
CS 341: Foundations of CS II

Marvin K. Nakayama
Computer Science Department

New Jersey Institute of Technology
Newark, NJ 07102

CS 341: Chapter 2 2-2

Chapter 2
Context-Free Languages

Contents

• Context-Free Grammar (CFG)

• Chomsky Normal Form

• Pushdown Automata (PDA)

• PDA ⇔ CFG

• Regular Language ⇒ CFL

• Pumping Lemma for CFLs

CS 341: Chapter 2 2-3

Context-Free Languages (CFLs)

• Consider language {0n1n | n ≥ 0 }, which is nonregular.

• Start variable S with “substitution rules”:

S → 0S1

S → ε

• Rules can yield string 0k1k by

applying rule “S → 0S1” k times,

followed by rule “S → ε” once.

•Derivation of string 0313

S ⇒ 0S1 ⇒ 00S11 ⇒ 000S111 ⇒ 000ε111 = 000111

CS 341: Chapter 2 2-4

Definition of CFG

Definition: Context-free grammar (CFG) G = (V,Σ, R, S) where

1. V is finite set of variables (AKA nonterminals)

2. Σ is finite set of terminals (with V ∩Σ = ∅)

3. R is finite set of substitution rules (AKA productions),
each of the form

L → X,

where

• L ∈ V

• X ∈ (V ∪Σ)∗

4. S is start variable, where S ∈ V

CS 341: Chapter 2 2-5

Example of CFG

Example: Language {0n1n | n ≥ 0 } has CFG G = (V,Σ, R, S)

• Variables V = {S}

• Terminals Σ = {0,1}

• Start variable S

• Rules R:

S → 0S1

S → ε

• Combine rules with same left-hand side in Backus-Naur (or Backus
Normal) Form (BNF):

S → 0S1 | ε

CS 341: Chapter 2 2-6

Deriving Strings Using CFG

Definition: If

• u, v, w ∈ (V ∪Σ)∗, and

• A → w is a rule of the grammar,

then uAv yields uwv, written

uAv ⇒ uwv

Remark:

• A single-step derivation “⇒” consists of substituting a variable by a
string of variables and terminals according to a substitution rule.

Example: With the rule “A → BC”, we can have

01AD0 ⇒ 01BCD0.

CS 341: Chapter 2 2-7

Language of CFG

Definition: u derives v, written u
∗
⇒ v, if

• u = v, or

• ∃ u1, u2, . . . , uk for some k ≥ 0 such that

u ⇒ u1 ⇒ u2 ⇒ · · · ⇒ uk ⇒ v

Remark: “
∗
⇒” denotes a sequence of ≥ 0 single-step derivations.

Example: With the rules “A → B1 | D0C”,

0AA
∗
⇒ 0D0CB1

Definition: The language of CFG G = (V,Σ, R, S) is

L(G) = {w ∈ Σ∗ | S
∗
⇒ w }.

Such a language is called context-free, and satisfies L(G) ⊆ Σ∗.

CS 341: Chapter 2 2-8

Example of CFG

• CFG G = (V,Σ, R, S) with

1. V = {S}

2. Σ = {0,1}

3. Rules R:

S → 0S | ε

• Then L(G) = {0n | n ≥ 0 }.

• For example, S derives 03

S ⇒ 0S ⇒ 00S ⇒ 000S ⇒ 000ε = 000

• Note that → and ⇒ are different.

→ used in defining rules

⇒ used in derivation

CS 341: Chapter 2 2-9

Example of CFG

• CFG G = (V,Σ, R, S) with

1. V = {S}

2. Σ = {0,1}

3. Rules R:

S → 0S | 1S | ε

• Then L(G) = Σ∗.

• For example, S derives 0100

S ⇒ 0S ⇒ 01S ⇒ 010S ⇒ 0100S ⇒ 0100

CS 341: Chapter 2 2-10

Example of CFG

• CFG G = (V,Σ, R, S) with

1. V = {S}

2. Σ = {0,1}

3. Rules R:

S → 0S | 1S | 1

• Then L(G) = {w ∈ Σ∗ | w = s1 for some s ∈ Σ∗ },
i.e., strings that end in 1.

• For example, S derives 011

S ⇒ 0S ⇒ 01S ⇒ 011

CS 341: Chapter 2 2-11

Example of CFG

• CFG G = (V,Σ, R, S) with

1. V = {S, Z}

2. Σ = {0,1}

3. Rules R:

S → 0S1 | Z

Z → 0Z | ε

• Then L(G) = {0i1j | i ≥ j }.

• For example, S derives 05 13

S ⇒ 0S1 ⇒ 00S11 ⇒ 000S111 ⇒ 000Z 111

⇒ 0000Z 111 ⇒ 00000Z 111 ⇒ 00000ε111

= 00000111

CS 341: Chapter 2 2-12

CFG for Palindrome

• PALINDROME = {w ∈ Σ∗ | w = wR }, where Σ = {a, b}.

• CFG G = (V,Σ, R, S) with

1. V = {S}

2. Σ = {a, b}

3. Rules R:

S → aSa | bSb | a | b | ε

• Then L(G) = PALINDROME

• S derives bbaabb

S ⇒ bSb ⇒ bbSbb ⇒ bbaSabb ⇒ bbaεabb = bbaabb

• S derives aabaa

S ⇒ aSa ⇒ aaSaa ⇒ aabaa

CS 341: Chapter 2 2-13

CFG for EVEN-EVEN

• Recall language EVEN-EVEN is the set of strings over Σ = {a, b}
with even number of a’s and even number of b’s.

• EVEN-EVEN has regular expression
(
aa ∪ bb ∪ (ab ∪ ba)(aa ∪ bb)∗(ab ∪ ba)

)∗

• CFG G = (V,Σ, R, S) with

1. V = {S,X, Y }

2. Σ = {a, b}

3. Rules R:

S → aaS | bbS | XYXS | ε

X → ab | ba

Y → aaY | bbY | ε

• Then L(G) = EVEN-EVEN

CS 341: Chapter 2 2-14

CFG for Simple Arithmetic Expressions

• CFG G = (V,Σ, R, S) with

1. V = {S}

2. Σ = {+, −, ×, /, (,), 0, 1, 2, . . . , 9 }

3. Rules R:

S → S + S | S − S | S × S | S/S | (S) | −S | 0 | 1 | · · · | 9

• L(G) is a set of valid arithmetic expressions over single-digit integers.

• S derives string 2× (3 + 4)

S ⇒ S × S ⇒ S × (S) ⇒ S × (S + S)

⇒ 2× (S + S) ⇒ 2× (3 + S) ⇒ 2× (3 + 4)

CS 341: Chapter 2 2-15

Derivation Tree

• CFG

S → S + S | S − S | S × S | S/S | (S) | −S | 0 | 1 | · · · | 9

• Can generate string 2× 3+ 4 using derivation

S ⇒ S + S ⇒ S × S + S ⇒ 2× S + S

⇒ 2× 3+ S ⇒ 2× 3+ 4

Leftmost derivation: leftmost variable replaced in each step.

• Corresponding derivation (or parse) tree

S

S + S

S × S 4

2 3

• Depth-first traversal of tree

Starting at root, walk around tree
with left hand always touching tree.

string = sequence of leaves visited.

CS 341: Chapter 2 2-16

Ambiguous CFG

S → S + S | S − S | S × S | S/S | (S) | −S | 0 | 1 | · · · | 9

• Another derivation of string 2× 3+ 4:

S ⇒ S × S ⇒ S × S + S ⇒ 2× S + S

⇒ 2× 3+ S ⇒ 2× 3+ 4

which is not a leftmost derivation.

• Corresponding derivation tree: S

S × S

2 S + S

3 4

Definition: CFG G is ambiguous if ∃ string w ∈ L(G) having
different parse trees (or equivalently, different leftmost derivations).

CS 341: Chapter 2 2-17

Applications of CFLs

•Model for natural languages (Noam Chomsky)

〈SENTENCE〉 → 〈NOUN-PHRASE〉〈VERB-PHRASE〉

〈NOUN-PHRASE〉 → 〈ARTICLE〉〈NOUN〉 | 〈ARTICLE〉〈ADJ〉〈NOUN〉

〈VERB-PHRASE〉 → 〈VERB〉 | 〈VERB〉〈NOUN-PHRASE〉

〈ARTICLE〉 → a | the

〈NOUN〉 → girl | boy | cat

〈ADJ〉 → big | small | blue

〈VERB〉 → sees | likes

Using above CFG, which has 〈SENTENCE〉 as start variable, can derive

〈SENTENCE〉 ⇒ 〈NOUN-PHRASE〉〈VERB-PHRASE〉

⇒ 〈ARTICLE〉〈NOUN〉〈VERB-PHRASE〉

⇒ 〈ARTICLE〉〈NOUN〉〈VERB〉〈NOUN-PHRASE〉

⇒ 〈ARTICLE〉〈NOUN〉〈VERB〉〈ARTICLE〉〈ADJ〉〈NOUN〉
∗
⇒ the girl sees a blue cat

CS 341: Chapter 2 2-18

Applications of CFLs

• Specification of programming languages:

parsing a computer program

• Describes mathematical structures, etc.

• Intermediate class between

regular languages (Chapter 1) and

computable languages (Chapters 3 and 4)

CS 341: Chapter 2 2-19

Context-Free Languages

Definition: Any language that can be generated by CFG is a
context-free language (CFL).

Remark: The CFL {0n1n | n ≥ 0 } shows us that certain CFLs are
nonregular.

Questions:

1. Are all regular languages context-free?

2. Are all languages context-free?

CS 341: Chapter 2 2-20

Chomsky Normal Form

Definition: CFG G = (V,Σ, R, S) is in Chomsky normal form if
each rule is in one of three forms:

A → BC

or A → x

or S → ε

with

• variables A ∈ V and B,C ∈ V − {S}, and

• terminal x ∈ Σ

Example: Rules of CFG in Chomsky normal form with V = {S,W,X},
Σ = {a, b}:

S → XX | XW | a | ε

X → WX | b

W → a

Remark: Grammars in Chomsky normal form are far easier to analyze.

CS 341: Chapter 2 2-21

Can Always Put CFG into Chomsky Normal Form

Recall: CFG in Chomsky normal form if each rule has form:

A → BC or A → x or S → ε

where A ∈ V ; B,C ∈ V − {S}; x ∈ Σ.

Theorem 2.9
Every CFL can be described by a CFG in Chomsky normal form.

Proof Idea:

• Start with CFG G = (V,Σ, R, S).

• Replace, one-by-one, every rule that is not “Chomsky”.

• Need to take care of:

Start variable (not allowed on RHS of rules)

ε-rules (A → ε not allowed when A isn’t start variable)

all other violating rules (A → B, A → aBc, A → BCDE)

CS 341: Chapter 2 2-22

Converting CFG into Chomsky Normal Form

1. Start variable not allowed on RHS of rule, so introduce

• New start variable S0

• New rule S0 → S

2. Remove ε-rules A → ε, where A ∈ V − {S}.

• Before: B → xAy and A → ε | · · ·

• After: B → xAy | xy and A → · · ·

3. Remove unit rules A → B, where A ∈ V .

• Before: A → B and B → xCy

• After: A → xCy and B → xCy

CS 341: Chapter 2 2-23

4. Replace problematic terminals a by variable Ta with rule Ta → a.

• Before: A → ab

• After: A → Ta Tb, Ta → a, Tb → b.

5. Shorten long RHS to sequence of RHS’s with only 2 variables each:

• Before: A → B1B2 · · ·Bk

• After: A → B1A1, A1 → B2A2, . . . , Ak−2 → Bk−1Bk

Thus, A ⇒ B1A1 ⇒ B1B2A2 ⇒ · · · ⇒ B1B2 · · ·Bk

6. Be careful about removing rules:

• Do not introduce new rules that you removed earlier.

Example: A → A simply disappears

•When removing A → ε rules, insert all new replacements:

Before: B → AbA and A → ε | · · ·

After: B → AbA | bA | Ab | b and A → · · ·

CS 341: Chapter 2 2-24

Example: Convert CFG into Chomsky Normal Form

Initial CFG G0:

S → XSX | aY

X → Y | S

Y → b | ε

1. Introduce new start variable S0 and new rule S0 → S:

S0 → S

S → XSX | aY

X → Y | S

Y → b | ε

CS 341: Chapter 2 2-25

Example: Convert CFG into Chomsky Normal Form

From previous slide

S0 → S

S → XSX | aY

X → Y | S

Y → b | ε

2. Remove ε-rules for which left side is not start variable:

(i) remove Y → ε (ii) remove X → ε

S0 → S S0 → S

S → XSX | aY | a S → XSX | aY | a | SX | XS | S
X → Y | S | ε X → Y | S
Y → b Y → b

CS 341: Chapter 2 2-26

Example: Convert CFG into Chomsky Normal Form

From previous slide

S0 → S

S → XSX | aY | a | SX | XS | S

X → Y | S

Y → b

3. Remove unit rules:

(i) remove unit rule S → S

S0 → S

S → XSX | aY | a | SX | XS

X → Y | S

Y → b

CS 341: Chapter 2 2-27

Example: Convert CFG into Chomsky Normal Form

From previous slide

S0 → S

S → XSX | aY | a | SX | XS

X → Y | S

Y → b

(ii) remove unit rule S0 → S

S0 → XSX | aY | a | SX | XS

S → XSX | aY | a | SX | XS

X → Y | S

Y → b

CS 341: Chapter 2 2-28

Example: Convert CFG into Chomsky Normal Form

From previous slide

S0 → XSX | aY | a | SX | XS

S → XSX | aY | a | SX | XS

X → Y | S

Y → b

(iii) remove unit rule X → Y

S0 → XSX | aY | a | SX | XS

S → XSX | aY | a | SX | XS

X → S | b

Y → b

CS 341: Chapter 2 2-29

Example: Convert CFG into Chomsky Normal Form

From previous slide

S0 → XSX | aY | a | SX | XS

S → XSX | aY | a | SX | XS

X → S | b

Y → b

(iv) remove unit rule X → S

S0 → XSX | aY | a | SX | XS

S → XSX | aY | a | SX | XS

X → b | XSX | aY | a | SX | XS

Y → b

CS 341: Chapter 2 2-30

Example: Convert CFG into Chomsky Normal Form

From previous slide

S0 → XSX | aY | a | SX | XS

S → XSX | aY | a | SX | XS

X → b | XSX | aY | a | SX | XS

Y → b

4. Replace problematic terminals a by variable U with U → a.

S0 → XSX | UY | a | SX | XS

S → XSX | UY | a | SX | XS

X → b | XSX | UY | a | SX | XS

Y → b

U → a

CS 341: Chapter 2 2-31

Example: Convert CFG into Chomsky Normal Form

From previous slide

S0 → XSX | UY | a | SX | XS

S → XSX | UY | a | SX | XS

X → b | XSX | UY | a | SX | XS

Y → b

U → a

5. Shorten long RHS to sequence of RHS’s with only 2 variables each

S0 → XX1 | UY | a | SX | XS

S → XX1 | UY | a | SX | XS

X → b | XX1 | UY | a | SX | XS

Y → b

U → a

X1 → SX

which is a CFG in Chomsky normal form.

CS 341: Chapter 2 2-32

Pushdown Automata (PDAs)

• Pushdown automata (PDAs) are for CFLs what finite automata are for
regular languages.

PDA is presented with a string w over an alphabet Σ.

PDA accepts or doesn’t accept w.

• Key Differences Between PDA and DFA:

PDAs have a single stack.

PDAs allow for nondeterminism.

PDA is “NFA with a single stack”.

•Defn: Stack is data structure of unlimited size with 2 operations

push adds item to top of stack,

pop removes item from top of stack.

Last-In-First-Out (LIFO)

CS 341: Chapter 2 2-33

PDA has

• States

• Stack with alphabet Γ

• Transitions among states based on

current state

what is read from input string

what is popped from stack.

• At end of each transition, symbol may be pushed on stack.

CS 341: Chapter 2 2-34

PDA Uses Stack

• General idea: CFLs are languages that can be recognized by
automata that have one stack:

{0n1n | n ≥ 0 } is a CFL

{0n1n0n | n ≥ 0 } is not a CFL

• Recall for alphabet Σ, we defined Σε = Σ ∪ {ε}.

• Let Γ be stack alphabet

Symbols in Γ can be pushed onto and popped off stack.

Often have $ ∈ Γ to mark bottom of stack.

• Let Γε = Γ ∪ {ε}.

Pushing or popping ε leaves stack unchanged.

CS 341: Chapter 2 2-35

PDA Transitions

qi qj

read, pop → push

a, b → c

• If PDA

currently in state qi,

reads a ∈ Σε, and

pops b ∈ Γε off the stack,

• then PDA can

move to state qj

push c ∈ Γε onto top of stack

• If a = ε, then no input symbol is read.

• If b = ε, then nothing is popped off stack.

• If c = ε, then nothing is pushed onto stack.

CS 341: Chapter 2 2-36

How a PDA Computes

q1 q2 q3 q4
ε, ε → $

0, ε → 0

1, 0 → ε

1, 0 → ε

ε, $ → ε

• PDA starts in start state with input string w ∈ Σ∗

stack initially empty

• PDA makes transitions among states

Edge label: “read, pop → push”

Based on current state, what from Σε is next read from w,
and what from Γε is popped from stack.

Nondeterministically move to state and push from Γε onto stack.

• If possible to end in accept state ∈ F ⊆ Q after reading entire input w
without crashing, then PDA accepts w.

CS 341: Chapter 2 2-37

Definition of PDA

Defn: Pushdown automaton (PDA) M = (Q,Σ,Γ, δ, q0, F):

•Q is finite set of states

•Σ is (finite) input alphabet

• Γ is (finite) stack alphabet

• q0 is start state, q0 ∈ Q

• F is set of accept states, F ⊆ Q

• δ : Q×Σε × Γε → P(Q× Γε) is transition function

q1 q3

q2

q4

a, b → d

a, b → c

a, b → c
a, b → ε

Nondeterministic: multiple choices when

in state q1, read a ∈ Σε, and pop b ∈ Γε;

δ(q1, a, b) = { (q2, c), (q3, d), (q4, c), (q4, ε) }

CS 341: Chapter 2 2-38

Example: PDA M = (Q,Σ,Γ, δ, q1, F)

q1 q2 q3 q4
ε, ε → $

0, ε → 0

1, 0 → ε

1, 0 → ε

ε, $ → ε

•Q = {q1, q2, q3, q4}

•Σ = {0,1}

• Γ = {0,$} (use $ to mark bottom of stack)

• q1 is the start state

• F = {q1, q4}

Will see that M recognizes language {0n1n |n ≥ 0 }.

CS 341: Chapter 2 2-39

q1 q2 q3 q4
ε, ε → $

0, ε → 0

1, 0 → ε

1, 0 → ε

ε, $ → ε

• transition function δ : Q×Σε × Γε → P(Q× Γε)

Input: 0 1 ε

Stack: 0 $ ε 0 $ ε 0 $ ε

q1 { (q2,$) }
q2 { (q2,0) } { (q3, ε) }
q3 { (q3, ε) } { (q4, ε) }
q4

e.g., δ(q2,1,0) = { (q3, ε) }.

Blank entries are ∅.

• Let’s process string 000111 on our PDA.

PDA uses stack to match each 0 to a 1.

CS 341: Chapter 2 2-40

⇑
Current state

q1 q2 q3 q4
ε, ε → $

0, ε → 0

1, 0 → ε

1, 0 → ε

ε, $ → ε

0 0 0 1 1 1

Next unread symbol

Input string Stack

Bottom

• Start in start state q1 with stack empty.

• No input symbols read so far.

• Next go to state q2

reading nothing, popping nothing, and pushing $ on stack.

CS 341: Chapter 2 2-41

⇑

q1 q2 q3 q4
ε, ε → $

0, ε → 0

1, 0 → ε

1, 0 → ε

ε, $ → ε

0 0 0 1 1 1

Input string

$

Stack

• Next return to state q2

reading input symbol 0

popping nothing from stack

pushing 0 on stack.

CS 341: Chapter 2 2-42

⇑

q1 q2 q3 q4
ε, ε → $

0, ε → 0

1, 0 → ε

1, 0 → ε

ε, $ → ε

0 0 0 1 1 1

Input string

0
$

Stack

• Next return to state q2

reading input symbol 0

popping nothing from stack

pushing 0 on stack.

CS 341: Chapter 2 2-43

⇑

q1 q2 q3 q4
ε, ε → $

0, ε → 0

1, 0 → ε

1, 0 → ε

ε, $ → ε

0 0 0 1 1 1

Input string

0
0
$

Stack

• Next return to state q2

reading input symbol 0

popping nothing from stack

pushing 0 on stack.

CS 341: Chapter 2 2-44

⇑

q1 q2 q3 q4
ε, ε → $

0, ε → 0

1, 0 → ε

1, 0 → ε

ε, $ → ε

0 0 0 1 1 1

Input string

0
0
0
$

Stack

• Next go to state q3

reading input symbol 1

popping 0 from stack

pushing nothing on stack.

CS 341: Chapter 2 2-45

⇑

q1 q2 q3 q4
ε, ε → $

0, ε → 0

1, 0 → ε

1, 0 → ε

ε, $ → ε

0 0 0 1 1 1

Input string

0
0
$

Stack

• Next return to state q3

reading input symbol 1

popping 0 from stack

pushing nothing on stack.

CS 341: Chapter 2 2-46

⇑

q1 q2 q3 q4
ε, ε → $

0, ε → 0

1, 0 → ε

1, 0 → ε

ε, $ → ε

0 0 0 1 1 1

Input string

0
$

Stack

• Next return to state q3

reading input symbol 1

popping 0 from stack

pushing nothing on stack.

CS 341: Chapter 2 2-47

⇑

q1 q2 q3 q4
ε, ε → $

0, ε → 0

1, 0 → ε

1, 0 → ε

ε, $ → ε

0 0 0 1 1 1

Input string

$

Stack

• Next go to state q4

reading nothing

popping $ from stack

pushing nothing on stack.

CS 341: Chapter 2 2-48

⇑

q1 q2 q3 q4
ε, ε → $

0, ε → 0

1, 0 → ε

1, 0 → ε

ε, $ → ε

0 0 0 1 1 1

Input string Stack

• String 000111 is accepted by PDA because

ended in an accept state q4, and

PDA read the entire input string without crashing.

CS 341: Chapter 2 2-49

q1 q2 q3 q4
ε, ε → $

0, ε → 0

1, 0 → ε

1, 0 → ε

ε, $ → ε

On input w = 000111, the (state; stack) evolution is

(q1; ε)
ε,ε→$

−−−−→ (q2; $)
0,ε→0

−−−−→ (q2; 0$)
0,ε→0

−−−−→ (q2; 00$)

0,ε→0
−−−−→ (q2; 000$)

1,0→ε
−−−−→ (q3; 00$)

1,0→ε
−−−−→ (q3; 0$)

1,0→ε
−−−−→ (q3; $)

ε,$→ε
−−−−→ (q4; ε).

• Stack grows to the left, so leftmost symbol in stack is on top.

• Concatenation of what is read in sequence of transitions is
ε000111ε = w.

CS 341: Chapter 2 2-50

q1 q2 q3 q4
ε, ε → $

0, ε → 0

1, 0 → ε

1, 0 → ε

ε, $ → ε

• On input w = 0111, the (state; stack) evolution is

(q1; ε)
ε,ε→$
−−→ (q2; $)

0,ε→0
−−→ (q2; 0$)

1,0→ε
−−→ (q3; $)

ε,$→ε
−−→ (q4; ε)

• Only first two symbols 01 were read from input w = 0111.

• PDA then crashes: there are still unread symbols 11 in input string w

but PDA can’t make any more transitions from q4.

• No other way of processing, so string 0111 not accepted.

• Can show that PDA M recognizes language {0n1n | n ≥ 0 }.

CS 341: Chapter 2 2-51

PDA May Be Nondeterministic

Recall: PDA transition function allows for nondeterminism

δ : Q×Σε × Γε → P(Q× Γε)

q1

q2

q3

q4

Multiple choices when in state q1,

read a ∈ Σε, and pop b ∈ Γε;

δ(q1, a, b) = { (q2, c), (q3, d), (q4, c), (q4, ε) }

q5

q6

q7

ε-transitions

a, b → c

a, b → d

a, b → c
a, b → ε

ε, ε → ε

ε, ε → ε

CS 341: Chapter 2 2-52

Formal Definition of PDA Computation

• Recall PDA transition function δ : Q×Σε × Γε → P(Q× Γε).

• PDA M = (Q,Σ,Γ, δ, q0, F) accepts string w ∈ Σ∗ if

w can be written as w = w1w2 · · ·wm, where each wi ∈ Σε,

∃ a sequence of states r0, r1, . . . , rm ∈ Q

and strings s0, s1, . . . , sm ∈ Γ∗ [stack contents on each transition]

and the following hold:

r0 = q0 and s0 = ε. [M starts in start state with empty stack.]

For each i = 0,1, . . . ,m− 1,

(ri+1, b) ∈ δ(ri, wi+1, a),

where si = at and si+1 = bt for some a, b ∈ Γε and t ∈ Γ∗.
[M moves properly according to state, what’s read, and stack.]

rm ∈ F . [M ends in an accept state after reading entire input.]

CS 341: Chapter 2 2-53

Computation Requires Valid Sequence of Transitions

Recall: proper computation requires for each i = 0,1, . . . ,m− 1,

(ri+1, b) ∈ δ(ri, wi+1, a),

where si = at and si+1 = bt for some a, b ∈ Γε and t ∈ Γ∗.

ri ri+1
wi+1, a → b

wi+1, a → c

wi+1, a → b

Stack

a

t

Before:
at

b

t

After:
bt

Definition: The set of all input strings that are accepted by PDA M is
the language recognized by M and is denoted by L(M).

• Note that L(M) ⊆ Σ∗.

CS 341: Chapter 2 2-54

Example: PDA for language { aibjck | i, j, k ≥ 0 and i = j or i = k }

q1

q2

q3 q4

q5 q6 q7

ε, ε → $ ε, ε → ε

ε, ε → ε

a, ε → a

b, a → ε

ε, $ → ε

c, ε → ε

ε, ε → ε

b, ε → ε

ε, $ → ε

c, a → ε

After reading all a’s in state q2, PDA guesses if it should match the a’s

• with the b’s (state q3), or

• with the c’s (state q5)

CS 341: Chapter 2 2-55

Example: PDA for language
{
wwR | w ∈ {0,1}∗

}

q1 q2 q3 q4
ε, ε → $

0, ε → 0
1, ε → 1

ε, ε → ε

0, 0 → ε
1, 1 → ε

ε, $ → ε

PDA works as follows:

• q1 → q2 : First pushes $ on stack to mark bottom

• q2 → q2 : Reads in first half w of string, pushing it onto stack

• q2 → q3 : Guesses that it has reached middle of string

• q3 → q3 : Reads second half wR of string, matching symbols
from first half in reverse order (recall: stack LIFO)

• q3 → q4 : Makes sure that no more input symbols on stack

CS 341: Chapter 2 2-56

Equivalence of PDAs and CFGs

Theorem 2.20
A language is context free iff some PDA recognizes it.

Showing this equivalence requires two steps.

• Lemma 2.21
If A = L(G) for some CFG G,
then A = L(M) for some PDA M .

• Lemma 2.27
If A = L(M) for some PDA M ,
then A = L(G) for some CFG G.

We will only show how the first lemma works.

CS 341: Chapter 2 2-57

Lemma 2.21
If A = L(G) for some CFG G, then A = L(M) for some PDA M .

Proof Idea:

• Given CFG G, convert it into PDA M with L(M) = L(G).

• Basic idea: build PDA that simulates a leftmost derivation.

• For example, consider CFG G = (V,Σ, R, S)

Variables V = {S, T}

Terminals Σ = {0,1}

Rules: S → 0TS1 | 1T0, T → 1

• Leftmost derivation of string 011101 ∈ L(G):

S ⇒ 0TS1 ⇒ 01S1 ⇒ 011T01 ⇒ 011101

CS 341: Chapter 2 2-58

• Convert CFG into PDA as follows:

q1 q2 q3
ε, ε → S$

ε, A → u, ∀ rules A → u
a, a → ε, ∀ terminals a ∈ Σ

ε, $ → ε

• PDA works as follows:

1. Pushes $ and then S on the stack, where S is start variable.

2. Repeats following until stack empty

(a) If top of stack is variable A ∈ V , then replace A by some
u ∈ (Σ ∪ V)∗, where A → u is a rule in R.

(b) If top of stack is terminal a ∈ Σ and next input symbol is a,
then read and pop a.

(c) If top of stack is $, then pop it and accept.

CS 341: Chapter 2 2-59

• Recall CFG rules: S → 0TS1 | 1T0, T → 1

• Corresponding PDA:

q1 q2 q3
ε, ε → S$

ε, S → 0TS1
ε, S → 1T0
ε, T → 1
1, 1 → ε
0, 0 → ε

ε, $ → ε

PDA is non-deterministic.

Input alphabet of PDA is the terminal alphabet of CFG

� Σ = {0,1}.

Stack alphabet consists of all variables, terminals and “$”

� Γ = {S, T,0,1,$}.

PDA simulates a leftmost derivation using CFG

� Pushes RHS of rule in reverse order onto stack.

CS 341: Chapter 2 2-60

• Recall CFG rules: S → 0TS1 | 1T0, T → 1

• Corresponding PDA:

q1 q2 q3
ε, ε → S$

ε, S → 0TS1
ε, S → 1T0
ε, T → 1
1, 1 → ε
0, 0 → ε

ε, $ → ε

• Recall leftmost derivation of string 011101 ∈ L(G):

S ⇒ 0TS1 ⇒ 01S1 ⇒ 011T01 ⇒ 011101

• Let’s now process string 011101 on PDA.

When in state q2, look at top of stack to determine next transition.

CS 341: Chapter 2 2-61

0. Start in state q1 with 011101 on input tape and empty stack.

Current state ⇓

q1 q2 q3
ε, ε → S$

ε, S → 0TS1
ε, S → 1T0
ε, T → 1
1, 1 → ε
0, 0 → ε

ε, $ → ε

0 1 1 1 0 1

Next unread symbol

Input string Stack

Leftmost derivation of string 011101 ∈ L(G):

S ⇒ 0TS1 ⇒ 01S1 ⇒ 011T01 ⇒ 011101

CS 341: Chapter 2 2-62

1. Read nothing, pop nothing, move to q2, and push $ and then S.

⇓

q1 q2 q3
ε, ε → S$

ε, S → 0TS1
ε, S → 1T0
ε, T → 1
1, 1 → ε
0, 0 → ε

ε, $ → ε

0 1 1 1 0 1

Input string

S
$

Stack

Leftmost derivation of string 011101 ∈ L(G):

S ⇒ 0TS1 ⇒ 01S1 ⇒ 011T01 ⇒ 011101

CS 341: Chapter 2 2-63

2. Read nothing, pop S, return to q2, and push 0TS1.

⇓

q1 q2 q3
ε, ε → S$

ε, S → 0TS1
ε, S → 1T0
ε, T → 1
1, 1 → ε
0, 0 → ε

ε, $ → ε

0 1 1 1 0 1

Input string

0
T
S
1
$

Stack

Leftmost derivation of string 011101 ∈ L(G):

S ⇒ 0TS1 ⇒ 01S1 ⇒ 011T01 ⇒ 011101

CS 341: Chapter 2 2-64

3. Read 0, pop 0, return to q2, and push nothing.

⇓

q1 q2 q3
ε, ε → S$

ε, S → 0TS1
ε, S → 1T0
ε, T → 1
1, 1 → ε
0, 0 → ε

ε, $ → ε

0 1 1 1 0 1

Input string

T
S
1
$

Stack

Leftmost derivation of string 011101 ∈ L(G):

S ⇒ 0TS1 ⇒ 01S1 ⇒ 011T01 ⇒ 011101

CS 341: Chapter 2 2-65

4. Read nothing, pop T , return to q2, and push 1.

⇓

q1 q2 q3
ε, ε → S$

ε, S → 0TS1
ε, S → 1T0
ε, T → 1
1, 1 → ε
0, 0 → ε

ε, $ → ε

0 1 1 1 0 1

Input string

1
S
1
$

Stack

Leftmost derivation of string 011101 ∈ L(G):

S ⇒ 0TS1 ⇒ 01S1 ⇒ 011T01 ⇒ 011101

CS 341: Chapter 2 2-66

5. Read 1, pop 1, return to q2, and push nothing.

⇓

q1 q2 q3
ε, ε → S$

ε, S → 0TS1
ε, S → 1T0
ε, T → 1
1, 1 → ε
0, 0 → ε

ε, $ → ε

0 1 1 1 0 1

Input string

S
1
$

Stack

Leftmost derivation of string 011101 ∈ L(G):

S ⇒ 0TS1 ⇒ 01S1 ⇒ 011T01 ⇒ 011101

CS 341: Chapter 2 2-67

6. Read nothing, pop S, return to q2, and push 1T0.

⇓

q1 q2 q3
ε, ε → S$

ε, S → 0TS1
ε, S → 1T0
ε, T → 1
1, 1 → ε
0, 0 → ε

ε, $ → ε

0 1 1 1 0 1

Input string

1
T
0
1
$

Stack

Leftmost derivation of string 011101 ∈ L(G):

S ⇒ 0TS1 ⇒ 01S1 ⇒ 011T01 ⇒ 011101

CS 341: Chapter 2 2-68

7. Read 1, pop 1, return to q2, and push nothing.

⇓

q1 q2 q3
ε, ε → S$

ε, S → 0TS1
ε, S → 1T0
ε, T → 1
1, 1 → ε
0, 0 → ε

ε, $ → ε

0 1 1 1 0 1

Input string

T
0
1
$

Stack

Leftmost derivation of string 011101 ∈ L(G):

S ⇒ 0TS1 ⇒ 01S1 ⇒ 011T01 ⇒ 011101

CS 341: Chapter 2 2-69

8. Read nothing, pop T , return to q2, and push 1.

⇓

q1 q2 q3
ε, ε → S$

ε, S → 0TS1
ε, S → 1T0
ε, T → 1
1, 1 → ε
0, 0 → ε

ε, $ → ε

0 1 1 1 0 1

Input string

1
0
1
$

Stack

Leftmost derivation of string 011101 ∈ L(G):

S ⇒ 0TS1 ⇒ 01S1 ⇒ 011T01 ⇒ 011101

CS 341: Chapter 2 2-70

9. Read 1, pop 1, return to q2, and push nothing.

⇓

q1 q2 q3
ε, ε → S$

ε, S → 0TS1
ε, S → 1T0
ε, T → 1
1, 1 → ε
0, 0 → ε

ε, $ → ε

0 1 1 1 0 1

Input string

0
1
$

Stack

Leftmost derivation of string 011101 ∈ L(G):

S ⇒ 0TS1 ⇒ 01S1 ⇒ 011T01 ⇒ 011101

CS 341: Chapter 2 2-71

10. Read 0, pop 0, return to q2, and push nothing.

⇓

q1 q2 q3
ε, ε → S$

ε, S → 0TS1
ε, S → 1T0
ε, T → 1
1, 1 → ε
0, 0 → ε

ε, $ → ε

0 1 1 1 0 1

Input string

1
$

Stack

Leftmost derivation of string 011101 ∈ L(G):

S ⇒ 0TS1 ⇒ 01S1 ⇒ 011T01 ⇒ 011101

CS 341: Chapter 2 2-72

11. Read 1, pop 1, return to q2, and push nothing.

⇓

q1 q2 q3
ε, ε → S$

ε, S → 0TS1
ε, S → 1T0
ε, T → 1
1, 1 → ε
0, 0 → ε

ε, $ → ε

0 1 1 1 0 1

Input string

$

Stack

Leftmost derivation of string 011101 ∈ L(G):

S ⇒ 0TS1 ⇒ 01S1 ⇒ 011T01 ⇒ 011101

CS 341: Chapter 2 2-73

12. Read nothing, pop $, move to q3, push nothing, and accept .

⇓

q1 q2 q3
ε, ε → S$

ε, S → 0TS1
ε, S → 1T0
ε, T → 1
1, 1 → ε
0, 0 → ε

ε, $ → ε

0 1 1 1 0 1

Input string Stack

Leftmost derivation of string 011101 ∈ L(G):

S ⇒ 0TS1 ⇒ 01S1 ⇒ 011T01 ⇒ 011101

CS 341: Chapter 2 2-74

Constructed PDA is Not Compliant

• Recall CFG rules: S → 0TS1 | 1T0, T → 1

• Corresponding PDA:

q1 q2 q3
ε, ε → S$

ε, S → 0TS1
ε, S → 1T0
ε, T → 1
1, 1 → ε
0, 0 → ε

ε, $ → ε

• Problem: pushing strings onto stack instead of ≤ 1 symbols,
which is not allowed in PDA specification.

PDA transition fcn δ : Q×Σε × Γε → P(Q× Γε)

CS 341: Chapter 2 2-75

Solution: Add Extra States as Needed

q r
a, b → xyz

becomes

q s t r
a, b → z ε, ε → y ε, ε → x

CS 341: Chapter 2 2-76

• For example, in our PDA

q1 q2 q3
ε, ε → S$

ε, S → 0TS1
ε, S → 1T0
ε, T → 1
1, 1 → ε
0, 0 → ε

ε, $ → ε

we replace

q1 q2
ε, ε → S$

with

q1 r q2
ε, ε → $ ε, ε → S

CS 341: Chapter 2 2-77

• Also, replace

q2

ε, S → 1T0

with q2

t u

ε, S → 0

ε, ε → T

ε, ε → 1

and replace

q2

ε, S → 0TS1

with q2

v x y

ε, S → 1

ε, ε → S ε, ε → T

ε, ε → 0

CS 341: Chapter 2 2-78

• So our final PDA from the CFG is

q1 r q2

t u

v x y

q3
ε, ε → $ ε, ε → S

ε, S → 0

ε, ε → T

ε, ε → 1
ε, S → 1

ε, ε → S ε, ε → T

ε, ε → 0

ε, T → 1
1, 1 → ε
0, 0 → ε

ε, $ → ε

CS 341: Chapter 2 2-79

Regular ⇒ CFL

Corollary 2.32
If A is a regular language, then A is also a CFL.

Proof.

• Suppose A is regular.

• Corollary 1.40 implies A has an NFA.

• But an NFA is just a PDA that ignores stack (always pops/pushes ε).

• So A has a PDA.

• Thus, Theorem 2.20 implies A is context-free.

Remark: Converse is not true.
For example, {0n1n | n ≥ 0 } is CFL but not regular.

CS 341: Chapter 2 2-80

Pumping Lemma for CFLs

• Previously saw pumping lemma for regular languages.

• Analogous result holds for every context-free language A.

• Basic Idea: Derivation of long string s ∈ A has repeated variable R.

Long string implies tall parse tree, so must have repeated variable.

Can split string s ∈ A into 5 pieces s = uvxyz based on R.

uvixyiz ∈ A for all i ≥ 0.

• Consider language A with CFG G

S → CDa | CD

C → aD

D → Sb | b

• Below “long” derivation using G repeats variable R = D:

S ⇒ CDa ⇒ aDDa ⇒ abDa ⇒ abSba ⇒ abCDba

⇒ abaDDba ⇒ ababDba ⇒ ababbba

CS 341: Chapter 2 2-81

Repeated Variable in Path of Parse Tree

• Derivation of “long” string s = ababbba ∈ A repeats variable D:

S → CDa | CD

C → aD

D → Sb | b

S ⇒ CDa ⇒ aDDa ⇒ abDa ⇒ abSba ⇒ abCDba

⇒ abaDDba ⇒ ababDba ⇒ ababbba

• “Tall” parse tree repeats variable D on path from root to leaf.

S

C D

S

DC

D b

bDa

b

a

bRepeated

a

CS 341: Chapter 2 2-82

Split String Into 5 Pieces

• Split string s ∈ A into

s = ab︸︷︷︸
u

a︸︷︷︸
v

b︸︷︷︸
x

bb︸︷︷︸
y

a︸︷︷︸
z

using repeated variable D.

• In depth-first traversal of
tree

S

C D a

S b

C D

a D

b

b

a D

b

u
v

x
y

z

u = ab is before D-D subtree

v = a is before second D within D-D subtree

x = b is what second D eventually becomes

y = bb is after second D within D-D subtree

z = a is after D-D subtree

CS 341: Chapter 2 2-83

Split Long String Into 5 Pieces

•More generally, consider “long”
string s ∈ A.

• Parse tree is “tall”

∃ repeated variable R in
path from root S to leaf.

R

x

R

v y

S

u z

• Split string s = uvxyz into 5 pieces based on repeated variable R:

u is before R-R subtree (in depth-first order)

v is before second R within R-R subtree

x is what second R eventually becomes

y is after second R within R-R subtree

z is after R-R subtree

CS 341: Chapter 2 2-84

Subtrees Yield . . .

R

R

v y

S

u z

R

x

R S uRz==>

R vRy==>

R x==>

CS 341: Chapter 2 2-85

Can Pump To Obtain Other Strings in A

• Parse tree for string s ∈ A implies

S
∗
⇒ uRz for u, z ∈ Σ∗

R
∗
⇒ vRy for v, y ∈ Σ∗

R
∗
⇒ x for x ∈ Σ∗

R

x

R

v y

S

u z

• Can derive string s = uvxyz ∈ A

S
∗
⇒ uRz

∗
⇒ uvRyz

∗
⇒ uvxyz ∈ A

• Also for each i ≥ 0, can derive string

S
∗
⇒ uRz

∗
⇒ uvRyz

∗
⇒ uvvRyyz

∗
⇒ · · ·

∗
⇒ uviRyiz

∗
⇒ uvixyiz ∈ A

CS 341: Chapter 2 2-86

Pumping a Parse Tree

• Recall: S
∗
⇒ uRz, R

∗
⇒ vRy, R

∗
⇒ x

• Consider parse tree of uvxyz ∈ A

R

x

R

v y

S

u z

CS 341: Chapter 2 2-87

Pumping Up a Parse Tree

• Recall: S
∗
⇒ uRz, R

∗
⇒ vRy, R

∗
⇒ x

• Using R-R subtree twice shows uvvxyyz = uv2xy2z ∈ A

R

x

R

v y

S

u z

R

v y

CS 341: Chapter 2 2-88

Pumping Up Multiple Times

• Recall: S
∗
⇒ uRz, R

∗
⇒ vRy, R

∗
⇒ x

• Using R-R subtree thrice shows uv3xy3z ∈ A

R

x

R

v y

S

u z

R

v y

R

v y

CS 341: Chapter 2 2-89

Pumping Down a Parse Tree

• Recall: S
∗
⇒ uRz, R

∗
⇒ vRy, R

∗
⇒ x

• Removing R-R subtree shows uxz = uv0xy0z ∈ A

R

x

S

u z

CS 341: Chapter 2 2-90

When Is Pumping Possible?

• Key to Pumping: repeated
variable R in parse tree.

S
∗
⇒ uRz for u, z ∈ Σ∗

R
∗
⇒ vRy for v, y ∈ Σ∗

R
∗
⇒ x for x ∈ Σ∗

string s = uvxyz ∈ A

R

x

R

v y

S

u z

• Repeated variable R
∗
⇒ vRy, so “v-y pumping” possible:

S
∗
⇒ uRz

∗
⇒ uvRyz

∗
⇒ uviRyiz

∗
⇒ uvixyiz ∈ A

• If tree is tall enough, then repeated variable in path from root to leaf.

CFG has finite number |V | of variables.

How tall does parse tree have to be to ensure pumping possible?

Length of path between two nodes = # edges in path.

Tree height = # edges on longest path from root to a leaf.

CS 341: Chapter 2 2-91

Can Pump If Parse Tree Is Tall Enough

R

x

R

v y

S

u z

• Path from root S to leaf

Leaf is a terminal ∈ Σ

All other nodes along path are variables ∈ V .

• If height of tree ≥ |V |+1, where |V | = # variables in CFG

then ∃ repeated variable on longest path from root to leaf.

• How long does string s ∈ A have to be to ensure tall enough tree?

CS 341: Chapter 2 2-92

Previous Example

|V | = 3 variables in below CFG:

S → CDa | CD

C → aD

D → Sb | b

In parse tree for ababbba, longest path has length 5 ≥ |V |+1 = 4

S

C D

S

DC

D b

bDa

b

a

bRepeated

a

CS 341: Chapter 2 2-93

If String s is Long Enough, Then Can Pump

• Let A have CFG in which longest rule has right-side length b ≥ 2:

C → D1 · · ·Db

So each node in tree has ≤ b children.

At most b leaves one step from root.

At most b2 leaves 2 steps from root, and so on.

If tree has height ≤ h, then

� ≤ bh leaves, so generated string s has length |s| ≤ bh.

Equiv: If string s ∈ A has |s| ≥ bh +1, then tree height ≥ h+1.

• Let |V | = # variables in CFG.

• If string s ∈ A has length |s| ≥ p ≡ b|V |+1, then

tree height ≥ |V |+1 because b|V |+1 ≥ b|V | +1.

some variable on longest path in tree is repeated

can pump parse tree.

CS 341: Chapter 2 2-94

Pumping Lemma for CFLs

Theorem 2.34
If A is context-free language, then ∃ pumping length p where,
if s ∈ A with |s| ≥ p, then s can be split into 5 pieces

s = uvxyz

satisfying the properties

1. uvixyiz ∈ A for each i ≥ 0,

2. |vy | > 0, and

3. |vxy | ≤ p.

Remarks:

• Property 1 implies that uxz ∈ A by taking i = 0.

• Property 2 says that vy cannot be the empty string.

• Property 3 is sometimes useful.

• Key idea: For each long enough string s in CFL A,
can use s to construct infinitely many other strings in A.

CS 341: Chapter 2 2-95

Proof of Pumping Lemma for CFLs

• Let G = (V,Σ, R, S) be CFG of A.

•Maximum size of rules is b ≥ 2: C → D1 · · ·Db

• From slide 2-93: If string s ∈ A has length |s| ≥ p ≡ b|V |+1,

then longest path in parse tree has some repeated variable R:

S
∗
⇒ uRz

∗
⇒ uvRyz

∗
⇒ uvxyz

• It follows that uvixyiz ∈ A for all i = 0,1,2,

• Assume

parse tree is smallest one for string s

repeated R is among the bottom |V |+1 variables on longest path.

• Then in tree, repeated part R ∗
⇒ vRy and R

∗
⇒ x satisfy

|vy| > 0 because tree is minimal.

bottom subtree with R
∗
⇒ vRy and R

∗
⇒ x has height ≤ |V |+1,

so |vxy| ≤ b|V |+1 = p.

CS 341: Chapter 2 2-96

Non-CFL

Remark: CFL Pumping Lemma (PL) mainly used to show certain
languages are not CFL.

Example: Prove that B = { anbncn | n ≥ 0 } is non-CFL.

Proof.

• Suppose B is CFL, so PL implies B has pumping length p ≥ 1.

• Consider string s = apbpcp ∈ B, so |s| = 3p ≥ p.

• PL: can split s into 5 pieces s = uvxyz = apbpcp satisfying
1. uvixyiz ∈ B for all i ≥ 0

2. |vy| > 0

3. |vxy| ≤ p

• For contradiction, show cannot split s = uvxyz satisfying 1–3.

Show every possible split satisfying Property 2 violates Property 1.

CS 341: Chapter 2 2-97

• Recall s = uvxyz = aa · · · a︸ ︷︷ ︸
p

bb · · · b︸ ︷︷ ︸
p

cc · · · c︸ ︷︷ ︸
p

.

• Possibilities for split s = uvxyz satisfying Property 2: |vy| > 0

(i) Strings v and y are uniform [e.g., v = a · · · a and y = b · · · b].

Then uv2xy2z won’t have same number of a’s, b’s and c’s
because |vy| > 0.

Hence, uv2xy2z �∈ B.

(ii) Strings v and y are not both uniform
[e.g., v = a · · · ab · · · b and y = b · · · b].

Then uv2xy2z �∈ L(a∗b∗c∗): symbols not grouped together.

Hence, uv2xy2z �∈ B.

• Thus, every split satisfying Property 2 has uv2xy2z �∈ B,
so Property 1 violated.

• Contradiction, so B = { anbncn | n ≥ 0 } is not a CFL.

CS 341: Chapter 2 2-98

Prove C = { aibjck | 0 ≤ i ≤ j ≤ k } is not CFL

• Suppose C is CFL, so PL implies C has pumping length p.

• Take string s = aa · · · a︸ ︷︷ ︸
p

bb · · · b︸ ︷︷ ︸
p

cc · · · c︸ ︷︷ ︸
p

∈ C, so |s| = 3p ≥ p.

• PL: can split s = apbpcp into 5 pieces s = uvxyz satisfying
1. uvixyiz ∈ C for every i ≥ 0, 2. |vy| > 0, 3. |vxy| ≤ p.

• Property 3 implies vxy can’t contain 3 different types of symbols.

• Two possibilities for v, x, y satisfying |vy| > 0 and |vxy| ≤ p:

(i) If vxy ∈ L(a∗b∗), then z has all the c’s

string uv2xy2z has too few c’s because z not pumped

Hence, uv2xy2z �∈ C

(ii) If vxy ∈ L(b∗c∗), then u has all the a’s

string uv0xy0z = uxz has too many a’s

Hence, uv0xy0z �∈ C

• Every split s = uvxyz satisfying 2–3 violates 1, so C isn’t CFL.

CS 341: Chapter 2 2-99

Prove D = {ww | w ∈ {0,1}∗ } is not CFL

• Suppose D is CFL, so PL implies D has pumping length p.

• Take s = 00 · · ·0︸ ︷︷ ︸
p

11 · · ·1︸ ︷︷ ︸
p

00 · · ·0︸ ︷︷ ︸
p

11 · · ·1︸ ︷︷ ︸
p

∈ D, so |s| = 4p ≥ p.

• PL: can split s into 5 pieces s = uvxyz satisfying
1. uvixyiz ∈ D for every i ≥ 0, 2. |vy| > 0, 3. |vxy| ≤ p.

(i) If vxy is entirely left of middle of 0p1p0p1p,

then second half of uv2xy2z starts with a 1

so can’t write uv2xy2z as ww because first half starts with 0.

(ii) Similar reasoning: if vxy is entirely right of middle of 0p1p0p1p,

then uv2xy2z �∈ D

(iii) If vxy straddles middle of 0p1p0p1p,

then uv0xy0z = uxz = 0p1j 0k 1p �∈ D

(because j or k < p)

• Every split s = uvxyz satisfying 2–3 violates 1, so D isn’t CFL.

CS 341: Chapter 2 2-100

Remarks on CFL Pumping Lemma

Often more difficult to apply CFL pumping lemma (Theorem 2.34)
than pumping lemma for regular languages (Theorem 1.70).

• Carefully choose string s in language to get contradiction.

Not all strings s will give contradiction.

• CFL pumping lemma: “. . . can split s into 5 pieces s = uvxyz

satisfying all of Properties 1–3.”

• To get contradiction, must show cannot split s into 5 pieces
s = uvxyz satisfying all of Properties 1–3.

Need to show every possible split s = uvxyz violates
at least one of Properties 1–3.

CS 341: Chapter 2 2-101

CFLs Closed Under Union

Is class of CFLs closed under standard operations?

Theorem:
If A1 and A2 are CFLs, then union A1 ∪A2 is CFL.

Proof.

• Assume

A1 has CFG G1 = (V1,Σ, R1, S1)

A2 has CFG G2 = (V2,Σ, R2, S2).

• Assume that V1 ∩ V2 = ∅.

• A1 ∪A2 has CFG G3 = (V3,Σ, R3, S3) with

V3 = V1 ∪ V2 ∪ {S3}, where S3 �∈ V1 ∪ V2 is new start variable

R3 = R1 ∪ R2 ∪ {S3 → S1, S3 → S2 }.

CS 341: Chapter 2 2-102

Example of Union of CFLs

• Suppose A1 has CFG G1 with rules:

S → aS | bXb

X → ab | baXb

• Suppose A2 has CFG G2 with rules:

S → Sbb | aXba

X → b | XaX

• Then A1 ∪ A2 has CFG G3 with start variable S3 and rules:

S3 → S1 | S2
S1 → aS1 | bX1b

X1 → ab | baX1b

S2 → S2bb | aX2ba

X2 → b | X2aX2

CS 341: Chapter 2 2-103

Some Closure Properties of CFLs

• Let A1 and A2 be two CFLs.

• Can prove that

union A1 ∪ A2 is always CFL (slide 2-101)

concatenation A1 ◦A2 is always CFL

Kleene-star A∗
1 is always CFL

• But

intersection A1 ∩ A2 is not necessarily CFL

� A1 = { anbnck | n ≥ 0, k ≥ 0} and
A2 = { akbncn | n ≥ 0, k ≥ 0}

complement A1 = Σ∗ −A1 is not necessarily CFL.

CS 341: Chapter 2 2-104

Hierarchy of Languages (so far)

Finite {110, 01 }

Regular
(DFA, NFA, Reg Exp)

(0 ∪ 1)∗

Context-free
(CFG, PDA)

{0n1n | n ≥ 0 }

{0n1n2n | n ≥ 0 }

All languages

Examples

CS 341: Chapter 2 2-105

Summary of Chapter 2

• Context-free language is defined by CFG

• Parse trees

• Chomsky normal form: A → BC or A → x, with A ∈ V ,
B,C ∈ V − {S}, x ∈ Σ. Also allow rule S → ε.

• Pushdown automaton is NFA with stack for additional memory.

• Equivalence of PDAs and CFGs

• Regular ⇒ CFL, but CFL �⇒ Regular.

• Pumping lemma for CFLs: long strings in CFL can be pumped.

Repeat part of tall parse tree corresponding to repeated variable

Used to prove certain languages are non-CFL

• Class of CFLs closed under union, Kleene star, concatenation

• Class of CFLs not closed under intersection, complementation

