
CS 341: Foundations of CS II

Marvin K. Nakayama
Computer Science Department

New Jersey Institute of Technology
Newark, NJ 07102

CS 341: Chapter 3 3-2

Chapter 3
Church-Turing Thesis

Contents

• Turing Machines

• Turing-recognizable

• Turing-decidable

• Variants of Turing Machines

• Algorithms

• Encoding input for TM

CS 341: Chapter 3 3-3

Previous Machines’ Transitions Functions

• DFA, δ : Q×Σ → Q

Reads input from left to right

Finite control (i.e., transition function) based on

� current state,

� current input symbol read.

• PDA, δ : Q×Σε × Γε → P(Q× Γε)

Has stack for extra memory

Reads input from left to right

Can read/write to memory (stack) by popping/pushing

Finite control based on

� current state,

� what’s read from input,

� what’s popped from stack.

CS 341: Chapter 3 3-4

Turing machine (TM)

• Infinitely long tape, divided into cells, for memory

• Tape initially contains input string followed by all blanks ��

0 0 1 �� �� . . .

• Tape head (↓) can move both right and left

• Can read from and write to tape

• Finite control based on

current state,

current symbol that head reads from tape.

•Machine has one accept state and one reject state.

•Machine can run forever: infinite loop.

CS 341: Chapter 3 3-5

Key Difference between TMs and Previous Machines

• Turing machine can both read from tape and write on it.

• Tape head can move both right and left.

• Tape is infinite and can be used for storage.

• Accept and reject states take immediate effect.

CS 341: Chapter 3 3-6

Example: Machine for recognizing language

A = { s#s | s ∈ {0,1}∗ }

Idea: Zig-zag across tape, crossing off matching symbols.

• Consider string 01101#01101 ∈ A.

• Tape head starts over leftmost symbol

0 1 1 0 1 # 0 1 1 0 1 �� �� . . .

• Record symbol in control and overwrite it with X

X 1 1 0 1 # 0 1 1 0 1 �� �� . . .

• Scan right: reject if blank “��” encountered before #

CS 341: Chapter 3 3-7

•When # encountered, move right one cell.

X 1 1 0 1 # 0 1 1 0 1 �� �� . . .

• If current symbol doesn’t match previously recorded symbol, reject.

• Overwrite current symbol with X

X 1 1 0 1 #X 1 1 0 1 �� �� . . .

• Scan left, past # to X

•Move one cell right

• Record symbol and overwrite it with X

X X 1 0 1 #X 1 1 0 1 �� �� . . .

• Scan right past # to (last) X and move one cell to right . . .

CS 341: Chapter 3 3-8

• After several more iterations of zigzagging, we have

X X X X X #X X X X X �� �� . . .

• After all symbols left of # have been matched to symbols right of #,
check for any remaining symbols to the right of #.

If blank �� encountered, accept .

If 0 or 1 encountered, reject.

X X X X X #X X X X X �� �� . . .

• The string that is accepted or not by our machine is the original input
string 01101#01101.

CS 341: Chapter 3 3-9

Description of TM M1 for { s#s | s ∈ {0,1}∗ }

M1 = “On input string w ∈ Σ∗, where Σ = {0,1,#}:

1. Scan input to be sure that it contains a single #.
If not, reject.

2. Zig-zag across tape to corresponding positions on
either side of the # to check whether these positions
contain the same symbol. If they do not, reject.
Cross off symbols as they are checked off to keep track
of which symbols correspond.

3. When all symbols to the left of # have been crossed off
along with the corresponding symbols to the right of #,
check for any remaining symbols to the right of the #.
If any symbols remain, reject ; otherwise, accept .”

CS 341: Chapter 3 3-10

Formal Definition of Turing Machine

Definition: A Turing machine (TM) is a 7-tuple
M = (Q, Σ, Γ, δ, q0, qaccept, qreject), where

•Q is a finite set of states

•Σ is the input alphabet not containing blank symbol ��

• Γ is tape alphabet with blank �� ∈ Γ and Σ ⊆ Γ

• δ : Q× Γ → Q× Γ× {L,R} is the transition function, where

L means move tape head one cell to left

R means move tape head one cell to right

• q0 ∈ Q is the start state

• qaccept ∈ Q is the accept state

• qreject ∈ Q is the reject state, with qreject �= qaccept.

CS 341: Chapter 3 3-11

Transtion Function of TM

• Transition function δ : Q× Γ → Q× Γ× {L,R}

• δ(q, a) = (s, b, L) means

if TM

� in state q ∈ Q, and

� tape head reads tape symbol a ∈ Γ,

then TM

� moves to state s ∈ Q

� overwrites a with b ∈ Γ

� moves head left (i.e., L ∈ {L,R})

q s
a → b, L

read → write, move

a b a a �� ��Before

a b b a �� ��After

CS 341: Chapter 3 3-12

Start of TM Computation

M = (Q,Σ,Γ, δ, q0, qaccept, qreject) begins computation as follows:

• Given input string w = w1w2 · · ·wn ∈ Σ∗ with each wi ∈ Σ,
i.e., w is a string of length n for some n ≥ 0.

• TM begins in start state q0

• Input string is on n leftmost tape cells

w1 w2 w3 · · · wn �� �� �� . . .

• Rest of tape contains blanks ��

• Head starts on leftmost cell of tape

• Because �� �∈ Σ, first blank denotes end of input string.

CS 341: Chapter 3 3-13

TM Computation

When computation on TM M = (Q,Σ,Γ, δ, q0, qaccept, qreject) starts,

• TM M proceeds according to transition function

δ : Q× Γ → Q× Γ× {L,R}

q s
a → b, L

read → write, move

• If M tries to move head off left end of tape,

then head remains on first cell.

• Computation continues until qaccept or qreject is entered.

• Otherwise, M runs forever: infinite loop.

In this case, input string is neither accepted nor rejected.

CS 341: Chapter 3 3-14

Example: Turing machine M2 recognizing language

A = {02
n
| n ≥ 0 },

which consists of strings of 0s whose length is a power of 2.

Idea: The number k of zeros is a power of 2 iff successively halving k

always results in a power of 2 (i.e., each result > 1 is never odd).

M2 = “On input string w ∈ Σ∗, where Σ = {0}:

1. Sweep left to right across the tape, crossing off every other 0.

2. If in stage 1 the tape contained a single 0, accept .

3. If in stage 1 the tape contained more than a single 0

and the number of 0s was odd, reject.

4. Return the head to the left end of the tape.

5. Go to stage 1.”

CS 341: Chapter 3 3-15

Run TM M2 with Input 0000

• Tape initially contains input 0000.

0 0 0 0 �� . . .

• Run stage 1: Sweep left to right across tape, crossing off every other 0.

�� x 0 x �� . . . (Put �� in first cell to mark beginning of tape.)

• Run stage 4: Return head to left end of tape (marked by ��).

�� x 0 x �� . . .

• Run stage 1: Sweep left to right across tape, crossing off every other 0.

�� x x x �� . . .

• Run stages 4 and 1: Return head to left end and scan tape.

• Run stage 2: If in stage 1 the tape contained a single 0, accept .

CS 341: Chapter 3 3-16

State Diagram of TM for {02
n
| n ≥ 0 }

q1 q2 q3

q4

q5

qreject qaccept

0 → ��, R 0 → x,R

��→ ��, L

��→ ��, R

0 → 0, L
x → x,L

x → x,R

x → x,R

��→ ��, R

x → x,R ��→ ��, R
0 → x,R

0 → 0, R

x → x,R��→ ��, R

CS 341: Chapter 3 3-17

Run TM on input
w = 0000

q1 q2 q3

q4

q5

qreject qaccept

0 → ��, R 0 → x,R

��→ ��, L

��→ ��, R

0 → 0, L
x → x, L

x → x,R

x → x,R

��→ ��, R

x → x,R ��→ ��, R
0 → x,R

0 → 0, R

x → x,R��→ ��, R

Step State Tape

0 q1 0 0 0 0 �� . . .

1 q2 �� 0 0 0 �� . . .

2 q3 �� x 0 0 �� . . .

3 q4 �� x 0 0 �� . . .

Step State Tape

4 q3 �� x 0 x �� . . .

5 q5 �� x 0 x �� . . .

6 q5 �� x 0 x �� . . .

...

CS 341: Chapter 3 3-18

TM for {02
n
| n ≥ 0 }

Turing machine M2 = (Q,Σ,Γ, δ, q1, qaccept, qreject), where

•Q = {q1, q2, q3, q4, q5, qaccept, qreject}

•Σ = {0}

• Γ = {0, x, ��}

• Transition function δ : Q× Γ → Q× Γ× {L,R}

is specified in state diagram. For example,

δ(q4,0) = (q3, x, R)

δ(q3, ��) = (q5, ��, L)

• q1 is start state

• qaccept is accept state

• qreject is reject state

q1 q2 q3

q4

q5

qreject qaccept

0 → ��, R 0 → x,R

��→ ��, L

��→ ��, R

0 → 0, L
x → x, L

x → x,R

x → x,R

��→ ��, R

x → x,R ��→ ��, R
0 → x,R

0 → 0, R

x → x,R��→ ��, R

CS 341: Chapter 3 3-19

TM Configurations

• Computation changes

current state

current head position

tape contents State

q2

Tape

1 0 1 1 0 1 �� �� · · ·

• Configuration provides “snapshot” of TM at any point during
computation:

current state q ∈ Q

current tape contents ∈ Γ∗

current head location

CS 341: Chapter 3 3-20

TM Configurations

Configuration 1011q201 means

• current state is q2

• LHS of tape is 1011

• RHS of tape is 01

• head is on RHS 0
State

q2

Tape

1 0 1 1 0 1 �� �� · · ·

Definition: a configuration of a TM
M = (Q,Σ,Γ, δ, q0, qaccept, qreject) is a string uqv with u, v ∈ Γ∗

and q ∈ Q, and specifies that currently

•M is in state q

• tape contains uv

• tape head is pointing to the cell containing the first symbol in v.

CS 341: Chapter 3 3-21

TM Transitions

Definition: Configuration C1 yields configuration C2 if the Turing
machine can legally go from C1 to C2 in a single step.

• Specifically, for TM M = (Σ,Γ, δ, q0, qaccept, qreject), suppose

u, v ∈ Γ∗

a, b, c ∈ Γ

qi, qj ∈ Q

transition function δ : Q× Γ → Q× Γ× {L,R}.

• Then configuration uaqibv yields configuration uacqjv if

δ(qi, b) = (qj, c, R).

qi qj
b → c, R

u a b v �� �� · · ·Before

u a c v �� �� · · ·After

CS 341: Chapter 3 3-22

TM Transitions

• Similarly, configuration uaqibv yields configuration uqjacv if

δ(qi, b) = (qj, c, L).

qi qj
b → c, L

u a b v �� �� · · ·Before

u a c v �� �� · · ·After

CS 341: Chapter 3 3-23

TM Transitions

• Special case: qibv yields qjcv if

δ(qi, b) = (qj, c, L)

If head is on leftmost cell of tape and tries to move left,
then it stays in same place.

qi qj
b → c, L

b v �� �� · · ·Before

c v �� �� · · ·After

CS 341: Chapter 3 3-24

Remarks on TM Configurations

• Consider TM M = (Q, Σ, Γ, δ, q0, qaccept, qreject).

• Starting configuration on input w ∈ Σ∗ is

q0w

• An accepting configuration is

uqacceptv

for some u, v ∈ Γ∗

• A rejecting configuration is

uqrejectv

for some u, v ∈ Γ∗

• Accepting and rejecting configurations are halting configurations.

• Configuration uqi is the same as uqi��

CS 341: Chapter 3 3-25

q1 q2 q3

q4

q5

qreject qaccept

0 → ��, R 0 → x,R

��→ ��, L��→ ��, R

0 → 0, L
x → x, L

x → x,R x → x,R

��→ ��, R

x → x,R ��→ ��, R
0 → x,R

0 → 0, R

x → x,R

��→ ��, R

On input 0000, get following sequence of configurations:

q10000, ��q2000, ��xq300, ��x0q40, ��x0xq3��, ��x0q5x,

��xq50x, ��q5x0x, q5��x0x, ��q2x0x, ��xq20x, ��xxq3x,

��xxxq3��, ��xxq5x, ��xq5xx, ��q5xxx, q5��xxx, ��q2xxx,

��xq2xx, ��xxq2x, ��xxxq2��, ��xxx�� qaccept�� .

CS 341: Chapter 3 3-26

Formal Definition of TM Computation

• Turing machine M = (Q,Σ,Γ, δ, q0, qaccept, qreject).

• Input string w ∈ Σ∗.

•Definition: M accepts input w if there is a finite sequence of
configurations C1, C2, . . . , Ck for some k ≥ 1 with

C1 is the starting configuration q0w

Ci yields Ci+1 for all i = 1, . . . , k − 1

� sequence of configurations obeys transition function δ

Ck is an accepting configuration uqacceptv for some u, v ∈ Γ∗.

•Definition: The set of all input strings accepted by TM M is the
language recognized by M and is denoted by L(M).

Note that L(M) ⊆ Σ∗.

CS 341: Chapter 3 3-27

Turing-recognizable

Definition: Language A is Turing-recognizable if there is a TM M

such that A = L(M).

Remarks:

• Also called a recursively enumerable or enumerable language.

• On an input w �∈ L(M), the machine M can either

halt in a rejecting state, or

it can loop indefinitely

• How do you distinguish between

a very long computation and

one that will never halt?

• Turing-recognizable not practical because never know if TM will halt.

CS 341: Chapter 3 3-28

Turing-decidable

Definition: A decider is TM that halts on all inputs, i.e., never loops.

Definition: Language A = L(M) is decided by TM M if on each
possible input w ∈ Σ∗, the TM finishes in a halting configuration, i.e.,

•M ends in qaccept for each w ∈ A

•M ends in qreject for each w �∈ A.

Definition: Lang A is Turing-decidable if ∃ TM M that decides A.

Remarks:

• Also called a recursive or decidable language.

• Differences between Turing-decidable language A and
Turing-recognizable language B

A has TM that halts on every string w ∈ Σ∗.

TM for B may loop on strings w �∈ B.

CS 341: Chapter 3 3-29

Describing TMs

• It is assumed that you are familiar with TMs and with programming
computers.

• Clarity above all:

high-level description of TMs is allowed; e.g.,

M = “On input string w ∈ Σ∗, where Σ = {0,1}:
1. Scan input . . . ”

but it should not be used as a trick to hide the important details of
the program.

• Standard tools: Expanding tape alphabet Γ with

separator “#”

dotted symbols
•
0,

•
a, to indicate “activity,” as we’ll see later.

Typical example: Γ = {0,1,#, ��,
•
0,

•
1}

CS 341: Chapter 3 3-30

Example: Turing machine M3 to decide language

C = { ai bj ck | i× j = k and i, j, k ≥ 1 }.

Idea: If i collections of j things each, then i× j things total.

TM: for each a, cross off j c’s by matching each b with a c.

M3 = “On input string w ∈ Σ∗, where Σ = {a, b, c}:

1. Scan the input from left to right to make sure that it is
a member of L(a∗b∗c∗), and reject if it isn’t.

2. Return the head to the left-hand end of the tape

3. Cross off an a and scan to the right until a b occurs.
Shuttle between the b’s and the c’s, crossing off each
until all b’s are gone. If all c’s have been crossed off
and some b’s remain, reject.

4. Restore the crossed off b’s and repeat stage 3 if there
is another a to cross off. If all a’s are crossed off,
check whether all c’s also are crossed off.
If yes, accept ; otherwise, reject.”

CS 341: Chapter 3 3-31

Running TM M3 on Input a3b2c6 ∈ C

• Tape head starts over leftmost symbol

a a a b b c c c c c c �� �� . . .

• Stage 1: Mark leftmost symbol and scan to see if input ∈ L(a∗b∗c∗)

A a a b b c c c c c c �� ��

. . .

• Stage 3: Cross off one a and cross off matching b’s and c’s

•

A a a

•

b

•

b

•

c

•

c c c c c �� ��

. . .

• Stage 4: Restore b’s and return head to first a not crossed off

•

A a a b b

•

c

•

c c c c c �� ��

. . .

CS 341: Chapter 3 3-32

• Stage 3: Cross off one a and cross off matching b’s and c’s

•

A

•

a a

•

b

•

b

•

c

•

c

•

c

•

c c c �� ��

. . .

• Stage 4: Restore b’s and return head to first a not crossed off

•

A

•

a a b b

•

c

•

c

•

c

•

c c c �� ��

. . .

• Stage 3: Cross off one a and cross off matching b’s and c’s

•

A

•

a

•

a

•

b

•

b

•

c

•

c

•

c

•

c

•

c

•

c �� ��

. . .

• Stage 4: If all a’s crossed off, check if all c’s crossed off.

• accept

CS 341: Chapter 3 3-33

TM Tricks

•Question: How to tell when a TM is at the left end of the tape?

•One Approach: Mark it with a special symbol.

• Alternative method:

remember current symbol

overwrite it with special symbol

move left

if special symbol still there, head is at start of tape

otherwise, restore previous symbol and move left.

CS 341: Chapter 3 3-34

Variant of TM: k-tape

3-tape TM

Tape 1 0 1 1 �� · · ·

Tape 2 0 0 �� · · ·

Tape 3 1 0 0 1 �� · · ·

• Each tape has its own head.

• Transitions determined by

current state, and

what all the heads read.

• Each head writes and moves independently of other heads.

CS 341: Chapter 3 3-35

k-tape Turing Machine

Definition: A k-tape Turing machine

M = (Q, Σ, Γ, δ, q0, qaccept, qreject)

has k different tapes and k different read/write heads:

•Q is finite set of states

•Σ is input alphabet (where �� �∈ Σ)

• Γ is tape alphabet with ({��} ∪Σ) ⊆ Γ

• q0 is start state ∈ Q

• qaccept is accept state ∈ Q

• qreject is reject state ∈ Q

• δ is transition function

δ : Q× Γk → Q× Γk × {L,R}k

where Γk = Γ× Γ× · · · × Γ
︸ ︷︷ ︸

k times
.

CS 341: Chapter 3 3-36

Multi-Tape TM

• Transition function

δ : Q× Γk → Q× Γk × {L,R}k

• Suppose

δ(qi, a1, a2, . . . , ak) = (qj, b1, b2, . . . , bk, L,R, . . . , L)

• Interpretation: If

machine is in state qi, and

heads 1 through k read a1, . . . ak,

• then

machine moves to state qj

heads 1 through k write b1, . . . , bk

each head moves left (L) or right (R) as specified.

CS 341: Chapter 3 3-37

Multi-Tape TM Equivalent to 1-Tape TM

Theorem 3.13
For every multi-tape TM M , there is a single-tape TM M ′ such that
L(M) = L(M ′).

Remarks:

• In other words, for every multi-tape TM M , there is an equivalent
single-tape TM M ′.

• Proving and understanding this kind of robustness result is essential for
appreciating the power of the TM model.

We will consider different variants of TMs, and show each has
equivalent basic TM.

CS 341: Chapter 3 3-38

Basic Idea of Proof of Theorem 3.13

Simulate k-tape TM using 1-tape TM

3-tape TM

Tape 1 0 1 1 �� · · ·

Tape 2 0 0 �� · · ·

Tape 3 1 0 0 1 �� · · ·

Equivalent
1-tape TM # 0 1 1

•
0

•
0 # 1 0

•
0 1 # �� · · ·Tape

CS 341: Chapter 3 3-39

Proof of Theorem 3.13

• Let Mk = (Q,Σ,Γ, δ, q0, qaccept, qreject) be a k-tape TM.

• Initially, Mk has

input w = w1 · · ·wn on tape 1

other tapes contain only blanks ��

each head points to first cell.

Tape 1 w1 w2 · · · wn �� · · ·

Tape 2 �� �� �� �� �� · · ·

Tape 3 �� �� �� �� �� · · ·

• Construct 1-tape TM M1 with expanded tape alphabet

Γ′ = Γ ∪
•
Γ ∪ {#}

Head positions are marked by dotted symbols in
•
Γ.

CS 341: Chapter 3 3-40

Proof of Theorem 3.13

On input w = w1 · · ·wn, the 1-tape TM M1 does the following:

• First M1 prepares initial string on single tape:

w1
•

w2 · · · wn # ��
•

��
•

�� �� · · ·

• For each step of Mk, TM M1 scans tape twice

1. Scans its tape from

first # (which marks left end of tape) to

(k +1)st # (which marks right end of used part of tape)

to read symbols under “virtual” heads

2. Rescans to write new symbols and move heads

If M1 tries to move virtual head to the right onto #, then

� Mk is trying to move head onto unused blank cell.

� So M1 has to write blank on tape and shift rest of tape right
one cell.

CS 341: Chapter 3 3-41

Turing-recognizable ⇐⇒ k-tape TM

From Theorem 3.13, we get the following:

Corollary 3.15
Language L is TM-recognizable if and only if some multi-tape TM
recognizes L.

CS 341: Chapter 3 3-42

Nondeterministic TM

Definition: A nondeterministic Turing machine (NTM) M can
have several options at every step. NTM is defined by a 7-tuple

M = (Q, Σ, Γ, δ, q0, qaccept, qreject),

where

•Q is finite set of states

•Σ is input alphabet (without blank ��)

• Γ is tape alphabet with {��} ∪Σ ⊆ Γ

• q0 is start state ∈ Q

• qaccept is accept state ∈ Q

• qreject is reject state ∈ Q

• δ is transition function

δ : Q× Γ → P(Q× Γ× {L,R})

CS 341: Chapter 3 3-43

Transition Function δ of NTM

δ : Q× Γ → P(Q× Γ× {L,R})

qi

qj

qk

q�

c → a, L

c → c, R

c → d, R

c → a, L

Multiple choices when in state qi and reading c from tape:

δ(qi, c) = { (qj, a, L), (qk, c, R), (q�, a, L), (q�, d, R) }

CS 341: Chapter 3 3-44

Computing With NTMs

• On any input w, evolution of NTM represented by a
tree of configurations (rather than a single chain).

• If ∃ (at least) one accepting leaf, then NTM accepts.

t = 1

t = 2

t = 3

t = 4

C1

C2 C3 C4

C5

“reject”

C6

C10

C7

“accept”

C8 C9

CS 341: Chapter 3 3-45

NTM Equivalent to TM

Theorem 3.16
Every nondeterministic TM N has an equivalent deterministic TM D.

Proof Idea:

• Build TM D to simulate NTM N on each input w.

•D tries all possible branches of N ’s tree of configurations.

• If D finds any accepting configuration, then it accepts input w.

• If all branches reject, then D rejects input w.

• If no branch accepts and at least one loops, then D loops on w.

CS 341: Chapter 3 3-46

Proof of Equivalence of NTM and TM

On each input w, NTM N ’s computation is a tree

• Each branch is branch of nondeterminism.

• Each node is a configuration arising from running N on w.

• Root is starting configuration.

• TM D searches through tree to see if it has an accepting configuration.

Depth-first search (DFS) doesn’t work. Why?

Breadth-first search (BFS) works.

• Tree doesn’t actually exist.

So TM D needs to build tree while searching through it.

CS 341: Chapter 3 3-47

Proof of Equivalence of NTM and TM

Simulating TM D has 3 tapes

1. Input tape

• contains input string w

• never altered

2. Simulation tape

• used as N ’s tape when simulating N ’s execution on some path in
N ’s computation tree.

3. Address tape

• keeps track of current location of BFS of N ’s computation tree.

CS 341: Chapter 3 3-48

Address Tape Works as Follows

• Every node in the tree has at most b children.

b is size of largest set of possible choices for N ’s transition fcn δ.

• Every node in tree has an address that is a string over the alphabet

Γb = {1,2, . . . , b}

• To get to node with address 231

start at root

take second branch

then take third branch

then take first branch

• Ignore meaningless addresses.

• Visit nodes in BFS order by listing addresses in Γ∗
b in string order:

ε, 1, 2, . . . , b, 11, 12, . . . , 1b, 21, 22, . . .

CS 341: Chapter 3 3-49

Proof of Equivalence of NTM and TM

• “accept” configuration has address 231.

• Configuration C6 has address 12.

• Configuration C1 has address ε.

• Address 132 is meaningless.

address: ε

address: 1 2 3

address: 11 12 21 22 23

address: 111 121 231

t = 1

t = 2

t = 3

t = 4

C1

C2 C3 C4

C5

“reject”

C6

C10

C7

“accept”

C8 C9

CS 341: Chapter 3 3-50

TM D Simulating NTM N Works as Follows

1. Initially, input tape contains input string w.

• Simulation and address tapes are initially empty.

2. Copy input tape to simulation tape.

3. Use simulation tape to simulate NTM N on input w
on path in tree from root to the address on address tape.

• At each node, consult next symbol on address tape to determine
which branch to take.

• Accept if accepting configuration reached.

• Skip to next step if

symbols on address tape exhausted

nondeterministic choice invalid

rejecting configuration reached

4. Replace string on address tape with next string in Γ∗
b in string order,

and go to Stage 2.

CS 341: Chapter 3 3-51

Remarks on TM Variants

Corollary 3.18
Language L is Turing-recognizable iff a nondeterministic TM recognizes it.

Proof.

• Every nondeterministic TM has an equivalent 3-tape TM

1. input tape

2. simulation tape

3. address tape

• 3-tape TM, in turn, has an equivalent 1-tape TM by Theorem 3.13.

Remarks:

• k-tape TMs and NTMs are not more powerful than standard TMs:

• The Turing machine model is extremely robust.

CS 341: Chapter 3 3-52

TM Decidable ⇐⇒ NTM Decidable

Definition: A nondeterministic TM is a decider if all branches halt on
all inputs.

Remark: Can modify proof of previous theorem (3.16) so that
if NTM N always halts on all branches, then TM D will always halt.

Corollary 3.19
A language is decidable iff some nondeterministic TM decides it.

CS 341: Chapter 3 3-53

Enumerators

Remarks:

• Recall: a language is enumerable if some TM recognizes it.

• But why enumerable?

Definition: An enumerator is a TM with a printer

• TM takes no input

• TM simply sends strings to printer

• may create infinite list of strings

• duplicates may appear in list

• enumerates a language

CS 341: Chapter 3 3-54

Enumerators

Theorem 3.21
Language A is Turing-recognizable iff some enumerator enumerates it.

Proof. Must show

1. (⇐) If E enumerates language A, then some TM M recognizes A.

2. (⇒) If TM M recognizes A, then some enumerator E enumerates A.

To show 1 (⇐), given enumerator E,
build TM M for A using E as black box:

•M = “On input string w,

1. Run E.

2. Every time E outputs a string, compare it to w.

3. If w is output, accept .”

CS 341: Chapter 3 3-55

Second Half of Proof of Theorem 3.21

We now show 2 (⇒): If TM M recognizes A,
then some enumerator E enumerates A.

• Let s1, s2, s3, . . . be an (infinite) list of all strings in Σ∗

• Given TM M , define E using M as black box as follows:

Repeat the following for i = 1,2,3, . . .

� Run M for i steps on each input s1, s2, . . . , si.

� If any computation accepts, print out corresponding string s

• Note that duplicates may appear.

CS 341: Chapter 3 3-56

“Algorithm” is Independent of Computation Model

• All reasonable variants of TM models are equivalent to TM:

k-tape TM

nondeterministic TM

enumerator

random-access TM: head can jump to any tape cell in one step.

• Similarly, all “reasonable” programming languages are equivalent.

Can take program in LISP and convert it into C, and vice versa.

• Notion of an algorithm is independent of computation model.

CS 341: Chapter 3 3-57

Algorithms

What is an algorithm?

• Informally

a recipe

a procedure

a computer program Muh.ammad ibn Mūsā al-Khwārizm̄i
(c. 780 – c. 850)
source: wikipedia

• Historically,

algorithms have long history in mathematics

but not precisely defined until 20th century

informal notions rarely questioned, but
insufficient to show a problem has no algorithm.

CS 341: Chapter 3 3-58

Hilbert’s 10th Problem

David Hilbert
(1862 – 1943)
source: wikipedia

In 1900, David Hilbert delivered a now-famous address

• Presented 23 open mathematical problems

• Challenge for the next century

• 10th problem concerned algorithms and polynomials

CS 341: Chapter 3 3-59

Polynomials

• A term is product of variables and constant integer coefficient:

6x3yz2

• A polynomial is a sum of terms:

6x3yz2 + 3xy2 − x3 − 10

• A root of a polynomial is an assignment of values to variables so that
the value of the polynomial is zero.

• The above polynomial has a root at (x, y, z) = (5,3,0).

•We are interested in integral roots.

• Some polynomials have integral roots; some don’t.

Neither 21x2 − 81xy +1 nor x2 − 2 has an integral root.

CS 341: Chapter 3 3-60

Hilbert’s 10th Problem

• Problem: Devise an algorithm that tests whether a polynomial has an
integral root.

• In Hilbert’s words:

“to devise a process according to which it can be

determined by a finite number of operations . . . ”

• Hilbert seemed to assume that such an algorithm exists.

• However, Matijasevic̆ proved in 1970 that no such algorithm exists.

•Mathematicians in 1900 couldn’t have proved this.

No formal notion of an algorithm existed.

Informal notions work fine for constructing algorithms.

Formal notion needed to show no algorithm exists for a problem.

CS 341: Chapter 3 3-61

Church-Turing Thesis

Alonzo Church
(1903 – 1995)
source: wikipedia

Alan Turing
(1912 – 1954)
source: wikipedia

• Formal notion of algorithm developed in 1936

λ-calculus of Alonzo Church

Turing machines of Alan Turing

Definitions appear very different, but are equivalent.

• Church-Turing Thesis
The informal notion of an algorithm corresponds exactly to a
Turing machine that halts on all inputs.

CS 341: Chapter 3 3-62

Hilbert’s 10th Problem

• For universe Ω = { p | p is a polynomial }, consider language

D = { p | p is a polynomial with an integral root } ⊆ Ω.

Since 6x3yz2 + 3xy2 − x3 − 10 has an integral root at
(x, y, z) = (5,3,0),

6x3yz2 + 3xy2 − x3 − 10 ∈ D.

Since 21x2 − 81xy +1 has no integral root,

21x2 − 81xy +1 �∈ D.

• Hilbert’s 10th problem asks whether this language is decidable.

i.e., Is there a TM that decides D?

•D is not decidable, but it is Turing-recognizable.

CS 341: Chapter 3 3-63

Hilbert’s 10th Problem

• Consider simpler language of polynomials over single variable:

D1 = { p | p is a polynomial over x with an integral root }

⊆ { p | p is a polynomial over x } ≡ Ω1

•D1 is recognized by following TM M1:

On input p ∈ Ω1, i.e., p is a polynomial over variable x

1. Evaluate p with x set successively to values

0,1,−1,2,−2,3,−3,

2. If at any point the polynomial evaluates to 0, accept .

•M1 recognizes D1, but does not decide D1.

If p has an integral root, the machine eventually accepts.

If not, machine loops.

CS 341: Chapter 3 3-64

Hilbert’s 10th Problem

• It turns out, though, that D1 is decidable.

• Can show that the roots of p (over single variable x) lie between

±k
cmax

c1

where

k is number of terms in polynomial

cmax is maximum coefficient

c1 is coefficient of highest-order term

• Thus, only have to check integers between −k cmax
c1

and k cmax
c1

.

•Matijasevic̆ proved such bounds don’t exist for multivariate polynomials.

CS 341: Chapter 3 3-65

Encoding

• Input to a Turing machine is a string of symbols over an alphabet.

• But we want TMs (algorithms) that work on

polynomials

graphs

grammars

Turing machines

etc.

• Need to encode an object as a string of symbols over an alphabet.

• Can often do this in many reasonable ways.

•We sometimes distinguish between

an object X

its encoding 〈X〉.

CS 341: Chapter 3 3-66

Encoding an Undirected Graph

• Undirected graph G

1

2

3

4

• One possible encoding

〈G〉 = (1,2,3,4)
︸ ︷︷ ︸

nodes

((1,2), (1,3), (2,3), (3,4))
︸ ︷︷ ︸

edges

• In this encoding scheme, 〈G〉 of graph G is string of symbols over
alphabet Σ = {0,1, . . . ,9, (,), , }, where the string

starts with list of nodes

followed by list of edges

CS 341: Chapter 3 3-67

Connected Graphs

Definition: An undirected graph is connected if every node can be
reached from any other node by travelling along edges.

Connected graph G1

1

2

3

4

Unconnected graph G2

1

2

3

4

Example: Let A be the language consisting of strings representing
connected undirected graphs:

A = { 〈G〉 | G is a connected undirected graph }.

• A ⊆ Ω ≡ { 〈G〉 | G is an undirected graph }.

• 〈G1〉 ∈ A, 〈G2〉 �∈ A.

CS 341: Chapter 3 3-68

Decision Problems

•Decision problem: (computational) question with YES/NO answer.

Answer depends on particular value of input to question.

• Example: Graph connectedness problem:

Is an undirected graph connected?

Graph G1

1

2

3

4

Graph G2

1

2

3

4

Input to question is from Ω ≡ { 〈G〉 | G is an undirected graph }.

For input 〈G1〉, answer is YES.

For input 〈G2〉, answer is NO.

CS 341: Chapter 3 3-69

Instance and Language of Decision Problem

• Instance of decision problem is specific input value to question.

Instance is encoded as string over some alphabet Σ.

YES instance has answer YES.

NO instance has answer NO.

• Universe Ω of a decision problem comprises all instances.

• Language of a decision problem comprises all its YES instances.

• Example: For graph connectedness problem,

Universe consists of (encodings of) every undirected graph G:

Ω = { 〈G〉 | G is an undirected graph }

Language A of decision problem

A = { 〈G〉 | G is a connected undirected graph }

is subset of universe; i.e., A ⊆ Ω

CS 341: Chapter 3 3-70

Proving a Language is Decidable

• Recall for graph connectedness problem,

Ω = { 〈G〉 | G is an undirected graph },

A = { 〈G〉 | G is a connected undirected graph } ⊆ Ω.

• To prove A is decidable language,
need to show ∃ TM that decides A.

• For a TM M to decide A, the TM must

take any instance 〈G〉 ∈ Ω as input

halt and accept if 〈G〉 ∈ A

halt and reject if 〈G〉 �∈ A (i.e., never loops indefinitely)

CS 341: Chapter 3 3-71

TM to Decide if Graph is Connected

A = { 〈G〉 | G is a connected undirected graph }

⊆ { 〈G〉 | G is an undirected graph } ≡ Ω

Graph G1

1

2

3

4

Graph G2

1

2

3

4

M = “On input 〈G〉 ∈ Ω, where G is an undirected graph:
0. Check if 〈G〉 is a valid graph encoding. If not, reject.
1. Select first node of G and mark it.
2. Repeat until no new nodes marked:
3. For each node in G, mark it if it’s attached by an

edge to a node already marked.
4. Scan all nodes of G to see whether they all are marked.

If they are, accept ; otherwise, reject.”

CS 341: Chapter 3 3-72

TM M for Deciding Language A

For TM M that decides A = { 〈G〉 | G is a connected undirected graph }

• Stage 0 checks that input 〈G〉 ∈ Ω is valid graph encoding, e.g.,

two lists

� first is a list of numbers

� second is a list of pairs of numbers

first list contains no duplicates

every node in second list appears in first list

• Stages 1–4 then check if G is connected.

•When defining a TM, we often do not explicitly include stage 0 to
check if the input is a valid encoding.

Instead, the check is often only implicitly included.

CS 341: Chapter 3 3-73

Hierarchy of Languages (so far)

Finite {110, 01 }

Regular
DFA, NFA, Reg Exp

(0 ∪ 1)∗

Context-free
CFG, PDA

{0n1n | n ≥ 0 }

Decidable
Decider (deterministic, nondet, k-tape, . . .)

{0n1n2n | n ≥ 0 }

Turing-recognizable
TM, k-tape TM, NTM, enumerator, . . .

???

All languages ???

Examples

CS 341: Chapter 3 3-74

Summary of Chapter 3

• Turing machines

tape head can move right and left

tape head can read and write

• TM computation can be expressed as sequence of configurations

• Language is Turing-recognizable if some TM recognizes it

But TM may loop forever on input string not in language

• Language is Turing-decidable if a TM decides it (must always halt)

• Variants of TM (k-tape, nondeterministic, etc.) have equivalent TM

• Church-Turing Thesis

Informal notion of algorithm is same as deciding by TM.

• Hilbert’s 10th problem undecidable.

• Encoding TM input and decision problems.

