Marvin K. Nakayama
Computer Science Department
New Jersey Institute of Technology
Newark, NJ 07102

Contents

- Turing Machines
- Turing-recognizable
- Turing-decidable
- Variants of Turing Machines
- Algorithms
- Encoding input for TM

Previous Machines’ Transitions Functions

- DFA, $\delta: Q \times \Sigma \rightarrow Q$
- Reads input from left to right
- Finite control (i.e., transition function) based on
© current state,
a current input symbol read.
- PDA, $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \rightarrow \mathcal{P}\left(Q \times \Gamma_{\varepsilon}\right)$
- Has stack for extra memory
- Reads input from left to right
- Can read/write to memory (stack) by popping/pushing
- Finite control based on
© current state,
© what's read from input,
^ what's popped from stack.

Turing machine (TM)

- Infinitely long tape, divided into cells, for memory
- Tape initially contains input string followed by all blanks \sqcup

- Tape head (\downarrow) can move both right and left
- Can read from and write to tape
- Finite control based on
- current state,
- current symbol that head reads from tape.
- Machine has one accept state and one reject state.
- Machine can run forever: infinite loop.

Key Difference between TMs and Previous Machines

- Turing machine can both read from tape and write on it.
- Tape head can move both right and left.
- Tape is infinite and can be used for storage.
- Accept and reject states take immediate effect.

Example: Machine for recognizing language

$$
A=\left\{s \# s \mid s \in\{0,1\}^{*}\right\}
$$

Idea: Zig-zag across tape, crossing off matching symbols.

- Consider string 01101\#01101 $\in A$.
- Tape head starts over leftmost symbol

- Record symbol in control and overwrite it with X

- Scan right: reject if blank " \sqcup " encountered before \#
- When \# encountered, move right one cell.

- If current symbol doesn't match previously recorded symbol, reject.
- Overwrite current symbol with X

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l}
\star & \\
X & 1 & 1 & 0 & 1 & \# & X & 1 & 1 & 0 & 1 & \sqcup \\
\sqcup & \cdots
\end{array}
$$

- Scan left, past \# to X
- Move one cell right
- Record symbol and overwrite it with X

- Scan right past \# to (last) X and move one cell to right ...
- After several more iterations of zigzagging, we have

- After all symbols left of \# have been matched to symbols right of \#, check for any remaining symbols to the right of \#.
- If blank \sqcup encountered, accept.
- If 0 or 1 encountered, reject.

- The string that is accepted or not by our machine is the original input string 01101\#01101.

Description of TM M_{1} for $\left\{s \# s \mid s \in\{0,1\}^{*}\right\}$
$M_{1}=$ "On input string $w \in \Sigma^{*}$, where $\Sigma=\{0,1, \#\}$:

1. Scan input to be sure that it contains a single \#. If not, reject.
2. Zig-zag across tape to corresponding positions on either side of the \# to check whether these positions contain the same symbol. If they do not, reject. Cross off symbols as they are checked off to keep track of which symbols correspond.
3. When all symbols to the left of \# have been crossed off along with the corresponding symbols to the right of $\#$, check for any remaining symbols to the right of the \#. If any symbols remain, reject; otherwise, accept."

Formal Definition of Turing Machine

Definition: A Turing machine (TM) is a 7-tuple $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$, where

- Q is a finite set of states
- Σ is the input alphabet not containing blank symbol \sqcup
- Γ is tape alphabet with blank $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$
- $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$ is the transition function, where
- L means move tape head one cell to left
- R means move tape head one cell to right
- $q_{0} \in Q$ is the start state
- $q_{\text {accept }} \in Q$ is the accept state
- $q_{\text {reject }} \in Q$ is the reject state, with $q_{\text {reject }} \neq q_{\text {accept }}$.

Transtion Function of TM

- Transition function $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$
- $\delta(q, a)=(s, b, L)$ means
- if TM
Δ in state $q \in Q$, and
Δ tape head reads tape symbol $a \in \Gamma$,
- then TM
Δ moves to state $s \in Q$
Δ overwrites a with $b \in \Gamma$
Δ moves head left (i.e., $L \in\{L, R\}$)

read \rightarrow write, move

Before

After

TM Computation

When computation on TM $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$ starts,

- TM M proceeds according to transition function

$$
\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}
$$

read \rightarrow write, move

- If M tries to move head off left end of tape,
- then head remains on first cell.
- Computation continues until $q_{\text {accept }}$ or $q_{\text {reject }}$ is entered.
- Otherwise, M runs forever: infinite loop.
- In this case, input string is neither accepted nor rejected.

Example: Turing machine M_{2} recognizing language

$$
A=\left\{0^{2^{n}} \mid n \geq 0\right\}
$$

which consists of strings of 0 s whose length is a power of 2 .
Idea: The number k of zeros is a power of 2 iff successively halving k always results in a power of 2 (i.e., each result >1 is never odd).
$M_{2}=$ "On input string $w \in \Sigma^{*}$, where $\Sigma=\{0\}$:

1. Sweep left to right across the tape, crossing off every other 0 .
2. If in stage 1 the tape contained a single 0 , accept.
3. If in stage 1 the tape contained more than a single 0 and the number of Os was odd, reject.
4. Return the head to the left end of the tape.
5. Go to stage 1."

State Diagram of TM for $\left\{0^{2^{n}} \mid n \geq 0\right\}$

- Tape initially contains input 0000.

- Run stage 1: Sweep left to right across tape, crossing off every other 0 .

- Run stage 4: Return head to left end of tape (marked by \sqcup).

- Run stage 1: Sweep left to right across tape, crossing off every other 0 .

- Run stages 4 and 1: Return head to left end and scan tape.
- Run stage 2: If in stage 1 the tape contained a single 0 , accept.

Run TM on input

$$
w=0000
$$

$3 \quad q_{4}$ \qquad

TM Configurations

- Computation changes
- current state
- current head position
- tape contents

State

- Configuration provides "snapshot" of TM at any point during computation:
- current state $q \in Q$
- current tape contents $\in \Gamma^{*}$
- current head location

CS 341: Chapter 3

Tape

TM Transitions

Definition: Configuration C_{1} yields configuration C_{2} if the Turing machine can legally go from C_{1} to C_{2} in a single step.

- Specifically, for TM $M=\left(\Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$, suppose
- $u, v \in \Gamma^{*}$
- $a, b, c \in \Gamma$
- $q_{i}, q_{j} \in Q$
- transition function $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$.
- Then configuration $u a q_{i} b v$ yields configuration $u a c q_{j} v$ if

$$
\delta\left(q_{i}, b\right)=\left(q_{j}, c, R\right) .
$$

Before

After

TM Transitions

- Special case: $q_{i} b v$ yields $q_{j} c v$ if

$$
\delta\left(q_{i}, b\right)=\left(q_{j}, c, L\right)
$$

- If head is on leftmost cell of tape and tries to move left, then it stays in same place.

Before

After

- Similarly, configuration $u a q_{i} b v$ yields configuration $u q_{j} a c v$ if

$$
\delta\left(q_{i}, b\right)=\left(q_{j}, c, L\right)
$$

Before

After

Remarks on TM Configurations

- Consider TM $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$.
- Starting configuration on input $w \in \Sigma^{*}$ is

$$
q_{0} w
$$

- An accepting configuration is

$$
u q_{\text {accept }} v
$$

for some $u, v \in \Gamma^{*}$

- A rejecting configuration is

$$
u q_{\text {reject }} v
$$

for some $u, v \in \Gamma^{*}$

- Accepting and rejecting configurations are halting configurations.
- Configuration $u q_{i}$ is the same as $u q_{i} \sqcup$

On input 0000, get following sequence of configurations:

$$
\begin{gathered}
q_{1} 0000, \quad \sqcup q_{2} 000, \quad \sqcup x q_{3} 00, \quad \sqcup x 0 q_{4} 0, \quad \sqcup x 0 x q_{3} \sqcup, \quad \sqcup x 0 q_{5} x \\
\sqcup x q_{5} 0 x, \quad \sqcup q_{5} x 0 x, \quad q_{5} \sqcup x 0 x, \quad \sqcup q_{2} x 0 x, \quad \sqcup x q_{2} 0 x, \quad \sqcup x x q_{3} x \\
\sqcup x x x q_{3} \sqcup, \quad \sqcup x x q_{5} x, \quad \sqcup x q_{5} x x, \quad \sqcup q_{5} x x x, \quad q_{5} \sqcup x x x, \quad \sqcup q_{2} x x x \\
\sqcup x q_{2} x x, \quad \sqcup x x q_{2} x, \quad \sqcup x x x q_{2} \sqcup, \quad \sqcup x x x \sqcup q_{\text {accept }} \sqcup .
\end{gathered}
$$

Turing-decidable

Definition: A decider is TM that halts on all inputs, i.e., never loops.
Definition: Language $A=L(M)$ is decided by TM M if on each possible input $w \in \Sigma^{*}$, the TM finishes in a halting configuration, i.e.,

- M ends in $q_{\text {accept }}$ for each $w \in A$
- M ends in $q_{\text {reject }}$ for each $w \notin A$.

Definition: Lang A is Turing-decidable if \exists TM M that decides A.

Remarks:

- Also called a recursive or decidable language.
- Differences between Turing-decidable language A and Turing-recognizable language B
- A has TM that halts on every string $w \in \Sigma^{*}$.
- TM for B may loop on strings $w \notin B$.

Describing TMs

- It is assumed that you are familiar with TMs and with programming computers.
- Clarity above all:
- high-level description of TMs is allowed; e.g.,

$$
\begin{aligned}
M= & \text { "On input string } w \in \Sigma^{*}, \text { where } \Sigma=\{0,1\}: \\
& 1 . \text { Scan input } \ldots "
\end{aligned}
$$

- but it should not be used as a trick to hide the important details of the program.
- Standard tools: Expanding tape alphabet Γ with
- separator "\#"
- dotted symbols $\stackrel{\bullet}{0}, \stackrel{\bullet}{a}$, to indicate "activity," as we'll see later.
- Typical example: $\Gamma=\{0,1, \#, \sqcup, \dot{0}, \dot{1}\}$

Example: Turing machine M_{3} to decide language

$$
C=\left\{a^{i} b^{j} c^{k} \mid i \times j=k \text { and } i, j, k \geq 1\right\}
$$

Idea: If i collections of j things each, then $i \times j$ things total.
TM: for each a, cross off $j c$'s by matching each b with a c.
$M_{3}=$ "On input string $w \in \Sigma^{*}$, where $\Sigma=\{a, b, c\}$:

1. Scan the input from left to right to make sure that it is a member of $L\left(a^{*} b^{*} c^{*}\right)$, and reject if it isn't.
2. Return the head to the left-hand end of the tape
3. Cross off an a and scan to the right until a b occurs. Shuttle between the b 's and the c 's, crossing off each until all b 's are gone. If all c 's have been crossed off and some b 's remain, reject.
4. Restore the crossed off b 's and repeat stage 3 if there is another a to cross off. If all a 's are crossed off, check whether all c 's also are crossed off. If yes, accept; otherwise, reject."

Running TM M_{3} on Input $a^{3} b^{2} c^{6} \in C$

- Tape head starts over leftmost symbol

- Stage 1: Mark leftmost symbol and scan to see if input $\in L\left(a^{*} b^{*} c^{*}\right)$

- Stage 3: Cross off one a and cross off matching b 's and c 's

- Stage 4: Restore b 's and return head to first a not crossed off

CS 341: Chapter 3

- Stage 3: Cross off one a and cross off matching b 's and c 's

- Stage 4: Restore b 's and return head to first a not crossed off

- Stage 3: Cross off one a and cross off matching b 's and c 's

- Stage 4: If all a 's crossed off, check if all c 's crossed off.
- accept
- Question: How to tell when a TM is at the left end of the tape?
- One Approach: Mark it with a special symbol.

- Alternative method:

- remember current symbol
- overwrite it with special symbol
- move left
- if special symbol still there, head is at start of tape
- otherwise, restore previous symbol and move left.

k-tape Turing Machine

Definition: A k-tape Turing machine

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\mathrm{accept}}, q_{\text {reject }}\right)
$$

has k different tapes and k different read/write heads:

- Q is finite set of states
- Σ is input alphabet (where $\sqcup \notin \Sigma$)
- Γ is tape alphabet with $(\{\sqcup\} \cup \Sigma) \subseteq \Gamma$
- q_{0} is start state $\in Q$
- $q_{\text {accept }}$ is accept state $\in Q$
- $q_{\text {reject }}$ is reject state $\in Q$
- δ is transition function

$$
\delta: Q \times \Gamma^{k} \rightarrow Q \times \Gamma^{k} \times\{L, R\}^{k}
$$

where $\Gamma^{k}=\underbrace{\Gamma \times \Gamma \times \cdots \times \Gamma}_{k \text { times }}$.

Multi-Tape TM

- Transition function

$$
\delta: Q \times \Gamma^{k} \rightarrow Q \times \Gamma^{k} \times\{L, R\}^{k}
$$

- Suppose

$$
\delta\left(q_{i}, a_{1}, a_{2}, \ldots, a_{k}\right)=\left(q_{j}, b_{1}, b_{2}, \ldots, b_{k}, L, R, \ldots, L\right)
$$

- Interpretation: If
- machine is in state q_{i}, and
- heads 1 through k read $a_{1}, \ldots a_{k}$,
- then
- machine moves to state q_{j}
- heads 1 through k write b_{1}, \ldots, b_{k}
- each head moves left (L) or right (R) as specified.

Multi-Tape TM Equivalent to 1-Tape TM

Theorem 3.13

For every multi-tape TM M, there is a single-tape TM M^{\prime} such that $L(M)=L\left(M^{\prime}\right)$.

Remarks:

- In other words, for every multi-tape TM M, there is an equivalent single-tape TM M^{\prime}.
- Proving and understanding this kind of robustness result is essential for appreciating the power of the TM model.
- We will consider different variants of TMs, and show each has equivalent basic TM.

Proof of Theorem 3.13

- Let $M_{k}=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$ be a k-tape TM.
- Initially, M_{k} has
- input $w=w_{1} \cdots w_{n}$ on tape 1
- other tapes contain only blanks \sqcup
- each head points to first cell.

- Construct 1-tape TM M_{1} with expanded tape alphabet $\Gamma^{\prime}=\Gamma \cup \dot{\Gamma} \cup\{\#\}$
- Head positions are marked by dotted symbols in $\stackrel{\bullet}{\circ}^{\circ}$.

Basic Idea of Proof of Theorem 3.13

Simulate k-tape TM using 1-tape TM

Proof of Theorem 3.13

On input $w=w_{1} \cdots w_{n}$, the 1 -tape TM M_{1} does the following:

- First M_{1} prepares initial string on single tape:

- For each step of M_{k}, TM M_{1} scans tape twice

1. Scans its tape from

- first \# (which marks left end of tape) to
- ($k+1$)st \# (which marks right end of used part of tape)
to read symbols under "virtual" heads

2. Rescans to write new symbols and move heads

- If M_{1} tries to move virtual head to the right onto $\#$, then
ΔM_{k} is trying to move head onto unused blank cell.
Δ So M_{1} has to write blank on tape and shift rest of tape right one cell.

From Theorem 3.13, we get the following:

Corollary 3.15

Language L is TM-recognizable if and only if some multi-tape TM recognizes L.

Nondeterministic TM

Definition: A nondeterministic Turing machine (NTM) M can have several options at every step. NTM is defined by a 7 -tuple

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right),
$$

where

- Q is finite set of states
- Σ is input alphabet (without blank \sqcup)
- Γ is tape alphabet with $\{\sqcup\} \cup \Sigma \subseteq \Gamma$
- q_{0} is start state $\in Q$
- $q_{\text {accept }}$ is accept state $\in Q$
- $q_{\text {reject }}$ is reject state $\in Q$
- δ is transition function

$$
\delta: Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times\{L, R\})
$$

CS 341: Chapter 3

Computing With NTMs

- On any input w, evolution of NTM represented by a tree of configurations (rather than a single chain).
- If \exists (at least) one accepting leaf, then NTM accepts.

Theorem 3.16

Every nondeterministic TM N has an equivalent deterministic TM D.

Proof Idea:

- Build TM D to simulate NTM N on each input w.
- D tries all possible branches of N 's tree of configurations.
- If D finds any accepting configuration, then it accepts input w.
- If all branches reject, then D rejects input w.
- If no branch accepts and at least one loops, then D loops on w.

Proof of Equivalence of NTM and TM

Simulating TM D has 3 tapes

1. Input tape

- contains input string w
- never altered

2. Simulation tape

- used as N 's tape when simulating N 's execution on some path in N 's computation tree.

3. Address tape

- keeps track of current location of BFS of N 's computation tree.

Proof of Equivalence of NTM and TM

On each input w, NTM N 's computation is a tree

- Each branch is branch of nondeterminism.
- Each node is a configuration arising from running N on w.
- Root is starting configuration.
- TM D searches through tree to see if it has an accepting configuration.
- Depth-first search (DFS) doesn't work. Why?
- Breadth-first search (BFS) works.
- Tree doesn't actually exist.
- So TM D needs to build tree while searching through it.

Address Tape Works as Follows

- Every node in the tree has at most b children.
- b is size of largest set of possible choices for N 's transition fcn δ.
- Every node in tree has an address that is a string over the alphabet

$$
\Gamma_{b}=\{1,2, \ldots, b\}
$$

- To get to node with address 231
- start at root
- take second branch
- then take third branch
- then take first branch
- Ignore meaningless addresses.
- Visit nodes in BFS order by listing addresses in Γ_{b}^{*} in string order:

$$
\varepsilon, 1,2, \ldots, b, 11,12, \ldots, 1 b, 21,22, \ldots
$$

Proof of Equivalence of NTM and TM

- "accept" configuration has address 231.
- Configuration C_{6} has address 12.
- Configuration C_{1} has address ε.
- Address 132 is meaningless.

Remarks on TM Variants

Corollary 3.18

Language L is Turing-recognizable iff a nondeterministic TM recognizes it.

Proof.

- Every nondeterministic TM has an equivalent 3-tape TM

1. input tape
2. simulation tape
3. address tape

- 3-tape TM, in turn, has an equivalent 1-tape TM by Theorem 3.13.

Remarks:

- k-tape TMs and NTMs are not more powerful than standard TMs:
- The Turing machine model is extremely robust.

TM D Simulating NTM N Works as Follows

1. Initially, input tape contains input string w.

- Simulation and address tapes are initially empty.

2. Copy input tape to simulation tape.
3. Use simulation tape to simulate NTM N on input w on path in tree from root to the address on address tape.

- At each node, consult next symbol on address tape to determine which branch to take.
- Accept if accepting configuration reached.
- Skip to next step if
- symbols on address tape exhausted
- nondeterministic choice invalid
- rejecting configuration reached

4. Replace string on address tape with next string in Γ_{b}^{*} in string order, and go to Stage 2.

TM Decidable \Longleftrightarrow NTM Decidable

Definition: A nondeterministic TM is a decider if all branches halt on all inputs.

Remark: Can modify proof of previous theorem (3.16) so that if NTM N always halts on all branches, then TM D will always halt.

Corollary 3.19

A language is decidable iff some nondeterministic TM decides it.

Enumerators

Remarks:

- Recall: a language is enumerable if some TM recognizes it.
- But why enumerable?

Definition: An enumerator is a TM with a printer

- TM takes no input
- TM simply sends strings to printer
- may create infinite list of strings
- duplicates may appear in list
- enumerates a language

Theorem 3.21

Language A is Turing-recognizable iff some enumerator enumerates it.

Proof. Must show

1. (\Leftarrow) If E enumerates language A, then some TM M recognizes A.
2. (\Rightarrow) If TM M recognizes A, then some enumerator E enumerates A.

To show $1(\Leftarrow)$, given enumerator E,
build TM M for A using E as black box:

- $M=$ "On input string w,

1. Run E.
2. Every time E outputs a string, compare it to w.
3. If w is output, accept."

"Algorithm" is Independent of Computation Model

- All reasonable variants of TM models are equivalent to TM:
- k-tape TM
- nondeterministic TM
- enumerator
- random-access TM: head can jump to any tape cell in one step.
- Similarly, all "reasonable" programming languages are equivalent.
- Can take program in LISP and convert it into C, and vice versa.
- Notion of an algorithm is independent of computation model.

What is an algorithm?

- Informally
- a recipe
- a procedure
- a computer program

Muḥammad ibn Mūsā al-Khwārizmī (c. $780-\mathrm{c} .850$) source: wikipedia

- Historically,
- algorithms have long history in mathematics
- but not precisely defined until 20th century
- informal notions rarely questioned, but insufficient to show a problem has no algorithm.

Hilbert's 10th Problem

David Hilbert (1862-1943)
source: wikipedia

Polynomials

- A term is product of variables and constant integer coefficient:

$$
6 x^{3} y z^{2}
$$

- A polynomial is a sum of terms:

$$
6 x^{3} y z^{2}+3 x y^{2}-x^{3}-10
$$

- A root of a polynomial is an assignment of values to variables so that the value of the polynomial is zero.
- The above polynomial has a root at $(x, y, z)=(5,3,0)$.
- We are interested in integral roots.
- Some polynomials have integral roots; some don't.
- Neither $21 x^{2}-81 x y+1$ nor $x^{2}-2$ has an integral root.

Hilbert's 10th Problem

- Problem: Devise an algorithm that tests whether a polynomial has an integral root.
- In Hilbert's words:
"to devise a process according to which it can be determined by a finite number of operations ..."
- Hilbert seemed to assume that such an algorithm exists.
- However, Matijasevič proved in 1970 that no such algorithm exists.
- Mathematicians in 1900 couldn't have proved this.
- No formal notion of an algorithm existed.
- Informal notions work fine for constructing algorithms.
- Formal notion needed to show no algorithm exists for a problem.

> Alonzo Church
> (1903 - 1995)
> source: wikipedia

Alan Turing (1912-1954) source: wikipedia

- Formal notion of algorithm developed in 1936
- λ-calculus of Alonzo Church
- Turing machines of Alan Turing
- Definitions appear very different, but are equivalent.
- Church-Turing Thesis

The informal notion of an algorithm corresponds exactly to a Turing machine that halts on all inputs.

- For universe $\Omega=\{p \mid p$ is a polynomial $\}$, consider language

$$
D=\{p \mid p \text { is a polynomial with an integral root }\} \subseteq \Omega
$$

- Since $6 x^{3} y z^{2}+3 x y^{2}-x^{3}-10$ has an integral root at $(x, y, z)=(5,3,0)$,

$$
6 x^{3} y z^{2}+3 x y^{2}-x^{3}-10 \in D
$$

- Since $21 x^{2}-81 x y+1$ has no integral root,

$$
21 x^{2}-81 x y+1 \notin D
$$

- Hilbert's 10th problem asks whether this language is decidable.
- i.e., Is there a TM that decides D ?
- D is not decidable, but it is Turing-recognizable.

Hilbert's 10th Problem

- Consider simpler language of polynomials over single variable:

$$
\begin{aligned}
D_{1} & =\{p \mid p \text { is a polynomial over } x \text { with an integral root }\} \\
& \subseteq\{p \mid p \text { is a polynomial over } x\} \equiv \Omega_{1}
\end{aligned}
$$

- D_{1} is recognized by following TM M_{1} :
- On input $p \in \Omega_{1}$, i.e., p is a polynomial over variable x

1. Evaluate p with x set successively to values

$$
0,1,-1,2,-2,3,-3, \ldots
$$

2. If at any point the polynomial evaluates to 0 , accept.

- M_{1} recognizes D_{1}, but does not decide D_{1}.
- If p has an integral root, the machine eventually accepts.
- If not, machine loops.

Encoding

- Input to a Turing machine is a string of symbols over an alphabet.
- But we want TMs (algorithms) that work on
- polynomials
- graphs
- grammars
- Turing machines
- etc.
- Need to encode an object as a string of symbols over an alphabet.
- Can often do this in many reasonable ways.
- We sometimes distinguish between
- an object X
- its encoding $\langle X\rangle$.

Encoding an Undirected Graph

- Undirected graph G

- One possible encoding

$$
\langle G\rangle=\underbrace{(1,2,3,4)}_{\text {nodes }} \underbrace{((1,2),(1,3),(2,3),(3,4))}_{\text {edges }}
$$

- In this encoding scheme, $\langle G\rangle$ of graph G is string of symbols over alphabet $\Sigma=\{0,1, \ldots, 9,(),,$,$\} , where the string$
- starts with list of nodes
- followed by list of edges

Connected Graphs

Definition: An undirected graph is connected if every node can be reached from any other node by travelling along edges.

Connected graph G_{1}

Unconnected graph G_{2}

Example: Let A be the language consisting of strings representing connected undirected graphs:

$$
A=\{\langle G\rangle \mid G \text { is a connected undirected graph }\}
$$

- $A \subseteq \Omega \equiv\{\langle G\rangle \mid G$ is an undirected graph $\}$.
- $\left\langle G_{1}\right\rangle \in A, \quad\left\langle G_{2}\right\rangle \notin A$.

Instance and Language of Decision Problem

- Instance of decision problem is specific input value to question.
- Instance is encoded as string over some alphabet Σ.
- YES instance has answer YES.
- NO instance has answer NO.
- Universe Ω of a decision problem comprises all instances.
- Language of a decision problem comprises all its YES instances.
- Example: For graph connectedness problem,
- Universe consists of (encodings of) every undirected graph G :

$$
\Omega=\{\langle G\rangle \mid G \text { is an undirected graph }\}
$$

- Language A of decision problem

$$
A=\{\langle G\rangle \mid G \text { is a connected undirected graph }\}
$$

is subset of universe; i.e., $A \subseteq \Omega$

Proving a Language is Decidable

- Recall for graph connectedness problem,

$$
\begin{aligned}
& \Omega=\{\langle G\rangle \mid G \text { is an undirected graph }\}, \\
& A=\{\langle G\rangle \mid G \text { is a connected undirected graph }\} \subseteq \Omega
\end{aligned}
$$

- To prove A is decidable language, need to show $\exists \mathrm{TM}$ that decides A.
- For a TM M to decide A, the TM must
- take any instance $\langle G\rangle \in \Omega$ as input
- halt and accept if $\langle G\rangle \in A$
- halt and reject if $\langle G\rangle \notin A$ (i.e., never loops indefinitely)

TM to Decide if Graph is Connected

$$
A=\{\langle G\rangle \mid G \text { is a connected undirected graph }\}
$$

$$
\subseteq\{\langle G\rangle \mid G \text { is an undirected graph }\} \equiv \Omega
$$

Graph G_{1}

Graph G_{2}

$M=$ "On input $\langle G\rangle \in \Omega$, where G is an undirected graph:
0 . Check if $\langle G\rangle$ is a valid graph encoding. If not, reject.

1. Select first node of G and mark it.
2. Repeat until no new nodes marked:
3. For each node in G, mark it if it's attached by an edge to a node already marked.
4. Scan all nodes of G to see whether they all are marked. If they are, accept; otherwise, reject."

TM M for Deciding Language A

For TM M that decides $A=\{\langle G\rangle \mid G$ is a connected undirected graph $\}$

- Stage 0 checks that input $\langle G\rangle \in \Omega$ is valid graph encoding, e.g.,
- two lists
a first is a list of numbers
Δ second is a list of pairs of numbers
- first list contains no duplicates
- every node in second list appears in first list
- Stages $1-4$ then check if G is connected.
- When defining a TM, we often do not explicitly include stage 0 to check if the input is a valid encoding.
- Instead, the check is often only implicitly included.

Hierarchy of Languages (so far)

Examples

???
???
$\left\{0^{n} 1^{n} 2^{n} \mid n \geq 0\right\}$
$\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
$(0 \cup 1)^{*}$
\{110, 01$\}$

Summary of Chapter 3

- Turing machines
- tape head can move right and left
- tape head can read and write
- TM computation can be expressed as sequence of configurations
- Language is Turing-recognizable if some TM recognizes it
- But TM may loop forever on input string not in language
- Language is Turing-decidable if a TM decides it (must always halt)
- Variants of TM (k-tape, nondeterministic, etc.) have equivalent TM
- Church-Turing Thesis
- Informal notion of algorithm is same as deciding by TM.
- Hilbert's 10th problem undecidable.
- Encoding TM input and decision problems.

