$.
- Common mistake: try to apply Pumping Lemma with

$$x = a^{2p}, \qquad y = b^{3p}, \qquad z = a^p.$$

- For this split, $|xy| = 5p \leq p$.
- But Pumping Lemma states "If D is a regular language, then ... can split s = xyz satisfying Properties 1–3."
- To get contradiction, need to show **cannot** split s = xyz satisfying Properties 1–3.
 - Need to show every split s = xyz doesn't satisfy all of 1–3.
 - $\scriptstyle \bullet \$ Every split s=xyz satisfying Properties 2 and 3 must have

$$x = a^j, \qquad y = a^k, \qquad z = a^m b^{3p} a^p$$

where $j + k \leq p$, j + k + m = 2p, and $k \geq 1$.

CS 341: Chapter 1

Pumping Lemma (PL):

If A is a regular language, then \exists number p (pumping length) where, if $s \in A$ with $|s| \ge p$, then s can be split into 3 pieces, s = xyz, with 1. $xy^iz \in A$ for each $i \ge 0$, 2. |y| > 0, and 3. $|xy| \le p$.

Examples:

1. Let ($C = \{ w \in \{a, b\}^* \mid w = w^{\mathcal{R}} \}, \text{ where } w^{\mathcal{R}} \text{ is the reverse of } w.$
• To	o show C is nonregular, can choose $s = a^p b a^p \in C$.
• C	hoosing $s=a^p\in C$ does not work. Why?
2. To s s =	how $D = \{ a^{2n} b^{3n} a^n \mid n \ge 0 \}$ is nonregular, can choose $a^{2p} b^{3p} a^p \in D.$
3. Cons For e	sider language $E = \{ w \in \{a, b\}^* \mid w \text{ has more } a$'s than b's $\}$. example, $baaba \in E$.
т	1^{n} $n+1$ $-\pi$

• To show E is nonregular, can choose $s = b^p a^{p+1} \in E$.

CS 341: Chapter 1

1-112

 $F = \{ w \mid \# \text{ of } 0 \text{'s in } w \text{ equals } \# \text{ of } 1 \text{'s in } w \}$ is Nonregular

- Note that, e.g., $101100 \in F$.
- \bullet Need to be careful when choosing string $s \in F$ for Pumping Lemma.
 - If $xyz \in F$ with $y \in F$, then $xy^iz \in F$, so no contradiction.
- Another Approach: If F and G are regular, then $F \cap G$ is regular.
- **Solution:** Suppose that *F* is regular.
 - Let $G = \{ 0^n 1^m | n, m \ge 0 \}.$
 - G is regular: it has regular expression 0^*1^* .
 - Then $F \cap G = \{ 0^n 1^n \mid n \ge 0 \}.$
 - ${\scriptstyle \bullet }$ But know that $F\cap G$ is not regular.
- **Conclusion:** *F* is not regular.

