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Chapter 2
Context-Free Languages
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Context-Free Languages (CFLs)

e Consider language { 0™"1" | n > 0 }, which is nonregular.

e Start variable S with “substitution rules”:

S — 0S1
S — ¢

e Rules can yield string 0F1F by

= applying rule “S — 0S1" k times,
= followed by rule “S — " once.

e Derivation of string 0313
S = 0S1 = 00S11 = 000S111 = 000e111
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Definition of CFG

Definition: Context-free grammar (CFG) G = (V, 3, R, S) where
1. V is finite set of variables (AKA nonterminals)
2. X is finite set of terminals (with V NX = ()

3. R is finite set of substitution rules (AKA productions),
each of the form
L — X,

where

o LV
e X e (VUuX)*

4. S is start variable, where S € V
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Example of CFG
Example: Language {0"1"| n >0} has CFG G = (V, X, R, S)
e Variables V = {S}
e Terminals X = {0, 1}
e Start variable S
e Rules R:

S — 051
S — ¢

e Combine rules with same left-hand side in Backus-Naur (or Backus
Normal) Form (BNF):

S — 051 |¢
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Deriving Strings Using CFG
Definition: |If
eu,v,we (VUX)* and
e A — w is a rule of the grammar,

then uAv yields uwwv, written

uAv = uwv

Remark:

e A single-step derivation “=-" consists of substituting a variable by a
string of variables and terminals according to a substitution rule.

Example: With the rule “"A — BC", we can have
01ADO = 01BCDO.
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Language of CFG
Definition: w derives v, written u = v, if
eu =, or
e Juj,up,...,uy for some k > 0O such that

U = Ul = U = - = U = VU

Remark: “=" denotes a sequence of > O single-step derivations.

Example: With the rules “A — B1 | DOC",
0AA % 0DOCB1

Definition: The language of CFG G = (V,3>,R,S) is
L) ={weZ*|SSw}.
Such a language is called context-free, and satisfies L(G) C >*.
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Example of CFG

e CFG G = (V, %, R, S) with

1. V={S}
2. ¥ ={0,1}
3. Rules R:

S —0S|e

e Then L(G) ={0"|n>0}.
e For example, S derives 03
S = 0S = 00S = 000S = 000 = 000

e Note that — and = are different.

= — used in defining rules
= = used in derivation
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Example of CFG Example of CFG
e CFG G = (V, X, R, S) with e CFG G = (V, X, R, S) with
1. V={S} 1. V={S}
2. ¥ ={0,1} 2. ¥ ={0,1}
3. Rules R: 3. Rules R:
S —0S|1S |« S—-0S5|15|1
e Then L(G) = X*. e Then L(G) = {w € Z*| w = s1 for some s € Z*},
i.e., strings that end in 1.
e For example, S derives 0100
S = 0S = 015 = 010S = 0100S = 0100 o For example, .5 derives 011
S =05 = 01S = 011
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Example of CFG
e CFG G = (V, X, R, S) with

1. V={5727}

2. ¥ ={0,1}

3. Rules R:
S —0S81|~Z
Z — 0Z | ¢

e Then L(G) = {017 ]i>j}.

e For example, S derives 0° 13

S = 0S1 = 00S11 = 000S111 = 000~Z111
= 00007111 = 000007111 = 00000s111
= 00000111

CFG for Palindrome
e PALINDROME = {w € ~* | w = wR }, where & = {a, b}.
¢ CFG G = (V, =, R, S) with

1. V={S}
2. ¥ ={a,b}
3. Rules R:

S — aSa|bSb|la|b]|e

e Then L(G) = PALINDROME
e S derives bbaabb
S = bSb = bbSbb = bbaSabb = bbacabb = bbaabb

e S derives aabaa

S = aSa = aaSaa = aabaa
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CFG for EVEN-EVEN

e Recall language EVEN-EVEN is the set of strings over & = {a, b}
with even number of a's and even number of b's.

e EVEN-EVEN has regular expression
( aa U bb U (abU ba)(aa U bb)*(abU ba) )*
e CFG G = (V,X,R,S) with
1. v={SX,Y}
2. ¥ ={a,b}
3. Rules R:

S — aaS | bbS | XY XS | e
X — ab | ba
Y — aaY | bbY | e

e Then L(G) = EVEN-EVEN
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CFG for Simple Arithmetic Expressions

e CFG G = (V, %, R, S) with

1V ={S}

2. S ={+, -, x,/,(),0,1,2,...,9}

3. Rules R:

S > S+S|S—85|Sx8[8/S|(S)| =S|0|1]---]9

e L(@) is a set of valid arithmetic expressions over single-digit integers.

e S derives string 2 x (3 4+ 4)

S=89%x8 = Sx(S) = Sx(S+5)
=2x(854S5) = 2xB34+S5) = 2x(3+4)
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Derivation Tree
e CFG
S—>S+S|S-S|SxS|S/S|(S)|] =S|0o|1|---]9
e Can generate string 2 X 3 4 4 using derivation

S = S+5 = SxS+S5 = 2x54S
= 2X345 = 2x3+4+14

= Leftmost derivation: leftmost variable replaced in each step.

e Corresponding derivation (or parse) tree

/TN
y
&

e Depth-first traversal of tree

» Starting at root, walk around tree
with left hand always touching tree.

= string = sequence of leaves visited.
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Ambiguous CFG
S = S+S5|S-S|SxS|S/S|(S)|] =S|0|1]|---]9
e Another derivation of string 2 x 3 + 4:

S == Sx8 = Sx84SS = 2x5+4+S
= 2x34S = 2x3+4+4

which is not a leftmost derivation.

N
[ .

4

e Corresponding derivation tree:

Definition: CFG G is ambiguous if 3 string w € L(G) having
different parse trees (or equivalently, different leftmost derivations).
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Applications of CFLs

e Model for natural languages (Noam Chomsky)

(SENTENCE) — (NOUN-PHRASE)(VERB-PHRASE)
(NOUN-PHRASE) — (ARTICLE)(NOUN) | (ARTICLE)(ADJ)(NOUN)
(VERB-PHRASE) — (VERB) | (VERB)(NOUN-PHRASE)

(ARTICLE) — a | the
(NOUN) — girl | boy | cat
(ADJ) — big | small | blue
(VERB) — sees | likes
Using above CFG, which has (SENTENCE) as start variable, can derive
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Applications of CFLs

e Specification of programming languages:

= parsing a computer program

e Describes mathematical structures, etc.

e Intermediate class between

= regular languages (Chapter 1) and
= computable languages (Chapters 3 and 4)

(SENTENCE) = (NOUN-PHRASE)(VERB-PHRASE)
= (ARTICLE)(NOUN)(VERB-PHRASE)
= (ARTICLE)(NOUN)(VERB)(NOUN-PHRASE)
= (ARTICLE)(NOUN)(VERB)(ARTICLE)(ADJ)(NOUN)
= the girl sees a blue cat
CS 341: Chapter 2 2-19 CS 341: Chapter 2 2-20

Context-Free Languages

Definition: Any language that can be generated by CFG is a
context-free language (CFL).

Remark: The CFL {0™1™| n > O } shows us that certain CFLs are
nonregular.

Questions:

1. Are all regular languages context-free?

2. Are all languages context-free?

Chomsky Normal Form
Definition: CFG G = (V, %, R, S) is in Chomsky normal form if
each rule is in one of three forms:

A — BC
or A — x
or S — ¢

with
e variables A € V and B,C € V — {S}, and
e terminal x € X

Example: Rules of CFG in Chomsky normal form with V- = {S, W, X},
> ={a,b}:

S— XX |XWlal|e

X - WX|b

W — a

Remark: Grammars in Chomsky normal form are far easier to analyze.
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Can Always Put CFG into Chomsky Normal Form Converting CFG into Chomsky Normal Form
Recall: CFG in Chomsky normal form if each rule has form: 1. Start variable not allowed on RHS of rule, so introduce
A—BC o A—zxz o S—e¢
e New start variable Sp
where AecV; B,CeV —-{S}h zeX. o New rule Sg — S
Theorem 2.9
Every CFL can be described by a CFG in Chomsky normal form. 2. Remove e-rules A — ¢, where A € V — {S}.
e Before: B — zAy and A —¢e| ---
Proof Idea: o After: B — zAy |zy and A — ---
e Start with CFG G = (V, <, R, S).
e Replace, one-by-one, every rule that is not “Chomsky” . 3. Remove unit rules A — B, where A € V.
e Need to take care of: e Before: A — B and B — zCy
» Start variable (not allowed on RHS of rules) o After: A— 2Cy and B — 2Cy
n e-rules (A — & not allowed when A isn't start variable)
w all other violating rules (A — B, A — aBc¢, A — BCDE)
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4. Replace problematic terminals a by variable T, with rule T, — a.

e Before: A — ab
o After: A — Ty Ty, Ty — a, Ty — b.

5. Shorten long RHS to sequence of RHS's with only 2 variables each:

e Before: A — B1By--- Bk
o After: A — B1A1, A1 — ByAp, ..., Aj_o — Bp_1B;y,
= [hus, A:>BlA1 :>B1B2A2:> :>BIBQ"'BI§

6. Be careful about removing rules:

e Do not introduce new rules that you removed earlier.
= Example: A — A simply disappears
e When removing A — ¢ rules, insert all new replacements:

» Before: B — AbA and A — ¢ | ---
n After: B — AbA | bA| Ab|b and A — ---

Example: Convert CFG into Chomsky Normal Form

Initial CFG G:

S — XSX |aY
X —=>Y]|S
Y > ble

1. Introduce new start variable Sg and new rule Sg — S:

So—>S

S — XSX | aY
X —=Y|S

Y - ble
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Example: Convert CFG into Chomsky Normal Form

From previous slide
SO — S
S — XSX | aY
X —=>Y|S
Y > b|e

2. Remove e-rules for which left side is not start variable:

(i) remove Y — ¢ (i) remove X — ¢
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Example: Convert CFG into Chomsky Normal Form

From previous slide
SQ—)S
S — XSX |aY |a|SX|XS|S
X —=>Y]|S
Y — b

3. Remove unit rules:

(i) remove unit rule S — S

Sog — S
So = S So = S S = XSX |aY |a|SX | XS
S — XSX |aY |a S —- XSX |aY |a|SX | XS|S X5vYI[S
X —-Y|S]e X —-Y|S
Y =0 Y =0 Y =b
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Example: Convert CFG into Chomsky Normal Form

From previous slide

So—>S

S— XSX |aY |a|SX | XS
X —=Y]|S

Y = b

(i) remove unit rule Sop — S

So = XSX |aY |a | SX | XS
S — XSX |aY |a| SX | XS
X —=Y|S

Y = b

Example: Convert CFG into Chomsky Normal Form

From previous slide

So = XSX |aY |a | SX | XS
S— XSX |aY |a|SX | XS
X —=>Y]|S

Y = b

(i) remove unit rule X — Y

So = XSX |aY |a | SX | XS
S — XSX |aY |a| SX | XS
X = S|b

Y = b
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Example: Convert CFG into Chomsky Normal Form

From previous slide

So = XSX |aY |a | SX | XS
S— XSX |aY |a|SX | XS
X = 5|b

Y = b

(iv) remove unit rule X — S

So = XSX |aY |a | SX | XS
S — XSX |aY |a| SX | XS
X >b|XSX |aY |a] SX | XS
Y = b
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Example: Convert CFG into Chomsky Normal Form

From previous slide

So = XSX |aY |a | SX | XS
S — XSX |aY |a|SX | XS
X 5 b|XSX |aY |a|SX | XS
Y = b

4. Replace problematic terminals a by variable U with U — a.

So = XSX |UY |a|SX | XS
S— XSX|UY |a|SX | XS
X >b|XSX |UY |a|SX | XS
Y —- b

U — a
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Example: Convert CFG into Chomsky Normal Form

From previous slide
So — XSX |UY |a|SX | XS
S = XSX |UY |a|SX|XS
X 5 b|XSX|UY |a|SX | XS
Y = b
U — a
5. Shorten long RHS to sequence of RHS's with only 2 variables each

So = XX1|UY |a| SX | XS
S— XX1|UY |a|SX|XS
X =>b|XX1|UY |a|SX | XS
Y =0

U —a

X1—>SX

which is a CFG in Chomsky normal form.
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Pushdown Automata (PDAs)

e Pushdown automata (PDAs) are for CFLs what finite automata are for
regular languages.

» PDA is presented with a string w over an alphabet 3.
= PDA accepts or doesn’t accept w.

e Key Differences Between PDA and DFA:

= PDAs have a single stack.
» PDAs allow for nondeterminism.
= PDA is “NFA with a single stack”.

e Defn: Stack is data structure of unlimited size with 2 operations

= push adds item to top of stack,
= pop removes item from top of stack.

Last-In-First-Out (LIFO)
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Input String

LIl T]
¢ Sta_ck

States L
Q/?Q <

O-O0—-0O ]
PDA has ||

e States
e Stack with alphabet I
e Transitions among states based on

= current state
= what is read from input string

= what is popped from stack.

e At end of each transition, symbol may be pushed on stack.
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PDA Uses Stack

e General idea: CFLs are languages that can be recognized by
automata that have one stack:

» {0"1"|n>0}isa CFL
» {0"1"0"| n >0} is nota CFL

o Recall for alphabet X, we defined X = X U {e}.

e Let ' be stack alphabet

= Symbols in " can be pushed onto and popped off stack.
» Often have $ € I" to mark bottom of stack.

elet - =T uU{e}.

= Pushing or popping ¢ leaves stack unchanged.
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PDA Transitions

a, b—c
@@

read, pop — push

e If PDA

= currently in state g;,
s reads a € >, and
= pops b € I¢ off the stack,

e then PDA can

= move to state g;
= push ¢ € ¢z onto top of stack
e If a = ¢, then no input symbol is read.
e If b = ¢, then nothing is popped off stack.

e If ¢ = ¢, then nothing is pushed onto stack.
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How a PDA Computes

0,e—0

1,0 —¢

e PDA starts in start state with input string w € >*
= stack initially empty
e PDA makes transitions among states

= Edge label: “read, pop — push”

s Based on current state, what from X is next read from w,
and what from I¢ is popped from stack.

= Nondeterministically move to state and push from 'z onto stack.

e If possible to end in accept state € F' C () after reading entire input w
without crashing, then PDA accepts w.
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Definition of PDA

Defn: Pushdown automaton (PDA) M = (Q,%,T,6,qq, F):

e () is finite set of states

e > is (finite) input alphabet

e [ is (finite) stack alphabet

® (o is start state, gg € Q

e I is set of accept states, F' C @

0):(Q x> xTI:— P(Q x Iz) is transition function

a, b—c
./—Y> e

ST@
a, b—c @

a,b—e¢

Nondeterministic: multiple choices when
in state q1, read a € X, and pop b € I;

6(Q1, a, b) == { (q27 C)? (q37 d)a (Q47 C)a ((I47 8) }
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Example: PDA M = (Q,X,I,6,q1, F)

0,e—0 1,0 —¢

‘ g,e—$ ; 1,0 >« z—:,$—>€ ‘

* Q= {a1,92,93, 94}

o> ={0,1}

o ={0,%} (use $ to mark bottom of stack)
® g1 is the start state

o F'=1{q1,q4}

Will see that M recognizes language { 0"1" |n > 0 }.
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0,e—>0 1,0 —¢

e transition function § : Q X X x Iz — P(Q x %)

Input: 0 1 €
Stack: |0 $ € 0 $e0 $ €
@ | [ | {(22.9)}
q2 {(g2,0) } {(g3,¢) }
g3 {(g3,9)}] | | {(gs9)}
q4

= g, 6((]2; 17 O) = { (q376) }
= Blank entries are (.

e Let's process string 000111 on our PDA.
s PDA uses stack to match each O to a 1.
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0,e—0 1,0 —e¢

‘ e, e—$ 8 1,0—>6>86,$—>5
()

Current state

Next unread symbol

0/0/0/1]1]1]

D Bottom

Stack

Input string

e Start in start state g1 with stack empty.
e No input symbols read so far.

e Next go to state ¢o

= reading nothing, popping nothing, and pushing $ on stack.
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0,e—0 1,0 —e¢
5,5—>$ @ 1,0 = ¢ @ e, $—e
f

!
0/001]11
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0,e—0 1,0 —e¢

‘ e, e—$ 8 1,0—)6)@6,$—>5
()

*
0/0/0/1]1]1] $]

Input string Stack Input string Stack
e Next return to state go e Next return to state ¢o
= reading input symbol O = reading input symbol O
= popping nothing from stack = popping nothing from stack
» pushing O on stack. » pushing O on stack.
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0,e—0 1,0 —e¢ 0,e—0 1,0 —e¢
1 1
5,5—>$ @ ,0— ¢ @ e,$—e¢ ‘ e,e—$ 8 ,O%s)@e,$—>s
f f 0
v ‘
oloo/1]1]1 $ o0lo/0/1]1]1 $
Input string Stack Input string Stack

e Next return to state go

= reading input symbol O
= popping nothing from stack
= pushing O on stack.

e Next go to state g3

= reading input symbol 1
= popping O from stack
= pushing nothing on stack.
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0,e—0 1,0 —e¢ 0,e—0 1,0 —e¢
5,5—>$ @ 1,0 = ¢ @ e, $—e ‘ e,e— 9% 81,0%6)@6,$—>5
fr fr
olooj1]1]1 $ o0lo/0j1]1]1
Input string Stack Input string Stack
e Next return to state g3 e Next return to state g3
= reading input symbol 1 = reading input symbol 1
= popping O from stack = popping O from stack
= pushing nothing on stack. = pushing nothing on stack.
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0,e—0 1,0 —e¢ 0,e—0 1,0 —e¢
5,5—>$ @ 1,0 —» ¢ @ e,$—e¢ ‘ g,e— 9% 81,0—)6’867$—>6
fr fr

'
ofolo1f1]1] |

Stack

Input string

e Next go to state g4

= reading nothing
= popping $ from stack
» pushing nothing on stack.

o[o0/1/1]1] | L]

Input string Stack

e String 000111 is accepted by PDA because

= ended in an accept state g4, and
= PDA read the entire input string without crashing.
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0,e—0

5,5—>$ @ 1,0 -« @ e, $—e¢

On input w = 000111, the (state; stack) evolution is

1,0 —e¢

(a1:6) =% (42:9) 2% (42:08) 2% (42:009)

0,e—0 1,0—e 1,0—e

(g2;000%) ——— (g¢3;00%) ——— (g3;0%)

e,$—e

L0722 (g3:8) 2225 (quse).

e Stack grows to the left, so leftmost symbol in stack is on top.

e Concatenation of what is read in sequence of transitions is
€000111e = w.
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0,e—0

‘ e, e—$ 8 1,0—)6)@6,$—>8

e On input w = 0111, the (state; stack) evolution is

1,0 —¢

(01:9) 72 (42:9) 2570 (0 08) 2075 (43; $) 2275 (qa; )

e Only first two symbols 01 were read from input w = 0111.

e PDA then crashes: there are still unread symbols 11 in input string w
but PDA can’t make any more transitions from qg4.

e No other way of processing, so string 0111 not accepted.

e Can show that PDA M recognizes language { 0"1" | n > 0 }.
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PDA May Be Nondeterministic

Recall: PDA transition function allows for nondeterminism

€, € ¢

g, —>¢€

e-transitions

a, b—c

a,b—e¢

Multiple choices when in state ¢,
read a € >, and pop b € I;;
5(q17 a, b) - { (q27 C)7 (q37 d)? (q47 C), (q47 E) }

CS 341: Chapter 2 2-52
Formal Definition of PDA Computation

e Recall PDA transition function § : Q X X x Iz — P(Q x ).
e PDA M = (Q,X, I, 6, qo, F) accepts string w € >* if
= w can be written as w = wqwy - - - wm, where each w; € ¢,

= 3 a sequence of states rg,71,...,"™m € Q
and strings sg, $1,...,8m € ['* [stack contents on each transition]

and the following hold:
» 70 = qg and sg = . [M starts in start state with empty stack.|
m Foreachi=20,1,...,m— 1,

(ri41, b) € (1, wig1, a),

where s; = at and s; 41 = bt for some a,b € [z and t € ['*.
[M moves properly according to state, what's read, and stack.|

» 7 € F. [M ends in an accept state after reading entire input.]
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Computation Requires Valid Sequence of Transitions

Recall: proper computation requires for each ¢ = 0,1,...,m — 1,
(i1, b) € do(ry,

where s; = at and s; 1 = bt for some a,b € [z and t € [*.

Wi4-1, a)
Stack

W

Before: After:
at bt

Wi+1, & — C

Wit1, @ —> b
T (i1

Wi4+1, A4 — b

Definition: The set of all input strings that are accepted by PDA M is
the language recognized by M and is denoted by L(M).

e Note that L(M) C %,
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Example: PDA for language { a’b/cF| 4,5,k >0andi=jori =k}

ba—)s c,e ¢

£,$—>5

e—9% €, E—¢€
€, € > ¢ EE—)E 8 E$%g"
a, €= a bs—)s c,a=¢

After reading all a's in state go, PDA guesses if it should match the a’s

e with the b's (state ¢3), or
e with the c's (state g5)
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Example: PDA for language {wwR\ w € {0,1}*}

0,e—0
l,e—1

‘ e,e—$ @

PDA works as follows:

0,0 —¢
1,1 —e¢

€, € —¢

® g1 — qo : First pushes $ on stack to mark bottom

® o> — q» . Reads in first half w of string, pushing it onto stack
® o> — q3 : Guesses that it has reached middle of string

e g3 — g3 : Reads second half w of string, matching symbols

from first half in reverse order (recall: stack LIFO)

® g3 — q4 . Makes sure that no more input symbols on stack
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Equivalence of PDAs and CFGs

Theorem 2.20
A language is context free iff some PDA recognizes it.

Showing this equivalence requires two steps.

e Lemma 2.21
If A= L(QG) for some CFG G,
then A = L(M) for some PDA M.

e Lemma 2.27
If A= L(M) for some PDA M,
then A = L(G) for some CFG G.

We will only show how the first lemma works.
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Lernma 2.21 e Convert CFG into PDA as follows:
If A= L(G) for some CFG G, then A = L(M) for some PDA M.
@ e, e —S$
—».—»

Proof ldea:
e Given CFG @G, convert it into PDA M with L(M) = L(G). e, Ao u, YV rules A— u
e Basic idea: build PDA that simulates a leftmost derivation. a,a—e¢, V terminalsa € >
e For example, consider CFG G = (V, X, R, S) e PDA works as follows:

 Variables V = {S,T} 1. Pushes $ and then S on the stack, where S is start variable.

» Terminals ~ = {0, 1} 2. Repeats following until stack empty

»« Rules: S — 07TS1|17T0, T — 1 (a) If top of stack is variable A € V/, then replace A by some

N : .
e Leftmost derivation of string 011101 € L(G): u€ (XUV) N Wher(? A= uisardein R .
(b) If top of stack is terminal @ € X and next input symbol is a,
S = 0TSl = 01S1 = 011701 = 011101 then read and pop a.
(c) If top of stack is $, then pop it and accept.
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o Recall CFG rules: S — 07'S1| 170, T — 1 o Recall CFG rules: S — 07'S1| 170, T — 1
e Corresponding PDA: e Corresponding PDA:
e, $—e¢ e, $—e¢

@ e, e—=S$
—»‘—»

e, S—0TS1
g, S —1T0
e, T —1
1,1 —¢
0,0 —¢

s PDA is non-deterministic.

Input alphabet of PDA is the terminal alphabet of CFG

a X ={0,1}.

= Stack alphabet consists of all variables, terminals and “$"
a [={S5T7,0,1,%}.

= PDA simulates a leftmost derivation using CFG

Ao Pushes RHS of rule in reverse order onto stack.

@ e, e—=S$
%‘—»

g, S —0TS1
e, S—1T0

e, T — 1

1,1 —¢

0,0 —¢

e Recall leftmost derivation of string 011101 € L(G):

S = 07TS1 = 0151 = 011701 = 011101

e Let's now process string 011101 on PDA.

= When in state gp, look at top of stack to determine next transition.
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0. Start in state g7 with 011101 on input tape and empty stack. 1. Read nothing, pop nothing, move to g5, and push $ and then S.
Current state U, U,
6,€%S$ . e, $—e ' E,E*)S$
— — > — — >
e, S — 0TS1 e, S — 0TS1
e, S—1T0 e, S—1T0
e, T — 1 e, T — 1
1,1 —e¢ 1,1 —e¢
0,0 —>¢ 0,0 —¢
Next unread symbol
*
0/1/1/10/1] [] 0/1/1/10/1] $
Input string Stack Input string Stack
Leftmost derivation of string 011101 € L(G): Leftmost derivation of string 011101 € L(G):
S = 07TS1 = 01S1 = 011701 = 011101 S = 07S1 = 01S1 = 011701 = 011101
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2. Read nothing, pop S, return to g5, and push OT'S1.
2

E,E*)S$
—_— > |

e, S —0TS1
e, S—1T0
e, T'—1
1,1 —¢
0,0 —>¢

0[1]1/1]0[1

Input string

Leftmost derivation of string 011101 € L(G):
S = 07'S1 = 01S1 = 011701 = 011101

3. Read 0, pop O, return to g5, and push nothing.
3

e, $—e

E,E*)S$

g, S—=0TS1

e, S = 1T0

e, T"— 1

1,1 —e¢

0,0 —¢
ol1]1/1]o[1 3]
Input string Stack

Leftmost derivation of string 011101 € L(G):
S = 07'S1 = 01S1 = 011701 = 011101
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4. Read nothing, pop T, return to gp, and push 1. 5. Read 1, pop 1, return to go, and push nothing.
4 2
e, e = S$ e, $—e g, e~ S% e, $—e
— — > —> — >
@@
g, S —0TS1 g, S—=0TS1
e, S —1T0 e, S —1T0
e, T —1 e, T —1
1,1 —e¢ 1,1 —e¢
0,0 —>¢ 0,0 —>¢
ol1]1/1]o[1 ol1]1/1]o[1 3]
Input string Input string Stack
Leftmost derivation of string 011101 € L(G): Leftmost derivation of string 011101 € L(G):
S = 07S1 = 0151 = 011701 = 011101 S = 07TS1 = 0151 = 011701 = 011101
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6. Read nothing, pop S, return to gp, and push 17°0.
U

E,E*)S$
—_— > |

e, S —0TS1
e, S—1T0
e, T'—1
1,1 —¢
0,0 —>¢

0[1]1/1]0[1

Input string

Leftmost derivation of string 011101 € L(G):
S = 0TSl = 01S1 = 011701 = 011101

7.Read 1, pop 1, return to g5, and push nothing.
3

e, $—e

E,E*)S$

g, S—=0TS1
e, S = 1T0
e, T"— 1
1,1 —e¢
0,0 —¢
0
ol1]1/1]o[1 3]
Input string Stack

Leftmost derivation of string 011101 € L(G):
S = 0TSl = 01S1 = 011701 = 011101
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8. Read nothing, pop T, return to gp, and push 1. 9. Read 1, pop 1, return to go, and push nothing.
4 2
e, e = S$ e, $—e g, e~ S% e, $—e
—> e — > — >
O ©)
e, S —0TS1 e, S —0TS1
e, S—1T0 e, S—1T0
e, T —1 e, T —1
1,1 —e¢ 1,1 —e¢
0,0 —¢ 0,0 —¢ m
}
ol1f[1/1]0[1] ol1f[1/1]0[1] $
Input string Stack Input string Stack
Leftmost derivation of string 011101 € L(G): Leftmost derivation of string 011101 € L(G):
S = 07TS1 = 01S1 = 011701 = 011101 S = 07TS1 = 0151 = 011701 = 011101
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10. Read 0O, pop O, return to g5, and push nothing.
2

e, $—e

E,E*)S$
— >

g, S —=0TS1
e, S = 1T0
e, T'—1
1,1 —¢
0,0 —>¢
'
ol1]1/1]o[1
Input string Stack

Leftmost derivation of string 011101 € L(G):
S = 0TSl = 01S1 = 011701 = 011101

11. Read 1, pop 1, return to g5, and push nothing.
2

e, $—e

E,E*)S$

g, S—=0TS1
e, S —1T0
e, T"— 1
1,1 —e¢
0,0 —¢

'
of1]1]1]o[1] |

Stack

Input string

Leftmost derivation of string 011101 € L(G):
S = 0TSl = 01S1 = 011701 = 011101
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12. Read nothing, pop $, move to ¢3, push nothing, and accept. Constructed PDA is Not Compliant
e Reca rules: — , —
U Recall CFG rul S — 0TS1|17T0, T — 1
e, e — 5%
e Corresponding PDA:
e, S —0TS1 5%
e, S — 1T0 %L»
e, T —1
1,1-=e e, S — 0TS1
0,0 e, S — 170
il e, T —1
1,1 —c¢
ol1l1l1lol1]" N Lo
Input string Stack
e Problem: pushing strings onto stack instead of < 1 symbols,
Leftmost derivation of string 011101 € L(G): which is not allowed in PDA specification.
S = 07S1 = 01S1 = 011701 = 011101 = PDA transition fcn 6 1 Q X X X Te = P(Q x Te)
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Solution: Add Extra States as Needed

< )a,b—>:cyz @

becomes

<> a,b— z <> €, €=y @5,5—>m @
%

e For example, in our PDA

6,6—>S$
— ———————— >

e, S—0TS1
e, S—1T0
e, T"— 1
1,1 —e¢
0,0 —¢

@
—

we replace

with

s,s—>$ . g, e— S .
%
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e Also, replace

with @
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e So our final PDA from the CFG is

e, T —1
1,1 —¢
0,0 —¢

e, S = 1T0 &e—1
( ) g, e =T
and replace
with
e, S—0TS1
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Regular = CFL

Corollary 2.32
If Ais a regular language, then A is also a CFL.

Proof.

e Suppose A is regular.

e Corollary 1.40 implies A has an NFA.

e But an NFA is just a PDA that ignores stack (always pops/pushes ¢).
e So A has a PDA.

e Thus, Theorem 2.20 implies A is context-free.

Remark: Converse is not true.
For example, { 0™1™ | n > 0 } is CFL but not regular.

Pumping Lemma for CFLs

e Previously saw pumping lemma for regular languages.

e Analogous result holds for every context-free language A.

e Basic Idea: Derivation of long string s € A has repeated variable R.
» Long string implies tall parse tree, so must have repeated variable.
= Can split string s € A into b pieces s = uvxyz based on R.
s uvlzyiz € A forall i > 0.

e Consider language A with CFG G

S — CDa | CD
C — aD
D — Sb|b

e Below “long” derivation using GG repeats variable R = D:

S = CDa = aDDa = abDa = abSba = abCDba
= abaDDba = ababDba = ababbba
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Repeated Variable in Path of Parse Tree Split String Into 5 Pieces
e Derivation of "long” string s = ababbba € A repeats variable D:
S = CDa | CD e Split string s € A into
C — aD S = CDa = aDDa = abDa = abSba = abCDba
D — Sb|b = abaDDba = ababDba = ababbba s = Q,b,&\b/\bQQt/
w v Ty 2
e “Tall" parse tree repeats variable D on path from root to leaf. using repeated variable D.
e In depth-first traversal of
< i) @
0 @ @ @ » u = ab is before D-D subtree
Q @ @ » v = a is before second D within D-D subtree
» © = b is what second D eventually becomes
a ) @ Q s y = bb is after second D within D-D subtree
o » z = a is after D-D subtree
Repeated
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Split Long String Into 5 Pieces

e More generally, consider “long”
string s € A.

e Parse tree is “tall”

= J repeated variable R in

path from root S to leaf.

e Split string s = wvxyz into 5 pieces based on repeated variable R:

= u is before R-R subtree (in depth-first order)
= v is before second R within R-R subtree

= x is what second R eventually becomes

= y is after second R within R-R subtree

» 2 is after R-R subtree

Subtrees Yield ...

R=> vRy

*

R=x

(S)
R S éuRZ
u (R) Z
(R)
v y




CS 341: Chapter 2

Can Pump To Obtain Other Strings in A

e Parse tree for string s € A implies

» S5 uRz foru,z € X*
s R vRy forv,y € &*
« RE g forzex*

2-85

e Can derive string s = uvzryz € A
S & uRz = wwRyz = wvzyz € A

e Also for each 7 > 0, can derive string

S & uwRz = wvRyz = uwvvRyyz = --
= w'zy'z € A

N u’uiRyiz
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Pumping a Parse Tree

e Recal. S = uRz, RS vRy, R Xz

e Consider parse tree of uvxyz € A

2-86
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Pumping Up a Parse Tree

e Recal. S = uRz, RS vRy, R X

e Using R-R subtree twice shows wvvzyyz = uv2zy?z € A

2-87
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Pumping Up Multiple Times

e Recal. S = uRz, RS vRy, R X

e Using R-R subtree thrice shows uv3zy3z € A

2-88
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Pumping Down a Parse Tree When Is Pumping Possible?
eRecall: S= uwRz, RS vRy, R« * Key to Pumping: repeated
_ 0.0 variable R in parse tree.
e Removing R-R subtree shows uzz = uv-zy~z € A .
s S=uRz foru,z € x*
9 « R3S vRy forv,y e *
« RSz forzeX*
@ » string s = uvzyz € A
A e Repeated variable R = vRy, so “v-y pumping” possible:
. S = uRz = wRyz = uviRyiz = uviacyiz € A
7 7 o If tree is tall enough, then repeated variable in path from root to leaf.
» CFG has finite number | V| of variables.
= How tall does parse tree have to be to ensure pumping possible?
= Length of path between two nodes = # edges in path.
= Tree height = # edges on longest path from root to a leaf.
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Can Pump If Parse Tree Is Tall Enough

e Path from root S to leaf

» Leaf is a terminal € X
= All other nodes along path are variables € V.

o If height of tree > |V| 4 1, where |V| = # variables in CFG
= then 3 repeated variable on longest path from root to leaf.

e How long does string s € A have to be to ensure tall enough tree?

Previous Example
» |V| = 3 variables in below CFG:

S — CDa | CD
C — aD
D — Sb|b

» In parse tree for ababbba, longest path has length 5 > |V |4+ 1 =4




CS 341: Chapter 2 2-93
If String s is Long Enough, Then Can Pump

e Let A have CFG in which longest rule has right-side length b > 2:
C — Dq--- Db

= So each node in tree has < b children.

= At most b leaves one step from root.

At most b2 leaves 2 steps from root, and so on.

= If tree has height < h, then

s < bl leaves, so generated string s has length |s| < b

s Equiv: If string s € A has |s| > b 4 1, then tree height > h + 1.
o Let |V| = # variables in CFG.
e If string s € A has length |s| > p = blVI+1 then

a tree height > |V| 4 1 because plVI+1 > bVl + 1.

= some variable on longest path in tree is repeated

= can pump parse tree.
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Pumping Lemma for CFLs
Theorem 2.34

If A is context-free language, then 3 pumping length p where,
if s € A with |s| > p, then s can be split into 5 pieces

s = wvryz
satisfying the properties

1. uvia:yiz € A for each 7« > 0,

2. |vy| > 0, and

3. |vzy| < p.

Remarks:
e Property 1 implies that uzz € A by taking i = O.
e Property 2 says that vy cannot be the empty string.
e Property 3 is sometimes useful.

e Key idea: For each long enough string s in CFL A,
can use s to construct infinitely many other strings in A.
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Proof of Pumping Lemma for CFLs

elet G =(V,X,R,S) be CFG of A.

e Maximum size of rulesis b > 2: C — D1 --- Dy,

o From slide 2-93: If string s € A has length |s| > p = blVI+1

= then longest path in parse tree has some repeated variable R:
S & uRz = wRyz = wvzyz
e It follows that uwv'zy’z € A foralli =0,1,2,....

e Assume

= parse tree is smallest one for string s
= repeated R is among the bottom |V'| + 1 variables on longest path.

e Then in tree, repeated part R = vRy and R = x satisfy

» |vy| > O because tree is minimal.

= bottom subtree with R Z vRy and R = z has height < |[V| + 1,
so [vzy| < bV = p.
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Non-CFL

Remark: CFL Pumping Lemma (PL) mainly used to show certain
languages are not CFL.

Example: Prove that B = {a"b"c"™| n > 0} is non-CFL.
Proof.

e Suppose B is CFL, so PL implies B has pumping length p > 1.
e Consider string s = aPbPcl € B, so |s| = 3p > p.

e PL: can split s into 5 pieces s = uwvzyz = aPbPcP satisfying
1. wo'zy'z € Bforalli >0
2. lvy| >0
3. Jvzy| <p

e For contradiction, show cannot split s = wvzyz satisfying 1-3.

= Show every possible split satisfying Property 2 violates Property 1.
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Recall s — . bbb ProveC’:{aibjck|Ogigjgk}isnotCFL
e Recall s = wvryz =ga---abb---bec---c
p p e Suppose C'is CFL, so PL implies C' has pumping length p.
Possibilities f lit s = isfying P 2: :
e Possibilities for split s = uvxyz satisfying Property 2: |vy| > 0 o Take string 5 = ga---a.bb---bec:--c € C. 50 |s| = 3p > p.
(i) Strings v and y are uniform [eg.,v=a---aandy=1>b---b]. _ p P p o
« Then uv2zy22 won't have same number of a's, b's and c's e PL: can split s = aPbPcP into 5 pieces s = uvzyz satisfying
because |vy| > O ' 1. wv'zy'z € C for every i > 0, 2. |vy| > 0, 3. |vzy| < p.
= Hence, uv2zy2z ¢ B. e Property 3 implies vy can't contain 3 different types of symbols.
(ii) Strings v and y are not both uniform e Two possibilities for v, z, y satisfying |vy| > 0 and |vzy| < p:
[eg,v=a---ab---bandy=0b---b] (i) If vey € L(a™b*), then z has all the c's
= Then uwv2zy2z & L(a*b*c*): symbols not grouped together. = string uv2xy2z has too few ¢'s because z not pumped
= Hence, uv2zy?z ¢ B. « Hence, uv2zy?z ¢ C
e Thus, every split satisfying Property 2 has uv2zy?z ¢ B, (ii) If voy € L(b*c"), then u has all the a's
so Property 1 violated. = string uv92y°z = uzz has too many a's
. s . 0.,.,0
e Contradiction, so B = {a"b""c" | n > 0} is not a CFL. = Hence, wv=zy~2 ¢ C
e Every split s = wvzyz satisfying 2-3 violates 1, so C isn't CFL.
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Prove D = {ww| w € {0,1}* } is not CFL

e Suppose D is CFL, so PL implies D has pumping length p.
e Take s =00---011---100---011---1 € D, so |s| = 4p > p.

o =
p p p p
e PL: can split s into 5 pieces s = uvzyz satisfying
1. uwv'zy'z € D for every i > 0, 2. |lvy| > 0,
(i) If vzy is entirely left of middle of OP 1P OP 1P,

= then second half of uv2zy2z starts with a 1

3. Jvay] < p.

» 5o can't write uv2zy2z as ww because first half starts with O.
(i) Similar reasoning: if vy is entirely right of middle of OP 1P QP 1P,
a then wv2zy?z ¢ D
(iii) If vzy straddles middle of OP 1P OP 1P,
a then uvPzy02 = uzz = 0P17081P ¢ D
(because j or k < p)
e Every split s = uwvxyz satisfying 2-3 violates 1, so D isn't CFL.

Remarks on CFL Pumping Lemma

Often more difficult to apply CFL pumping lemma (Theorem 2.34)
than pumping lemma for regular languages (Theorem 1.70).

e Carefully choose string s in language to get contradiction.
= Not all strings s will give contradiction.

e CFL pumping lemma: “...can split s into 5 pieces s = uvzryz
satisfying all of Properties 1-3."

e To get contradiction, must show cannot split s into 5 pieces
s = uwxyz satisfying all of Properties 1-3.

= Need to show every possible split s = uvxyz violates
at least one of Properties 1-3.
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CFLs Closed Under Union

Is class of CFLs closed under standard operations?

Theorem:
If A1 and Ay are CFLs, then union A7 U A5 is CFL.
Proof.
e Assume
u Al has CFG G]_ — (V]_,Z,R]_,S]_)
u A2 has CFG GQ - (VQ, Z, RQ, SQ)
e Assume that V73 N Vo = ).
e A1 U Aj has CFG G3 = (V3, X, R3, S3) with

w V3 = V3 U VLU {S3}, where S3 ¢ V7 U V5 is new start variable
» R3 = R{ U Ry U {S3— 51, 53— 52}
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Example of Union of CFLs

e Suppose A1 has CFG G1 with rules:

S — aS | bXb
X — ab | baXb

e Suppose A5 has CFG G5 with rules:

S — Sbb | aXba
X = b| XaX

e Then A1 U Ay has CFG G3 with start variable S3 and rules:

S3 — S1] 52

Sl — CLSl | leb
X1 — ab ‘ baX1b
So — Sobb | aXoba
X2 — b ‘ XQCLXQ
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Some Closure Properties of CFLs

e let Ay and Ay be two CFLs.

e Can prove that
= union A1 U Ay is always CFL (slide 2-101)
= concatenation A7 o As is always CFL

s Kleene-star A7 is always CFL

e But

= intersection A1 N Ay is not necessarily CFL
s Ay = {a""cF | n >0,k > 0} and
Ay = {dFb"¢" | n > 0,k > 0}

s complement A; = >* — Ay is not necessarily CFL.
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Hierarchy of Languages (so far)

Examples

All languages

{or1m2n | n >0}

Context-free

0"1" | n >0
{

(CFG, PDA)
Regular (OuU1)*
(DFA, NFA, Reg Exp)
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Summary of Chapter 2

e Context-free language is defined by CFG
e Parse trees

e Chomsky normal form: A — BC or A — x, with A € V,
B,C eV —{S}, z € X. Also allow rule S — ¢.

e Pushdown automaton is NFA with stack for additional memory.
e Equivalence of PDAs and CFGs

e Regular = CFL, but CFL % Regular.

e Pumping lemma for CFLs: long strings in CFL can be pumped.

= Repeat part of tall parse tree corresponding to repeated variable
= Used to prove certain languages are non-CFL

e Class of CFLs closed under union, Kleene star, concatenation

e Class of CFLs not closed under intersection, complementation




