Context-Free Languages

CS 341: Foundations of CS II

Marvin K. Nakayama
Computer Science Department
New Jersey Institute of Technology
Newark, NJ 07102

Contents

- Context-Free Grammar (CFG)
- Chomsky Normal Form
- Pushdown Automata (PDA)
- PDA \Leftrightarrow CFG
- Regular Language \Rightarrow CFL
- Pumping Lemma for CFLs

Context-Free Languages (CFLs)

- Consider language $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$, which is nonregular.
- Start variable S with "substitution rules":

$$
\begin{aligned}
& S \rightarrow 0 S 1 \\
& S \rightarrow \varepsilon
\end{aligned}
$$

- Rules can yield string $0^{k} 1^{k}$ by
- applying rule " $S \rightarrow 0 S 1$ " k times,
- followed by rule " $S \rightarrow \varepsilon$ " once.
- Derivation of string $0^{3} 1^{3}$ $S \Rightarrow 0 S 1 \Rightarrow 00 S 11 \Rightarrow 000 S 111 \Rightarrow 000 \varepsilon 111=000111$

Definition of CFG

Definition: Context-free grammar (CFG) $G=(V, \Sigma, R, S)$ where

1. V is finite set of variables (AKA nonterminals)
2. Σ is finite set of terminals (with $V \cap \Sigma=\emptyset$)
3. R is finite set of substitution rules (AKA productions), each of the form

$$
L \rightarrow X
$$

where

- $L \in V$
- $X \in(V \cup \Sigma)^{*}$

4. S is start variable, where $S \in V$

Example: Language $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ has CFG $G=(V, \Sigma, R, S)$

- Variables $V=\{S\}$
- Terminals $\Sigma=\{0,1\}$
- Start variable S
- Rules R :

$$
\begin{aligned}
& S \rightarrow 0 S 1 \\
& S \rightarrow \varepsilon
\end{aligned}
$$

- Combine rules with same left-hand side in Backus-Naur (or Backus Normal) Form (BNF):

$$
S \rightarrow 0 S 1 \mid \varepsilon
$$

Remark:

- A single-step derivation " \Rightarrow " consists of substituting a variable by a string of variables and terminals according to a substitution rule.

Example: With the rule " $A \rightarrow B C$ ", we can have

$$
01 A D 0 \Rightarrow 01 B C D 0
$$

Definition: If

- $u, v, w \in(V \cup \Sigma)^{*}$, and
- $A \rightarrow w$ is a rule of the grammar,
then $u A v$ yields $u w v$, written

$$
u A v \Rightarrow u w v
$$

Deriving Strings Using CFG

Language of CFG

Definition: u derives v, written $u \stackrel{*}{\Rightarrow} v$, if

- $u=v$, or
- $\exists u_{1}, u_{2}, \ldots, u_{k}$ for some $k \geq 0$ such that

$$
u \Rightarrow u_{1} \Rightarrow u_{2} \Rightarrow \cdots \Rightarrow u_{k} \Rightarrow v
$$

Remark: " $\stackrel{*}{\Rightarrow}$ " denotes a sequence of ≥ 0 single-step derivations.
Example: With the rules " $A \rightarrow B 1 \mid D 0 C$ ",

$$
0 A A \stackrel{*}{\Rightarrow} 0 D 0 C B 1
$$

Definition: The language of CFG $G=(V, \Sigma, R, S)$ is

$$
L(G)=\left\{w \in \Sigma^{*} \mid S \stackrel{*}{\Rightarrow} w\right\}
$$

Such a language is called context-free, and satisfies $L(G) \subseteq \Sigma^{*}$.

Example of CFG

- CFG $G=(V, \Sigma, R, S)$ with

1. $V=\{S\}$
2. $\Sigma=\{0,1\}$
3. Rules R :

$$
S \rightarrow 0 S \mid \varepsilon
$$

- Then $L(G)=\left\{0^{n} \mid n \geq 0\right\}$.
- For example, S derives 0^{3}

$$
S \Rightarrow 0 S \Rightarrow 00 S \Rightarrow 000 S \Rightarrow 000 \varepsilon=000
$$

- Note that \rightarrow and \Rightarrow are different.
- \rightarrow used in defining rules
- \Rightarrow used in derivation

Example of CFG

- CFG $G=(V, \Sigma, R, S)$ with

1. $V=\{S\}$
2. $\Sigma=\{0,1\}$
3. Rules R :

$$
S \rightarrow 0 S|1 S| \varepsilon
$$

- Then $L(G)=\Sigma^{*}$.
- For example, S derives 0100

$$
S \Rightarrow 0 S \Rightarrow 01 S \Rightarrow 010 S \Rightarrow 0100 S \Rightarrow 0100
$$

- CFG $G=(V, \Sigma, R, S)$ with

1. $V=\{S\}$
2. $\Sigma=\{0,1\}$
3. Rules R :

$$
S \rightarrow 0 S|1 S| 1
$$

- Then $L(G)=\left\{w \in \Sigma^{*} \mid w=s 1\right.$ for some $\left.s \in \Sigma^{*}\right\}$,
i.e., strings that end in 1 .
- For example, S derives 011

$$
S \Rightarrow 0 S \Rightarrow 01 S \Rightarrow 011
$$

Example of CFG

- CFG $G=(V, \Sigma, R, S)$ with

1. $V=\{S, Z\}$
2. $\Sigma=\{0,1\}$
3. Rules R :

$$
\begin{aligned}
& S \rightarrow 0 S 1 \mid Z \\
& Z \rightarrow 0 Z \mid \varepsilon
\end{aligned}
$$

- Then $L(G)=\left\{0^{i} 1^{j} \mid i \geq j\right\}$.
- For example, S derives $0^{5} 1^{3}$

$$
\begin{aligned}
S & \Rightarrow 0 S 1 \Rightarrow 00 S 11 \Rightarrow 000 S 111 \Rightarrow 000 Z 111 \\
& \Rightarrow 0000 Z 111 \Rightarrow 00000 Z 111 \Rightarrow 00000 \varepsilon 111 \\
& =00000111
\end{aligned}
$$

CFG for Palindrome

- $\operatorname{PALINDROME}=\left\{w \in \Sigma^{*} \mid w=w^{\mathcal{R}}\right\}$, where $\Sigma=\{a, b\}$.
- CFG $G=(V, \Sigma, R, S)$ with

1. $V=\{S\}$
2. $\Sigma=\{a, b\}$
3. Rules R :

$$
S \rightarrow a S a|b S b| a|b| \varepsilon
$$

- Then $L(G)=$ PALINDROME
- S derives bbaabb

$$
S \Rightarrow b S b \Rightarrow b b S b b \Rightarrow b b a S a b b \Rightarrow b b a \varepsilon a b b=b b a a b b
$$

- S derives aabaa

$$
S \Rightarrow a S a \Rightarrow a a S a a \Rightarrow a a b a a
$$

CFG for EVEN-EVEN

- Recall language EVEN-EVEN is the set of strings over $\Sigma=\{a, b\}$ with even number of a 's and even number of b 's.
- EVEN-EVEN has regular expression

$$
\left(a a \cup b b \cup(a b \cup b a)(a a \cup b b)^{*}(a b \cup b a)\right)^{*}
$$

- CFG $G=(V, \Sigma, R, S)$ with

1. $V=\{S, X, Y\}$
2. $\Sigma=\{a, b\}$
3. Rules R :

$$
\begin{aligned}
S & \rightarrow a a S|b b S| X Y X S \mid \varepsilon \\
X & \rightarrow a b \mid b a \\
Y & \rightarrow a a Y|b b Y| \varepsilon
\end{aligned}
$$

- Then $L(G)=$ EVEN-EVEN

Derivation Tree

- CFG

$$
S \rightarrow S+S|S-S| S \times S|S / S|(S)|-S| 0|1| \cdots \mid 9
$$

- Can generate string $2 \times 3+4$ using derivation

$$
\begin{aligned}
S & \Rightarrow S+S \Rightarrow S \times S+S \Rightarrow 2 \times S+S \\
& \Rightarrow 2 \times 3+S \Rightarrow 2 \times 3+4
\end{aligned}
$$

- Leftmost derivation: leftmost variable replaced in each step.
- Corresponding derivation (or parse) tree

- Depth-first traversal of tree
- Starting at root, walk around tree with left hand always touching tree.
- string = sequence of leaves visited.
- CFG $G=(V, \Sigma, R, S)$ with

1. $V=\{S\}$
2. $\Sigma=\{+,-, \times, /,(), 0,1,2,, \ldots, 9\}$
3. Rules R :

$$
S \rightarrow S+S|S-S| S \times S|S / S|(S)|-S| 0|1| \cdots \mid 9
$$

- $L(G)$ is a set of valid arithmetic expressions over single-digit integers.
- S derives string $2 \times(3+4)$

$$
\begin{aligned}
S & \Rightarrow S \times S \Rightarrow S \times(S) \Rightarrow S \times(S+S) \\
& \Rightarrow 2 \times(S+S) \Rightarrow 2 \times(3+S) \Rightarrow 2 \times(3+4)
\end{aligned}
$$

Ambiguous CFG

$$
S \rightarrow S+S|S-S| S \times S|S / S|(S)|-S| 0|1| \cdots \mid
$$

- Another derivation of string $2 \times 3+4$:

$$
\begin{aligned}
S & \Rightarrow S \times S \Rightarrow S \times S+S \Rightarrow 2 \times S+S \\
& \Rightarrow 2 \times 3+S \Rightarrow 2 \times 3+4
\end{aligned}
$$

which is not a leftmost derivation.

- Corresponding derivation tree:

Definition: CFG G is ambiguous if \exists string $w \in L(G)$ having different parse trees (or equivalently, different leftmost derivations).

- Model for natural languages (Noam Chomsky)

$$
\begin{aligned}
\langle\text { SENTENCE }\rangle & \rightarrow\langle\text { NOUN-PHRASE }\rangle\langle\text { VERB-PHRASE }\rangle \\
\langle\text { NOUN-PHRASE }\rangle & \rightarrow\langle\text { ARTICLE }\rangle\langle\text { NOUN }\rangle \mid\langle\text { ARTICLE }\rangle\langle\text { ADJ }\rangle\langle\text { NOUN }\rangle \\
\langle\text { VERB-PHRASE }\rangle & \rightarrow\langle\text { VERB }|\langle\text { VERB }\rangle\langle\text { NOUN-PHRASE }\rangle \\
\langle\text { ARTICLE }\rangle & \rightarrow \text { a } \mid \text { the } \\
\langle\text { NOUN }\rangle & \rightarrow \text { girl } \mid \text { boy } \mid \text { cat } \\
\langle\text { ADJ }\rangle & \rightarrow \text { big } \mid \text { small } \mid \text { blue } \\
\langle\text { VERB }\rangle & \rightarrow \text { sees } \mid \text { likes }
\end{aligned}
$$

Using above CFG, which has 〈SENTENCE〉 as start variable, can derive

$$
\begin{aligned}
\langle\text { SENTENCE }\rangle & \Rightarrow\langle\text { NOUN-PHRASE }\rangle\langle\text { VERB-PHRASE }\rangle \\
& \Rightarrow\langle\text { ARTICLE }\rangle\langle\text { NOUN }\rangle\langle\text { VERB-PHRASE }\rangle \\
& \Rightarrow\langle\text { ARTICLE }\rangle\langle\text { NOUN }\rangle\langle\text { VERB }\rangle\langle\text { NOUN-PHRASE }\rangle \\
& \Rightarrow\langle\text { ARTICLE }\rangle\langle\text { NOUN }\rangle\langle\text { VERB }\rangle\langle\text { ARTICLE }\rangle\langle\text { ADJ }\rangle\langle\text { NOUN }\rangle \\
& \stackrel{*}{\Rightarrow} \text { the girl sees a blue cat }
\end{aligned}
$$

Applications of CFLs

- Specification of programming languages:
- parsing a computer program
- Describes mathematical structures, etc.
- Intermediate class between
- regular languages (Chapter 1) and
- computable languages (Chapters 3 and 4)

Context-Free Languages

Definition: Any language that can be generated by CFG is a context-free language (CFL).

Remark: The CFL $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ shows us that certain CFLs are nonregular.

Questions:

1. Are all regular languages context-free?
2. Are all languages context-free?

Chomsky Normal Form

Definition: CFG $G=(V, \Sigma, R, S)$ is in Chomsky normal form if each rule is in one of three forms:

$$
\begin{aligned}
A & \rightarrow B C \\
\text { or } A & \rightarrow x \\
\text { or } S & \rightarrow \varepsilon
\end{aligned}
$$

with

- variables $A \in V$ and $B, C \in V-\{S\}$, and
- terminal $x \in \Sigma$

Example: Rules of CFG in Chomsky normal form with $V=\{S, W, X\}$, $\Sigma=\{a, b\}$:

$$
\begin{aligned}
S & \rightarrow X X|X W| a \mid \varepsilon \\
X & \rightarrow W X \mid b \\
W & \rightarrow a
\end{aligned}
$$

Remark: Grammars in Chomsky normal form are far easier to analyze.

Can Always Put CFG into Chomsky Normal Form
Recall: CFG in Chomsky normal form if each rule has form:

$$
A \rightarrow B C \quad \text { or } \quad A \rightarrow x \quad \text { or } \quad S \rightarrow \varepsilon
$$

where $A \in V ; \quad B, C \in V-\{S\} ; \quad x \in \Sigma$.

Theorem 2.9

Every CFL can be described by a CFG in Chomsky normal form.

Proof Idea:

- Start with CFG $G=(V, \Sigma, R, S)$.
- Replace, one-by-one, every rule that is not "Chomsky".
- Need to take care of:
- Start variable (not allowed on RHS of rules)
- ε-rules $(A \rightarrow \varepsilon$ not allowed when A isn't start variable)
- all other violating rules $(A \rightarrow B, A \rightarrow a B c, A \rightarrow B C D E)$

4. Replace problematic terminals a by variable T_{a} with rule $T_{a} \rightarrow a$.

- Before: $A \rightarrow a b$
- After: $A \rightarrow T_{a} T_{b}, \quad T_{a} \rightarrow a, \quad T_{b} \rightarrow b$.

5. Shorten long RHS to sequence of RHS's with only 2 variables each:

- Before: $A \rightarrow B_{1} B_{2} \cdots B_{k}$
- After: $A \rightarrow B_{1} A_{1}, A_{1} \rightarrow B_{2} A_{2}, \ldots, A_{k-2} \rightarrow B_{k-1} B_{k}$
- Thus, $A \Rightarrow B_{1} A_{1} \Rightarrow B_{1} B_{2} A_{2} \Rightarrow \cdots \Rightarrow B_{1} B_{2} \cdots B_{k}$

6. Be careful about removing rules:

- Do not introduce new rules that you removed earlier.
- Example: $A \rightarrow A$ simply disappears
- When removing $A \rightarrow \varepsilon$ rules, insert all new replacements:
- Before: $B \rightarrow A b A$ and $A \rightarrow \varepsilon \mid \ldots$
- After: $B \rightarrow A b A|b A| A b \mid b$ and $A \rightarrow \cdots$

Converting CFG into Chomsky Normal Form

1. Start variable not allowed on RHS of rule, so introduce

- New start variable S_{0}
- New rule $S_{0} \rightarrow S$

2. Remove ε-rules $A \rightarrow \varepsilon$, where $A \in V-\{S\}$.

- Before: $B \rightarrow x A y$ and $A \rightarrow \varepsilon \mid \cdots$
- After: $B \rightarrow x A y \mid x y$ and $A \rightarrow \cdots$

3. Remove unit rules $A \rightarrow B$, where $A \in V$.

- Before: $A \rightarrow B$ and $B \rightarrow x C y$
- After: $A \rightarrow x C y$ and $B \rightarrow x C y$

Example: Convert CFG into Chomsky Normal Form

Initial CFG G_{0} :

$$
\begin{aligned}
S & \rightarrow X S X \mid a Y \\
X & \rightarrow Y \mid S \\
Y & \rightarrow b \mid \varepsilon
\end{aligned}
$$

1. Introduce new start variable S_{0} and new rule $S_{0} \rightarrow S$:

$$
\begin{aligned}
S_{0} & \rightarrow S \\
S & \rightarrow X S X \mid a Y \\
X & \rightarrow Y \mid S \\
Y & \rightarrow b \mid \varepsilon
\end{aligned}
$$

Example: Convert CFG into Chomsky Normal Form

From previous slide

$$
\begin{aligned}
S_{0} & \rightarrow S \\
S & \rightarrow X S X \mid a Y \\
X & \rightarrow Y \mid S \\
Y & \rightarrow b \mid \varepsilon
\end{aligned}
$$

2. Remove ε-rules for which left side is not start variable:
(i) remove $Y \rightarrow \varepsilon$
(ii) remove $X \rightarrow \varepsilon$
$S_{0} \rightarrow S$
$S_{0} \rightarrow S$
$S \rightarrow X S X|a Y| a$
$S \rightarrow X S X|a Y| a|S X| X S \mid S$
$X \rightarrow Y|S| \varepsilon$
$X \rightarrow Y \mid S$
$Y \rightarrow b$
$Y \rightarrow b$

Example: Convert CFG into Chomsky Normal Form
From previous slide

$$
\begin{aligned}
S_{0} & \rightarrow S \\
S & \rightarrow X S X|a Y| a|S X| X S \mid S \\
X & \rightarrow Y \mid S \\
Y & \rightarrow b
\end{aligned}
$$

3. Remove unit rules:
(i) remove unit rule $S \rightarrow S$

$$
\begin{aligned}
S_{0} & \rightarrow S \\
S & \rightarrow X S X|a Y| a|S X| X S \\
X & \rightarrow Y \mid S \\
Y & \rightarrow b
\end{aligned}
$$

Example: Convert CFG into Chomsky Normal Form

From previous slide

$$
\begin{aligned}
S_{0} & \rightarrow S \\
S & \rightarrow X S X|a Y| a|S X| X S \\
X & \rightarrow Y \mid S \\
Y & \rightarrow b
\end{aligned}
$$

(ii) remove unit rule $S_{0} \rightarrow S$

$$
\begin{aligned}
S_{0} & \rightarrow X S X|a Y| a|S X| X S \\
S & \rightarrow X S X|a Y| a|S X| X S \\
X & \rightarrow Y \mid S \\
Y & \rightarrow b
\end{aligned}
$$

Example: Convert CFG into Chomsky Normal Form

From previous slide

$$
\begin{aligned}
S_{0} & \rightarrow X S X|a Y| a|S X| X S \\
S & \rightarrow X S X|a Y| a|S X| X S \\
X & \rightarrow Y \mid S \\
Y & \rightarrow b
\end{aligned}
$$

(iii) remove unit rule $X \rightarrow Y$

$$
\begin{aligned}
S_{0} & \rightarrow X S X|a Y| a|S X| X S \\
S & \rightarrow X S X|a Y| a|S X| X S \\
X & \rightarrow S \mid b \\
Y & \rightarrow b
\end{aligned}
$$

Example: Convert CFG into Chomsky Normal Form
From previous slide

$$
\begin{aligned}
S_{0} & \rightarrow X S X|a Y| a|S X| X S \\
S & \rightarrow X S X|a Y| a|S X| X S \\
X & \rightarrow S \mid b \\
Y & \rightarrow b
\end{aligned}
$$

(iv) remove unit rule $X \rightarrow S$

$$
\begin{aligned}
S_{0} & \rightarrow X S X|a Y| a|S X| X S \\
S & \rightarrow X S X|a Y| a|S X| X S \\
X & \rightarrow b|X S X| a Y|a| S X \mid X S \\
Y & \rightarrow b
\end{aligned}
$$

Example: Convert CFG into Chomsky Normal Form
From previous slide

$$
\begin{aligned}
S_{0} & \rightarrow X S X|a Y| a|S X| X S \\
S & \rightarrow X S X|a Y| a|S X| X S \\
X & \rightarrow b|X S X| a Y|a| S X \mid X S \\
Y & \rightarrow b
\end{aligned}
$$

4. Replace problematic terminals a by variable U with $U \rightarrow a$.

$$
\begin{aligned}
S_{0} & \rightarrow X S X|U Y| a|S X| X S \\
S & \rightarrow X S X|U Y| a|S X| X S \\
X & \rightarrow b|X S X| U Y|a| S X \mid X S \\
Y & \rightarrow b \\
U & \rightarrow a
\end{aligned}
$$

Pushdown Automata (PDAs)

- Pushdown automata (PDAs) are for CFLs what finite automata are for regular languages.
- PDA is presented with a string w over an alphabet Σ.
- PDA accepts or doesn't accept w.
- Key Differences Between PDA and DFA:
- PDAs have a single stack.
- PDAs allow for nondeterminism.
- PDA is "NFA with a single stack".
- Defn: Stack is data structure of unlimited size with 2 operations
- push adds item to top of stack,
- pop removes item from top of stack.

Last-In-First-Out (LIFO)

PDA Uses Stack

- General idea: CFLs are languages that can be recognized by automata that have one stack:
- $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is a CFL
- $\left\{0^{n} 1^{n} 0^{n} \mid n \geq 0\right\}$ is not a CFL
- Recall for alphabet Σ, we defined $\Sigma_{\varepsilon}=\Sigma \cup\{\varepsilon\}$.

- Let Γ be stack alphabet

- Symbols in Γ can be pushed onto and popped off stack.
- Often have $\$ \in \Gamma$ to mark bottom of stack.
- Let $\Gamma_{\varepsilon}=\Gamma \cup\{\varepsilon\}$.
- Pushing or popping ε leaves stack unchanged.

PDA Transitions

- If PDA
- currently in state q_{i},
- reads $a \in \Sigma_{\varepsilon}$, and
- pops $b \in \Gamma_{\varepsilon}$ off the stack,
- then PDA can
- move to state q_{j}
- push $c \in \Gamma_{\varepsilon}$ onto top of stack
- If $a=\varepsilon$, then no input symbol is read.
- If $b=\varepsilon$, then nothing is popped off stack.
- If $c=\varepsilon$, then nothing is pushed onto stack.
How a PDA Computes

- PDA starts in start state with input string $w \in \Sigma^{*}$
- stack initially empty
- PDA makes transitions among states
- Edge label: "read, pop \rightarrow push"
- Based on current state, what from Σ_{ε} is next read from w, and what from Γ_{ε} is popped from stack.
- Nondeterministically move to state and push from Γ_{ε} onto stack.
- If possible to end in accept state $\in F \subseteq Q$ after reading entire input w without crashing, then PDA accepts w.

Definition of PDA

Defn: Pushdown automaton (PDA) $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$:

- Q is finite set of states
- Σ is (finite) input alphabet
- Γ is (finite) stack alphabet
- q_{0} is start state, $q_{0} \in Q$
- F is set of accept states, $F \subseteq Q$
- $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \rightarrow \mathcal{P}\left(Q \times \Gamma_{\varepsilon}\right)$ is transition function

Nondeterministic: multiple choices when in state q_{1}, read $a \in \Sigma_{\varepsilon}$, and pop $b \in \Gamma_{\varepsilon}$; $\delta\left(q_{1}, a, b\right)=\left\{\left(q_{2}, c\right),\left(q_{3}, d\right),\left(q_{4}, c\right),\left(q_{4}, \varepsilon\right)\right\}$
$a, b \rightarrow c$
$a, b \rightarrow \varepsilon$

Example: PDA $M=\left(Q, \Sigma,\left\ulcorner, \delta, q_{1}, F\right)\right.$

- $Q=\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}$
- $\Sigma=\{0,1\}$
- $\Gamma=\{0, \$\}$ (use $\$$ to mark bottom of stack)
- q_{1} is the start state
- $F=\left\{q_{1}, q_{4}\right\}$

Will see that M recognizes language $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.

- transition function $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \rightarrow \mathcal{P}\left(Q \times \Gamma_{\varepsilon}\right)$

Input:	0		1		ε			
Stack:	0	$\$$	ε	0	$\$$	ε	0	$\$$
q_{1}							$\left\{\left(q_{2}, \$\right)\right\}$	
q_{2}		$\left\{\left(q_{2}, 0\right)\right\}$	$\left\{\left(q_{3}, \varepsilon\right)\right\}$					
q_{3}				$\left\{\left(q_{3}, \varepsilon\right)\right\}$			$\left\{\left(q_{4}, \varepsilon\right)\right\}$	
q_{4}								

- e.g., $\delta\left(q_{2}, 1,0\right)=\left\{\left(q_{3}, \epsilon\right)\right\}$.
- Blank entries are \emptyset.
- Let's process string 000111 on our PDA.
- PDA uses stack to match each 0 to a 1 .

$$
1,0 \rightarrow \varepsilon
$$

Current state
Next unread symbol

Input string

Stack

- Start in start state q_{1} with stack empty.
- No input symbols read so far.
- Next go to state q_{2}
- reading nothing, popping nothing, and pushing \$ on stack.

Input string

Stack

- Next return to state q_{2}
- reading input symbol 0
- popping nothing from stack
- pushing 0 on stack.

Input string
Stack

- Next return to state q_{2}
- reading input symbol 0
- popping nothing from stack
- pushing 0 on stack.

CS 341: Chapter 2

Input string

Stack

- Next return to state q_{2}
- reading input symbol 0
- popping nothing from stack
- pushing 0 on stack.

CS 341: Chapter 2

Input string

- Next go to state q_{3}
- reading input symbol 1
- popping 0 from stack
- pushing nothing on stack.

Input string

Stack

- Next return to state q_{3}
- reading input symbol 1
- popping 0 from stack
- pushing nothing on stack.

CS 341: Chapter 2

Input string

Input string
Stack

- Next return to state q_{3}
- reading input symbol 1
- popping 0 from stack
- pushing nothing on stack.

CS 341: Chapter 2

Input string

- String 000111 is accepted by PDA because
- ended in an accept state q_{4}, and
- PDA read the entire input string without crashing.

On input $w=000111$, the (state; stack) evolution is

$$
\begin{aligned}
& \left(q_{1} ; \varepsilon\right) \xrightarrow{\varepsilon, \varepsilon \rightarrow \$}\left(q_{2} ; \$\right) \xrightarrow{0, \varepsilon \rightarrow 0}\left(q_{2} ; 0 \$\right) \xrightarrow{0, \varepsilon \rightarrow 0}\left(q_{2} ; 00 \$\right) \\
& \xrightarrow{0, \varepsilon \rightarrow 0}\left(q_{2} ; 000 \$\right) \xrightarrow{1,0 \rightarrow \varepsilon}\left(q_{3} ; 00 \$\right) \xrightarrow{1,0 \rightarrow \varepsilon}\left(q_{3} ; 0 \$\right) \\
& \xrightarrow{1,0 \rightarrow \varepsilon}\left(q_{3} ; \$\right) \xrightarrow{\varepsilon, \$ \rightarrow \varepsilon}\left(q_{4} ; \varepsilon\right) .
\end{aligned}
$$

- Stack grows to the left, so leftmost symbol in stack is on top.
- Concatenation of what is read in sequence of transitions is $\varepsilon 000111 \varepsilon=w$.

- On input $w=0111$, the (state; stack) evolution is

$$
\left(q_{1} ; \varepsilon\right) \xrightarrow{\varepsilon, \varepsilon \rightarrow \$}\left(q_{2} ; \$\right) \xrightarrow{0, \varepsilon \rightarrow 0}\left(q_{2} ; 0 \$\right) \xrightarrow{1,0 \rightarrow \varepsilon}\left(q_{3} ; \$\right) \xrightarrow{\varepsilon, \$ \rightarrow \varepsilon}\left(q_{4} ; \varepsilon\right)
$$

- Only first two symbols 01 were read from input $w=0111$.
- PDA then crashes: there are still unread symbols 11 in input string w but PDA can't make any more transitions from q_{4}.
- No other way of processing, so string 0111 not accepted.
- Can show that PDA M recognizes language $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.

Formal Definition of PDA Computation

- Recall PDA transition function $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \rightarrow \mathcal{P}\left(Q \times \Gamma_{\varepsilon}\right)$.
- PDA $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ accepts string $w \in \Sigma^{*}$ if
- w can be written as $w=w_{1} w_{2} \cdots w_{m}$, where each $w_{i} \in \Sigma_{\varepsilon}$,
- \exists a sequence of states $r_{0}, r_{1}, \ldots, r_{m} \in Q$
and strings $s_{0}, s_{1}, \ldots, s_{m} \in \Gamma^{*}$ [stack contents on each transition] and the following hold:
- $r_{0}=q_{0}$ and $s_{0}=\varepsilon$. [M starts in start state with empty stack.]
- For each $i=0,1, \ldots, m-1$,

$$
\left(r_{i+1}, b\right) \in \delta\left(r_{i}, w_{i+1}, a\right)
$$

where $s_{i}=a t$ and $s_{i+1}=b t$ for some $a, b \in \Gamma_{\varepsilon}$ and $t \in \Gamma^{*}$. [M moves properly according to state, what's read, and stack.]

- $r_{m} \in F$. [M ends in an accept state after reading entire input.]

Recall: proper computation requires for each $i=0,1, \ldots, m-1$,

$$
\left(r_{i+1}, b\right) \in \delta\left(r_{i}, w_{i+1}, a\right)
$$

where $s_{i}=a t$ and $s_{i+1}=b t$ for some $a, b \in \Gamma_{\varepsilon}$ and $t \in \Gamma^{*}$.

Definition: The set of all input strings that are accepted by PDA M is the language recognized by M and is denoted by $L(M)$.

- Note that $L(M) \subseteq \Sigma^{*}$.

CS 341: Chapter 2
Example: PDA for language $\left\{a^{i} b^{j} c^{k} \mid i, j, k \geq 0\right.$ and $i=j$ or $\left.i=k\right\}$

After reading all a 's in state q_{2}, PDA guesses if it should match the a 's

- with the b 's (state q_{3}), or
- with the c 's (state q_{5})

CS 341: Chapter 2

Example: PDA for language $\left\{w w^{\mathcal{R}} \mid w \in\{0,1\}^{*}\right\}$

PDA works as follows:

- $q_{1} \rightarrow q_{2}$: First pushes $\$$ on stack to mark bottom
- $q_{2} \rightarrow q_{2}$: Reads in first half w of string, pushing it onto stack
- $q_{2} \rightarrow q_{3}: \quad$ Guesses that it has reached middle of string
- $q_{3} \rightarrow q_{3}:$ Reads second half $w^{\mathcal{R}}$ of string, matching symbols from first half in reverse order (recall: stack LIFO)
- $q_{3} \rightarrow q_{4}:$ Makes sure that no more input symbols on stack

Theorem 2.20

A language is context free iff some PDA recognizes it.

Showing this equivalence requires two steps.

- Lemma 2.21

If $A=L(G)$ for some CFG G,
then $A=L(M)$ for some PDA M.

- Lemma 2.27

If $A=L(M)$ for some PDA M,
then $A=L(G)$ for some CFG G.
We will only show how the first lemma works.

Lemma 2.21

If $A=L(G)$ for some CFG G, then $A=L(M)$ for some PDA M.

Proof Idea:

- Given CFG G, convert it into PDA M with $L(M)=L(G)$.
- Basic idea: build PDA that simulates a leftmost derivation.
- For example, consider CFG $G=(V, \Sigma, R, S)$
- Variables $V=\{S, T\}$
- Terminals $\Sigma=\{0,1\}$
- Rules: $\quad S \rightarrow 0 T S 1 \mid 1 T 0, \quad T \rightarrow 1$
- Leftmost derivation of string $011101 \in L(G)$:

$$
S \Rightarrow 0 T S 1 \Rightarrow 01 S 1 \Rightarrow 011 T 01 \Rightarrow 011101
$$

- Convert CFG into PDA as follows:

- PDA works as follows:

1. Pushes $\$$ and then S on the stack, where S is start variable.
2. Repeats following until stack empty
(a) If top of stack is variable $A \in V$, then replace A by some $u \in(\Sigma \cup V)^{*}$, where $A \rightarrow u$ is a rule in R.
(b) If top of stack is terminal $a \in \Sigma$ and next input symbol is a, then read and pop a.
(c) If top of stack is $\$$, then pop it and accept.

- Recall CFG rules: $S \rightarrow 0 T S 1 \mid 1 T 0, \quad T \rightarrow 1$
- Corresponding PDA:

- PDA is non-deterministic.
- Input alphabet of PDA is the terminal alphabet of CFG
$\Delta \Sigma=\{0,1\}$.
- Stack alphabet consists of all variables, terminals and "\$"
$\Delta \Gamma=\{S, T, 0,1, \$\}$.
- PDA simulates a leftmost derivation using CFG
- Pushes RHS of rule in reverse order onto stack.
- Corresponding PDA:

- Recall leftmost derivation of string $011101 \in L(G)$:

$$
S \Rightarrow 0 T S 1 \Rightarrow 01 S 1 \Rightarrow 011 T 01 \Rightarrow 011101
$$

- Let's now process string 011101 on PDA.
- When in state q_{2}, look at top of stack to determine next transition.

0 . Start in state q_{1} with 011101 on input tape and empty stack.
Current state \Downarrow

Input string
Stack

Leftmost derivation of string $011101 \in L(G)$:

$$
S \Rightarrow 0 T S 1 \Rightarrow 01 S 1 \Rightarrow 011 T 01 \Rightarrow 011101
$$

2. Read nothing, pop S, return to q_{2}, and push $0 T S 1$.

Input string

Leftmost derivation of string $011101 \in L(G)$:

$$
S \Rightarrow \underline{0 T S 1} \Rightarrow 01 S 1 \Rightarrow 011 T 01 \Rightarrow 011101
$$

1. Read nothing, pop nothing, move to q_{2}, and push $\$$ and then S.

Input string
Stack

Leftmost derivation of string $011101 \in L(G)$:

$$
\underline{S} \Rightarrow 0 T S 1 \Rightarrow 01 S 1 \Rightarrow 011 T 01 \Rightarrow 011101
$$

CS 341: Chapter 2
3. Read 0 , pop 0 , return to q_{2}, and push nothing.

Leftmost derivation of string $011101 \in L(G)$:

$$
S \Rightarrow \underline{0 T S 1} \Rightarrow 01 S 1 \Rightarrow 011 T 01 \Rightarrow 011101
$$

4. Read nothing, pop T, return to q_{2}, and push 1 .

Input string

Stack

Leftmost derivation of string $011101 \in L(G)$:

$$
S \Rightarrow 0 T S 1 \Rightarrow \underline{01 S 1} \Rightarrow 011 T 01 \Rightarrow 011101
$$

6. Read nothing, pop S, return to q_{2}, and push $1 T 0$.

$$
\begin{array}{|l|}
\hline \frac{1}{T} \\
\hline \frac{0}{1} \\
\hline 1 \\
\hline \$ \\
\hline
\end{array}
$$

Stack

Leftmost derivation of string $011101 \in L(G)$:

$$
S \Rightarrow 0 T S 1 \Rightarrow 01 S 1 \Rightarrow \underline{011 T 01} \Rightarrow 011101
$$

5. Read 1, pop 1 , return to q_{2}, and push nothing.

Input string
Stack

Leftmost derivation of string $011101 \in L(G)$:

$$
S \Rightarrow 0 T S 1 \Rightarrow \underline{01 S 1} \Rightarrow 011 T 01 \Rightarrow 011101
$$

CS 341: Chapter 2
7. Read 1, pop 1 , return to q_{2}, and push nothing.

Leftmost derivation of string $011101 \in L(G)$:

$$
S \Rightarrow 0 T S 1 \Rightarrow \underline{01 S 1} \Rightarrow \underline{011 T 01} \Rightarrow 011101
$$

8. Read nothing, pop T, return to q_{2}, and push 1 .

Input string

Stack

Leftmost derivation of string $011101 \in L(G)$:

$$
S \Rightarrow 0 T S 1 \Rightarrow 01 S 1 \Rightarrow 011 T 01 \Rightarrow \underline{011101}
$$

10. Read 0 , pop 0 , return to q_{2}, and push nothing.

$$
\begin{array}{|l|l|l|l|l|l|}
\hline 0 & \downarrow \\
\hline 0 & 1 & 1 & 1 & 0 & 1 \\
\hline
\end{array}
$$

Input string
Stack

Leftmost derivation of string $011101 \in L(G)$:

$$
S \Rightarrow 0 T S 1 \Rightarrow 01 S 1 \Rightarrow 011 T 01 \Rightarrow \underline{011101}
$$

9. Read 1, pop 1, return to q_{2}, and push nothing.

Input string
Stack

Leftmost derivation of string $011101 \in L(G)$:

$$
S \Rightarrow 0 T S 1 \Rightarrow 01 S 1 \Rightarrow 011 T 01 \Rightarrow \underline{011101}
$$

CS 341: Chapter 2
11. Read 1 , pop 1 , return to q_{2}, and push nothing.

Stack

Leftmost derivation of string $011101 \in L(G)$:

$$
S \Rightarrow 0 T S 1 \Rightarrow 01 S 1 \Rightarrow 011 T 01 \Rightarrow \underline{011101}
$$

12. Read nothing, pop $\$$, move to q_{3}, push nothing, and accept.

Input string
Stack

Leftmost derivation of string $011101 \in L(G)$:

$$
S \Rightarrow 0 T S 1 \Rightarrow 01 S 1 \Rightarrow 011 T 01 \Rightarrow \underline{011101}
$$

Solution: Add Extra States as Needed

becomes

Constructed PDA is Not Compliant

- Recall CFG rules: $S \rightarrow 0 T S 1 \mid 1 T 0, \quad T \rightarrow 1$
- Corresponding PDA:

- Problem: pushing strings onto stack instead of ≤ 1 symbols, which is not allowed in PDA specification.
- PDA transition fcn $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \rightarrow \mathcal{P}\left(Q \times \Gamma_{\varepsilon}\right)$
- For example, in our PDA

we replace

$$
\text { (q) } \xrightarrow{\varepsilon, \varepsilon \rightarrow S \$} q_{2}
$$

with

$$
\text { (q1) } \xrightarrow{\varepsilon, \varepsilon \rightarrow \$} P \xrightarrow{\varepsilon, \varepsilon \rightarrow S} \text { q. }
$$

- Also, replace
- So our final PDA from the CFG is

and replace

with

$$
\text { Regular } \Rightarrow \mathrm{CFL}
$$

Corollary 2.32

If A is a regular language, then A is also a CFL.

Proof.

- Suppose A is regular.
- Corollary 1.40 implies A has an NFA.
- But an NFA is just a PDA that ignores stack (always pops/pushes ε).
- So A has a PDA.
- Thus, Theorem 2.20 implies A is context-free.

Remark: Converse is not true.
For example, $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is CFL but not regular.

Pumping Lemma for CFLs

- Previously saw pumping lemma for regular languages.
- Analogous result holds for every context-free language A.
- Basic Idea: Derivation of long string $s \in A$ has repeated variable R.
- Long string implies tall parse tree, so must have repeated variable.
- Can split string $s \in A$ into $\mathbf{5}$ pieces $s=u v x y z$ based on R.
- $u v^{i} x y^{i} z \in A$ for all $i \geq 0$.
- Consider language A with CFG G

$$
\begin{aligned}
& S \rightarrow C D a \mid C D \\
& C \rightarrow a D \\
& D \rightarrow S b \mid b
\end{aligned}
$$

- Below "long" derivation using G repeats variable $R=D$:

$$
\begin{aligned}
S & \Rightarrow C D a \Rightarrow a D D a \Rightarrow a b \underline{D} a \Rightarrow a b S b a \Rightarrow a b C D b a \\
& \Rightarrow a b a \underline{D} D b a \Rightarrow a b a b D b a \Rightarrow a b a b b b a
\end{aligned}
$$

Repeated Variable in Path of Parse Tree

- Derivation of "long" string $s=a b a b b b a \in A$ repeats variable D :

$$
\begin{array}{ll}
S \rightarrow C D a \mid C D \\
C \rightarrow a D & S \\
D \rightarrow S b \mid b & \Rightarrow C D a \Rightarrow a D D a \Rightarrow a b \underline{D} a \Rightarrow a b S b a \Rightarrow a b C D b a \\
& \Rightarrow a b a \underline{D} D b a \Rightarrow a b a b D b a \Rightarrow a b a b b b a \\
\hline
\end{array}
$$

- "Tall" parse tree repeats variable D on path from root to leaf.

Split Long String Into 5 Pieces

- More generally, consider "long" string $s \in A$.
- Parse tree is "tall"
- \exists repeated variable R in path from root S to leaf.

- Split string $s=u v x y z$ into 5 pieces based on repeated variable R :
- u is before R - R subtree (in depth-first order)
- v is before second R within R - R subtree
- x is what second R eventually becomes
- y is after second R within R - R subtree
- z is after R - R subtree

Split String Into 5 Pieces

- Split string $s \in A$ into

$$
s=\underbrace{a b}_{u} \underbrace{a}_{v} \underbrace{b}_{x} \underbrace{b b}_{y} \underbrace{a}_{z}
$$

using repeated variable D.

- In depth-first traversal of tree

- $u=a b$ is before $D-D$ subtree
- $v=a$ is before second D within $D-D$ subtree
- $x=b$ is what second D eventually becomes
- $y=b b$ is after second D within $D-D$ subtree
- $z=a$ is after $D-D$ subtree

Can Pump To Obtain Other Strings in A

- Parse tree for string $s \in A$ implies
- $S \stackrel{*}{\Rightarrow} u R z$ for $u, z \in \Sigma^{*}$
- $R \stackrel{*}{\Rightarrow} v R y$ for $v, y \in \Sigma^{*}$
- $R \stackrel{*}{\Rightarrow} x$ for $x \in \Sigma^{*}$

- Can derive string $s=u v x y z \in A$

$$
S \stackrel{*}{\Rightarrow} u R z \stackrel{*}{\Rightarrow} u v R y z \stackrel{*}{\Rightarrow} \text { uvxyz } \in A
$$

- Also for each $i \geq 0$, can derive string

$$
\begin{aligned}
S & \stackrel{*}{\Rightarrow} u R z \stackrel{*}{\Rightarrow} u v R y z \stackrel{*}{\Rightarrow} u v v R y y z \stackrel{*}{\Rightarrow} \cdots \stackrel{*}{\Rightarrow} u v^{i} R y^{i} z \\
& \Rightarrow v^{i} x y^{i} z \in A
\end{aligned}
$$

Pumping Up a Parse Tree

- Recall: $S \xrightarrow{*} u R z, \quad R \stackrel{*}{\Rightarrow} v R y, \quad R \stackrel{*}{\Rightarrow} x$
- Using R - R subtree twice shows uvvxyyz $=u v^{2} x y^{2} z \in A$

Pumping Up Multiple Times

- Recall: $S \stackrel{*}{\Rightarrow} u R z, \quad R \stackrel{*}{\Rightarrow} v R y, \quad R \stackrel{*}{\Rightarrow} x$
- Using R - R subtree thrice shows $u v^{3} x y^{3} z \in A$

Pumping Down a Parse Tree

- Recall: $S \stackrel{*}{\Rightarrow} u R z, \quad R \stackrel{*}{\Rightarrow} v R y, \quad R \stackrel{*}{\Rightarrow} x$
- Removing R - R subtree shows $u x z=u v^{0} x y^{0} z \in A$

When Is Pumping Possible?

- Key to Pumping: repeated variable R in parse tree.
- $S \stackrel{*}{\Rightarrow} u R z$ for $u, z \in \Sigma^{*}$
- $R \stackrel{*}{\Rightarrow} v R y$ for $v, y \in \Sigma^{*}$
- $R \stackrel{*}{\Rightarrow} x$ for $x \in \Sigma^{*}$
- $\operatorname{string} s=u v x y z \in A$

- Repeated variable $R \stackrel{*}{\Rightarrow} v R y$, so " $v-y$ pumping" possible:

$$
S \stackrel{*}{\Rightarrow} u R z \stackrel{*}{\Rightarrow} u v R y z \stackrel{*}{\Rightarrow} u v^{i} R y^{i} z \xrightarrow{*} u v^{i} x y^{i} z \in A
$$

- If tree is tall enough, then repeated variable in path from root to leaf.
- CFG has finite number $|V|$ of variables.
- How tall does parse tree have to be to ensure pumping possible?
- Length of path between two nodes $=\#$ edges in path.
- Tree height $=\#$ edges on longest path from root to a leaf.

Previous Example

- $|V|=3$ variables in below CFG:

$$
\begin{aligned}
& S \rightarrow C D a \mid C D \\
& C \rightarrow a D \\
& D \rightarrow S b \mid b
\end{aligned}
$$

- In parse tree for $a b a b b b a$, longest path has length $5 \geq|V|+1=4$

If String s is Long Enough, Then Can Pump

- Let A have CFG in which longest rule has right-side length $b \geq 2$:

$$
C \rightarrow D_{1} \cdots D_{b}
$$

- So each node in tree has $\leq b$ children.
- At most b leaves one step from root.
- At most b^{2} leaves 2 steps from root, and so on.
- If tree has height $\leq h$, then
$\Delta \leq b^{h}$ leaves, so generated string s has length $|s| \leq b^{h}$.
- Equiv: If string $s \in A$ has $|s| \geq b^{h}+1$, then tree height $\geq h+1$.
- Let $|V|=\#$ variables in CFG.
- If string $s \in A$ has length $|s| \geq p \equiv b^{|V|+1}$, then
- tree height $\geq|V|+1$ because $b^{|V|+1} \geq b^{|V|}+1$.
- some variable on longest path in tree is repeated
- can pump parse tree.

Pumping Lemma for CFLs

Theorem 2.34

If A is context-free language, then \exists pumping length p where,
if $s \in A$ with $|s| \geq p$, then s can be split into 5 pieces

$$
s=u v x y z
$$

satisfying the properties

1. $u v^{i} x y^{i} z \in A$ for each $i \geq 0$,
2. $|v y|>0$, and
3. $|v x y| \leq p$.

Remarks:

- Property 1 implies that $u x z \in A$ by taking $i=0$.
- Property 2 says that $v y$ cannot be the empty string.
- Property 3 is sometimes useful.
- Key idea: For each long enough string s in CFL A, can use s to construct infinitely many other strings in A.

Proof of Pumping Lemma for CFLs

- Let $G=(V, \Sigma, R, S)$ be CFG of A.
- Maximum size of rules is $b \geq 2: \quad C \rightarrow D_{1} \cdots D_{b}$
- From slide 2-93: If string $s \in A$ has length $|s| \geq p \equiv b^{|V|+1}$,
- then longest path in parse tree has some repeated variable R :

$$
S \xrightarrow{*} u R z \stackrel{*}{\Rightarrow} u v R y z \stackrel{*}{\Rightarrow} u v x y z
$$

- It follows that $u v^{i} x y^{i} z \in A$ for all $i=0,1,2, \ldots$.
- Assume
- parse tree is smallest one for string s
- repeated R is among the bottom $|V|+1$ variables on longest path.
- Then in tree, repeated part $R \stackrel{*}{\Rightarrow} v R y$ and $R \stackrel{*}{\Rightarrow} x$ satisfy
- $|v y|>0$ because tree is minimal.
- bottom subtree with $R \stackrel{*}{\Rightarrow} v R y$ and $R \stackrel{*}{\Rightarrow} x$ has height $\leq|V|+1$, so $|v x y| \leq b^{|V|+1}=p$.

Non-CFL

Remark: CFL Pumping Lemma (PL) mainly used to show certain languages are not CFL.

Example: Prove that $B=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is non-CFL.
Proof.

- Suppose B is CFL, so PL implies B has pumping length $p \geq 1$.
- Consider string $s=a^{p} b^{p} c^{p} \in B$, so $|s|=3 p \geq p$.
- PL: can split s into 5 pieces $s=u v x y z=a^{p} b^{p} c^{p}$ satisfying

1. $u v^{i} x y^{i} z \in B$ for all $i \geq 0$
2. $|v y|>0$
3. $|v x y| \leq p$

- For contradiction, show cannot split $s=u v x y z$ satisfying 1-3.
- Show every possible split satisfying Property 2 violates Property 1.
- Recall $s=u v x y z=\underbrace{a a \cdots a}_{p} \underbrace{b b \cdots b}_{p} \underbrace{c c \cdots c}_{p}$.
- Possibilities for split $s=u v x y z$ satisfying Property 2: $|v y|>0$
(i) Strings v and y are uniform [e.g., $v=a \cdots a$ and $y=b \cdots b$].
- Then $u v^{2} x y^{2} z$ won't have same number of a 's, b 's and c^{\prime} s because $|v y|>0$.
- Hence, $u v^{2} x y^{2} z \notin B$.
(ii) Strings v and y are not both uniform
[e.g., $v=a \cdots a b \cdots b$ and $y=b \cdots b$].
- Then $u v^{2} x y^{2} z \notin L\left(a^{*} b^{*} c^{*}\right)$: symbols not grouped together.
- Hence, $u v^{2} x y^{2} z \notin B$.
- Thus, every split satisfying Property 2 has $u v^{2} x y^{2} z \notin B$, so Property 1 violated.
- Contradiction, so $B=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is not a CFL.

Prove $D=\left\{w w \mid w \in\{0,1\}^{*}\right\}$ is not CFL

- Suppose D is CFL, so PL implies D has pumping length p.
- Take $s=\underbrace{00 \cdots 0}_{p} \underbrace{11 \cdots 1}_{p} \underbrace{00 \cdots 0}_{p} \underbrace{11 \cdots 1}_{p} \in D$, so $|s|=4 p \geq p$.
- PL: can split s into 5 pieces $s=u v x y z$ satisfying

1. $u v^{2} x y^{2} z \in D$ for every $i \geq 0$,
2. $|v y|>0$,
3. $|v x y| \leq p$.
(i) If $v x y$ is entirely left of middle of $0^{p} 1^{p} 0^{p} 1^{p}$,

- then second half of $u v^{2} x y^{2} z$ starts with a 1
- so can't write $u v^{2} x y^{2} z$ as $w w$ because first half starts with 0 .
(ii) Similar reasoning: if $v x y$ is entirely right of middle of $0^{p} 1^{p} 0^{p} 1^{p}$,
- then $u v^{2} x y^{2} z \notin D$
(iii) If $v x y$ straddles middle of $0^{p} 1^{p} 0^{p} 1^{p}$,
- then $u v^{0} x y^{0} z=u x z=0^{p} 1^{j} 0^{k} 1^{p} \notin D$ (because j or $k<p$)
- Every split $s=u v x y z$ satisfying 2-3 violates 1 , so D isn't CFL.

Prove $C=\left\{a^{i} b^{j} c^{k} \mid 0 \leq i \leq j \leq k\right\}$ is not CFL

- Suppose C is CFL, so PL implies C has pumping length p.
- Take string $s=\underbrace{a a \cdots a}_{p} \underbrace{b b \cdots b}_{p} \underbrace{c c \cdots c}_{p} \in C$, so $|s|=3 p \geq p$.
- PL: can split $s=a^{p} b^{p} c^{p}$ into 5 pieces $s=u v x y z$ satisfying

1. $u v^{i} x y^{i} z \in C$ for every $i \geq 0$,
2. $|v y|>0$,
3. $|v x y| \leq p$.

- Property 3 implies $v x y$ can't contain 3 different types of symbols.
- Two possibilities for v, x, y satisfying $|v y|>0$ and $|v x y| \leq p$:
(i) If $v x y \in L\left(a^{*} b^{*}\right)$, then z has all the c 's
- string $u v^{2} x y^{2} z$ has too few c^{\prime} 's because z not pumped
- Hence, $u v^{2} x y^{2} z \notin C$
(ii) If $v x y \in L\left(b^{*} c^{*}\right)$, then u has all the a 's
- string $u v^{0} x y^{0} z=u x z$ has too many a 's
- Hence, $u v^{0} x y^{0} z \notin C$
- Every split $s=u v x y z$ satisfying $2-3$ violates 1 , so C isn't CFL.

Remarks on CFL Pumping Lemma

Often more difficult to apply CFL pumping lemma (Theorem 2.34) than pumping lemma for regular languages (Theorem 1.70).

- Carefully choose string s in language to get contradiction.
- Not all strings s will give contradiction.
- CFL pumping lemma: "... can split s into 5 pieces $s=u v x y z$ satisfying all of Properties 1-3."
- To get contradiction, must show cannot split s into 5 pieces $s=u v x y z$ satisfying all of Properties 1-3.
- Need to show every possible split $s=u v x y z$ violates at least one of Properties 1-3.

CFLs Closed Under Union

Is class of CFLs closed under standard operations?

Theorem:

If A_{1} and A_{2} are CFLs, then union $A_{1} \cup A_{2}$ is CFL.

Proof.

- Assume
- A_{1} has CFG $G_{1}=\left(V_{1}, \Sigma, R_{1}, S_{1}\right)$
- A_{2} has CFG $G_{2}=\left(V_{2}, \Sigma, R_{2}, S_{2}\right)$.
- Assume that $V_{1} \cap V_{2}=\emptyset$.
- $A_{1} \cup A_{2}$ has CFG $G_{3}=\left(V_{3}, \Sigma, R_{3}, S_{3}\right)$ with
- $V_{3}=V_{1} \cup V_{2} \cup\left\{S_{3}\right\}$, where $S_{3} \notin V_{1} \cup V_{2}$ is new start variable
- $R_{3}=R_{1} \cup R_{2} \cup\left\{S_{3} \rightarrow S_{1}, S_{3} \rightarrow S_{2}\right\}$.

Example of Union of CFLs

- Suppose A_{1} has CFG G_{1} with rules:

$$
\begin{aligned}
S & \rightarrow a S \mid b X b \\
X & \rightarrow a b \mid b a X b
\end{aligned}
$$

- Suppose A_{2} has CFG G_{2} with rules:

$$
\begin{aligned}
& S \rightarrow S b b \mid a X b a \\
& X \rightarrow b \mid X a X
\end{aligned}
$$

- Then $A_{1} \cup A_{2}$ has CFG G_{3} with start variable S_{3} and rules:

$$
\begin{aligned}
S_{3} & \rightarrow S_{1} \mid S_{2} \\
S_{1} & \rightarrow a S_{1} \mid b X_{1} b \\
X_{1} & \rightarrow a b \mid b a X_{1} b \\
S_{2} & \rightarrow S_{2} b b \mid a X_{2} b a \\
X_{2} & \rightarrow b \mid X_{2} a X_{2}
\end{aligned}
$$

Some Closure Properties of CFLs

- Let A_{1} and A_{2} be two CFLs.
- Can prove that
- union $A_{1} \cup A_{2}$ is always CFL (slide 2-101)
- concatenation $A_{1} \circ A_{2}$ is always CFL
- Kleene-star A_{1}^{*} is always CFL
- But
- intersection $A_{1} \cap A_{2}$ is not necessarily CFL
- $A_{1}=\left\{a^{n} b^{n} c^{k} \mid n \geq 0, k \geq 0\right\}$ and $A_{2}=\left\{a^{k} b^{n} c^{n} \mid n \geq 0, k \geq 0\right\}$
- complement $\overline{A_{1}}=\Sigma^{*}-A_{1}$ is not necessarily CFL.

Summary of Chapter 2

- Context-free language is defined by CFG
- Parse trees
- Chomsky normal form: $A \rightarrow B C$ or $A \rightarrow x$, with $A \in V$, $B, C \in V-\{S\}, x \in \Sigma$. Also allow rule $S \rightarrow \varepsilon$.
- Pushdown automaton is NFA with stack for additional memory.
- Equivalence of PDAs and CFGs
- Regular $\Rightarrow C F L$, but CFL \nRightarrow Regular.
- Pumping lemma for CFLs: long strings in CFL can be pumped.
- Repeat part of tall parse tree corresponding to repeated variable
- Used to prove certain languages are non-CFL
- Class of CFLs closed under union, Kleene star, concatenation
- Class of CFLs not closed under intersection, complementation

