CS 341: Foundations of CS II Marvin K. Nakayama Computer Science Department New Jersey Institute of Technology Newark, NJ 07102	<section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></section-header></section-header></section-header></section-header></section-header>	3-2
 3-3 Previous Machines' Transitions Functions DFA, δ : Q × Σ → Q Reads input from left to right Finite control (i.e., transition function) based on current state, current input symbol read. PDA, δ : Q × Σ_ε × Γ_ε → P(Q × Γ_ε) Has stack for extra memory Reads input from left to right Can read/write to memory (stack) by popping/pushing Finite control based on current state, what's read from input, what's popped from stack. 	 CS 341: Chapter 3 Turing machine (TM) Infinitely long tape, divided into cells, for memory Tape initially contains input string followed by all blanks □ ↓ 0 0 1 □ □ … Tape head (↓) can move both right and left Can read from and write to tape Finite control based on current state, current symbol that head reads from tape. Machine has one accept state and one reject state. Machine can run forever: infinite loop. 	3-4

<i>CS 341: Chapter 3</i> 3-9	<i>CS 341: Chapter 3</i> 3-10	
Description of TM M_1 for $\{s \# s \mid s \in \{0, 1\}^*\}$	Formal Definition of Turing Machine	
$M_1=$ "On input string $w\in \Sigma^*$, where $\Sigma=\{0,1,\#\}$:	Definition: A Turing machine (TM) is a 7-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$, where	
 Scan input to be sure that it contains a single #. If not, reject. Zig-zag across tape to corresponding positions on either side of the # to check whether these positions contain the same symbol. If they do not, reject. Cross off symbols as they are checked off to keep track of which symbols correspond. When all symbols to the left of # have been crossed off along with the corresponding symbols to the right of #, check for any remaining symbols to the right of the #. If any symbols remain, reject; otherwise, accept." 	• Q is a finite set of states • Σ is the input alphabet not containing blank symbol \Box • Γ is tape alphabet with blank $\Box \in \Gamma$ and $\Sigma \subseteq \Gamma$ • $\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$ is the transition function, where • L means move tape head one cell to left • R means move tape head one cell to right • $q_0 \in Q$ is the start state • $q_{accept} \in Q$ is the accept state • $q_{reject} \in Q$ is the reject state, with $q_{reject} \neq q_{accept}$.	
CS 341: Chapter 3 3-11	CS 341: Chapter 3 3-12	
• Transition function $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ • $\delta(q, a) = (s, b, L)$ means • if TM • in state $q \in Q$, and • tape head reads tape symbol $a \in \Gamma$, • then TM • moves to state $s \in Q$ • overwrites a with $b \in \Gamma$ • moves head left (i.e., $L \in \{L, R\}$) • moves head left (i.e., $L \in \{L, R\}$) • moves head left (i.e., $L \in \{L, R\}$)	$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject}) \text{ begins computation}$ $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject}) \text{ begins computation as follows:}$ $\bullet \text{ Given input string } w = w_1 w_2 \cdots w_n \in \Sigma^* \text{ with each } w_i \in \Sigma, \text{ i.e., } w \text{ is a string of length } n \text{ for some } n \ge 0.$ $\bullet \text{ TM begins in start state } q_0$ $\bullet \text{ Input string is on } n \text{ leftmost tape cells}$ $\bullet w_1 w_2 w_3 \cdots w_n \sqcup \sqcup \sqcup \sqcup \sqcup \cdots$ $\bullet \text{ Rest of tape contains blanks } \sqcup$ $\bullet \text{ Head starts on leftmost cell of tape}$ $\bullet \text{ Because } \sqcup \notin \Sigma, \text{ first blank denotes end of input string.}$	

CS 341: Chapter 3 3-1	3 <i>CS 341: Chapter 3</i> 3-14
TM Computation	Example: Turing machine M_2 recognizing language
When computation on TM $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ starts	$A = \{ 0^{2^n} \mid n \ge 0 \},$
• TM M proceeds according to transition function	which consists of strings of 0s whose length is a power of 2.
$\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$	Idea: The number k of zeros is a power of 2 iff successively halving k always results in a power of 2 (i.e., each result > 1 is never odd).
$\begin{array}{c} q \\ \hline q \\ \hline read \rightarrow write, move \end{array}$	$M_2=$ "On input string $w\in\Sigma^*$, where $\Sigma=\{0\}$:
• If M tries to move head off left end of tane	1. Sweep left to right across the tape, crossing off every other 0.
- then head remains on first cell	2. If in stage 1 the tape contained a single 0, <i>accept</i> .
• Computation continues until q_{accent} or q_{roight} is entered.	3. If in stage 1 the tape contained more than a single 0 and the number of 0s was odd, <i>reject</i> .
• Otherwise, <i>M</i> runs forever: infinite loop .	4. Return the head to the left end of the tape.
 In this case, input string is neither accepted nor rejected. 	5. Go to stage 1."
<i>CS 341: Chapter 3</i> 3-1	5 <i>CS 341: Chapter 3</i> 3-16
Run TM M_2 with Input 0000	State Diagram of TM for $\{ 0^{2^n} \mid n \ge 0 \}$
 Tape initially contains input 0000. 000000 ··· Run stage 1: Sween left to right across tape, crossing off every other ($0 \to 0, L$ $x \to x, L$ q_5 $x \to x, R$
• Run stage 1. Sweep left to fight across tape, clossing on every other every \downarrow (Put \Box in first cell to mark beginning of tape	$x \to x, R \qquad $
 Run stage 4: Return head to left end of tape (marked by □). 	$ \begin{array}{c} \longrightarrow (q_1) \\ 0 \rightarrow \sqcup, R \end{array} (q_2) \\ 0 \rightarrow x, R \end{array} (q_3) \\ \end{array} $
	$ \begin{vmatrix} \Box \to \Box, R \\ x \to x, R \end{vmatrix} \qquad \qquad \Box \to \Box, R \qquad \qquad 0 \to x, R () 0 \to 0, R $
• Run stage 1: Sweep left to right across tape, crossing off every other C	. q _{reject} q ₄
• Run stages 4 and 1: Return head to left end and scan tape.	$\Box \to \sqcup, R \qquad \qquad x \to x, R$

3-29

Describing TMs

- It is assumed that you are familiar with TMs and with programming computers.
- Clarity above all:
 - \blacksquare high-level description of TMs is allowed; e.g.,
 - M = "On input string $w \in \Sigma^*$, where $\Sigma = \{0, 1\}$: 1. Scan input ..."
 - but it should not be used as a trick to hide the important details of the program.
- \bullet Standard tools: Expanding tape alphabet Γ with
 - separator "#"
 - dotted symbols $\overset{\bullet}{0}$, $\overset{\bullet}{a}$, to indicate "activity," as we'll see later.
 - Typical example: $\Gamma = \{0, 1, \#, \sqcup, \overset{\bullet}{0}, \overset{\bullet}{1}\}$

CS 341: Chapter 3

- 3-31
- Running TM M_3 on Input $a^3b^2c^6 \in C$
- Tape head starts over leftmost symbol

• Stage 1: Mark leftmost symbol and scan to see if input $\in L(a^*b^*c^*)$

 \bullet Stage 3: Cross off one a and cross off matching b 's and c 's

 \bullet Stage 4: Restore b 's and return head to first a not crossed off

Example: Turing machine M_3 to decide language

$$C = \{ a^{i} b^{j} c^{k} \mid i \times j = k \text{ and } i, j, k \ge 1 \}.$$

Idea: If *i* collections of *j* things each, then $i \times j$ things total. TM: for each *a*, cross off *j c*'s by matching each *b* with a *c*.

- $M_{\mathsf{3}}=$ "On input string $w\in \Sigma^*$, where $\Sigma=\{a,b,c\}$:
 - 1. Scan the input from left to right to make sure that it is a member of $L(a^*b^*c^*)$, and *reject* if it isn't.
 - 2. Return the head to the left-hand end of the tape
 - 3. Cross off an *a* and scan to the right until a *b* occurs. Shuttle between the *b*'s and the *c*'s, crossing off each until all *b*'s are gone. If all *c*'s have been crossed off and some *b*'s remain, *reject*.
 - Restore the crossed off b's and repeat stage 3 if there is another a to cross off. If all a's are crossed off, check whether all c's also are crossed off. If yes, accept; otherwise, reject."
- CS 341: Chapter 3
 - \bullet Stage 3: Cross off one a and cross off matching b's and c's

• Stage 4: Restore b's and return head to first a not crossed off

 \bullet Stage 3: Cross off one a and cross off matching b 's and c 's

- Stage 4: If all a's crossed off, check if all c's crossed off.
- \bullet accept

3-32

CS 341: Chapter 3	3-33	CS 341: Chapter 3		3-34
TM Tricks			Variant of TM: k-tape	
 Question: How to tell when a TM is at the left end of the tape? One Approach: Mark it with a special symbol. 			Tape 1 0 1 1	
 Alternative method: remember current symbol overwrite it with special symbol move left if special symbol still there, head is at start of tape otherwise, restore previous symbol and move left. 		3-tape TM • Each tape has i • Transitions dete • current state • what all the • Each head write	Tape 2 $0 0 \Box \cdots$ Tape 3 $1 0 0 1 \Box \cdots$ ts own head. ermined by and heads read. es and moves independently of other heads.	
CS 341: Chapter 3	3-35	CS 341: Chapter 3		3-36
k-tape Turing Machine			Multi-Tape TM	
Definition: A k-tape Turing machine $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ has k different tapes and k different read/write heads: • Q is finite set of states • Σ is input alphabet (where $\Box \notin \Sigma$) • Γ is tape alphabet with $(\{\Box\} \cup \Sigma) \subseteq \Gamma$ • q_0 is start state $\in Q$ • q_{accept} is accept state $\in Q$ • q_{reject} is reject state $\in Q$ • δ is transition function $\delta : Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R\}^k$ where $\Gamma^k = \Gamma \times \Gamma \times \cdots \times \Gamma$.		 Transition funct Suppose δ(q_i, a₁, Interpretation: machine is in heads 1 thro then machine mov heads 1 thro heads 1 thro 	tion $\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R\}^k$ $a_2, \dots, a_k) = (q_j, b_1, b_2, \dots, b_k, L, R, \dots, L)$ If in state q_i , and rugh k read a_1, \dots, a_k , ves to state q_j rugh k write b_1, \dots, b_k oves left (L) or right (R) as specified.	
where $I = \underbrace{1 \times I \times \cdots \times I}_{k \text{ times}}$.				

3-37

CS 341: Chapter 3

Multi-Tape TM Equivalent to 1-Tape TM

Theorem 3.13

For every multi-tape TM M, there is a single-tape TM M' such that L(M) = L(M').

Remarks:

- In other words, for every multi-tape TM M, there is an **equivalent** single-tape TM M'.
- Proving and understanding this kind of robustness result is essential for appreciating the power of the TM model.
 - We will consider different variants of TMs, and show each has equivalent basic TM.

CS 341: Chapter 3

Proof of Theorem 3.13

Tape 1

Tape 2

Tape 3

 $w_1 w_2 \cdots w_n$

• Let
$$M_k = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$$
 be a k-tape TM

- \bullet Initially, M_k has
 - input $w = w_1 \cdots w_n$ on tape 1
 - $\scriptstyle \bullet$ other tapes contain only blanks $\scriptstyle \sqcup$
 - each head points to first cell.
- Construct 1-tape TM M_1 with expanded tape alphabet $\Gamma' = \Gamma \cup \stackrel{\bullet}{\Gamma} \cup \{\#\}$
 - Head positions are marked by dotted symbols in $\overset{\bullet}{\Gamma}$.

Basic Idea of Proof of Theorem 3.13

CS 341: Chapter 3	3-41	CS 341: Chapter 3	3-42	
Turing-recognizable $\iff k$ -tape TM		Nondeterministic TM		
From Theorem 3.13, we get the following:		Definition: A nondeterministic Turing machine (NTM) <i>M</i> have several options at every step. NTM is defined by a 7-tuple	can	
Corollary 3.15		$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}}),$		
Language L is TM-recognizable if and only if some multi-tape TM		where		
recognizes L.		• Q is finite <i>set of states</i>		
		• Σ is input alphabet (without blank \Box)		
		• Γ is tape alphabet with $\{\sqcup\} \cup \Sigma \subseteq \Gamma$		
		$ullet q_{0}$ is start state $\in Q$		
		• $q_{\sf accept}$ is accept state $\in Q$		
		• q_{reject} is reject state $\in Q$		
		• δ is transition function		
		$\delta:Q imes \Gamma o \mathcal{P}(Q imes \Gamma imes \{L,R\})$		
CS 341: Chapter 3	3-43	CS 341: Chapter 3	3-44	
Transition Function δ of NTM		Computing With NTMs		
$\delta: Q imes \Gamma o \mathcal{P}(Q imes \Gamma imes \{L, R\})$		 On any input w, evolution of NTM represented by a tree of configurations (rather than a single chain). 		
		 If ∃ (at least) one accepting leaf, then NTM accepts. 		
$c \rightarrow a, L$ q_j		C_1	t = 1	
$q_i \qquad c \to c, R \longrightarrow q_k$		C_2 C_3 C_4	t = 2	
$egin{array}{c ightarrow a, \ L \ c ightarrow d, \ R \end{array} egin{array}{c ightarrow a, \ L \ c ightarrow d, \ R \end{array} egin{array}{c ightarrow q_\ell} \ q_\ell \end{array}$		C_5 C_6 C_7 C_8 C_9	<i>t</i> = 3	
		$("reject")$ (C_{10}) $("accept")$	t = 4	
Multiple choices when in state q_i and reading c from tape:				
$\delta(q_i, c) = \{ (q_j, a, L), (q_k, c, R), (q_\ell, a, L), (q_\ell, d, R) \}$,		

CS 341: Chapter 3	3-45	CS 341: Chapter 3	3-46
NTM Equivalent to TM		Proof of Equivalence of NTM an	d TM
Theorem 3.16 Every nondeterministic TM N has an equivalent deterministic TM L	Э.	On each input w , NTM N 's computation is a tree • Each branch is branch of nondeterminism.	
 Proof Idea: Build TM D to simulate NTM N on each input w. D tries all possible branches of N's tree of configurations. If D finds any accepting configuration, then it accepts input w. If all branches reject, then D rejects input w. If no branch accepts and at least one loops, then D loops on w. 		 Each node is a configuration arising from running Root is starting configuration. TM D searches through tree to see if it has an action. Depth-first search (DFS) doesn't work. Why? Breadth-first search (BFS) works. Tree doesn't actually exist. So TM D needs to build tree while searching the search of t	ng N on w . cepting configuration.
CS 341: Chapter 3	3-47	CS 341: Chapter 3	3-48
Proof of Equivalence of NTM and TM		Address Tape Works as Follo	ws
 Simulating TM D has 3 tapes 1. Input tape contains input string w never altered 2. Simulation tape used as N's tape when simulating N's execution on some path N's computation tree. 3. Address tape keeps track of current location of BFS of N's computation tree. 	in e.	 Every node in the tree has at most <i>b</i> children. <i>b</i> is size of largest set of possible choices for <i>N</i> Every node in tree has an address that is a string Γ_b = {1, 2,, b} To get to node with address 231 start at root take second branch then take third branch then take first branch lgnore meaningless addresses. Visit nodes in BFS order by listing addresses in the second branch 	's transition fcn δ . g over the alphabet

CS 341:	Chapter	3
---------	---------	---

Proof of Equivalence of NTM and TM

- "accept" configuration has address 231.
- Configuration C_6 has address 12.
- Configuration C_1 has address ε .
- Address 132 is meaningless.

Remarks on TIM Va

Corollary 3.18

Language L is Turing-recognizable iff a nondeterministic TM recognizes it.

Proof.

- Every nondeterministic TM has an equivalent 3-tape TM
 - 1. input tape
 - 2. simulation tape
 - 3. address tape
- \bullet 3-tape TM, in turn, has an equivalent 1-tape TM by Theorem 3.13.

Remarks:

- \bullet k-tape TMs and NTMs are not more powerful than standard TMs:
- The Turing machine model is extremely robust.

CS 341: Chapter 3

3-49

3-51

TM D Simulating NTM N Works as Follows

- 1. Initially, input tape contains input string w.
 - Simulation and address tapes are initially empty.
- 2. Copy input tape to simulation tape.
- 3. Use simulation tape to simulate NTM N on input w on path in tree from root to the address on address tape.
 - At each node, consult next symbol on address tape to determine which branch to take.
 - *Accept* if accepting configuration reached.
 - \bullet Skip to next step if
 - symbols on address tape exhausted
 - nondeterministic choice invalid
 - rejecting configuration reached
- 4. Replace string on address tape with next string in Γ_b^* in string order, and go to Stage 2.
- CS 341: Chapter 3

3-52

$\mathsf{TM} \ \mathsf{Decidable} \Longleftrightarrow \mathsf{NTM} \ \mathsf{Decidable}$

Definition: A nondeterministic TM is a **decider** if all branches halt on all inputs.

Remark: Can modify proof of previous theorem (3.16) so that if NTM N always halts on all branches, then TM D will always halt.

Corollary 3.19

A language is decidable iff some nondeterministic TM decides it.

<i>CS 341: Chapter 3</i> 3-53	CS 341: Chapter 3 3-54		
Enumerators	Enumerators		
Remarks:	Theorem 3.21 Language A is Turing-recognizable iff some enumerator enumerates it.		
 Recall: a language is enumerable if some TM recognizes it. But why enumerable? 	Proof. Must show 1. (\Leftarrow) If <i>E</i> enumerates language <i>A</i> , then some TM <i>M</i> recognizes <i>A</i> .		
 Definition: An enumerator is a TM with a printer TM takes no input TM simply sends strings to printer may create infinite list of strings duplicates may appear in list enumerates a language 	 2. (⇒) If TM M recognizes A, then some enumerator E enumerates A. To show 1 (⇐), given enumerator E, build TM M for A using E as black box: M = "On input string w, 1. Run E. 2. Every time E outputs a string, compare it to w. 3. If w is output, accept." 		
CS 341: Chapter 3 3-55 Second Half of Proof of Theorem 3.21	CS 341: Chapter 3 3-56 "Algorithm" is Independent of Computation Model		
 We now show 2 (⇒): If TM M recognizes A, then some enumerator E enumerates A. Let s₁, s₂, s₃, be an (infinite) list of all strings in Σ* Given TM M, define E using M as black box as follows: Repeat the following for i = 1, 2, 3, Run M for i steps on each input s₁, s₂,, s_i. If any computation accepts, print out corresponding string s 	 All reasonable variants of TM models are equivalent to TM: <i>k</i>-tape TM nondeterministic TM enumerator random-access TM: head can jump to any tape cell in one step. Similarly, all "reasonable" programming languages are equivalent. Can take program in LISP and convert it into C, and vice versa. Notion of an algorithm is independent of computation model. 		

CS 341:	Chapter 3
---------	-----------

3-58

3-60

<i>CS 341: Chapter 3</i> 3-57	<i>CS 341: Chapter 3</i> 3-58	
Algorithms	Hilbert's 10th Problem	
What is an algorithm? Informally a recipe a procedure a computer program Muḥammad ibn Mūsā al-Khwārizmī (c. 780 - c. 850) source: wikipedia	David Hilbert (1862 – 1943) source: wikipedia	
• Historically,	 In 1900, David Hilbert delivered a now-famous address Presented 23 open mathematical problems Challenge for the next century 10th problem concerned algorithms and polynomials 	
 algorithms have long history in mathematics but not precisely defined until 20th century 		
 just not precisely defined until 20th century informal notions rarely questioned but 		
insufficient to show a problem has no algorithm.		
<i>CS 341: Chapter 3</i> 3-59	<i>CS 341: Chapter 3</i> 3-60	
Polynomials	Hilbert's 10th Problem	
• A term is product of variables and constant integer coefficient: $6x^3yz^2$	• Problem: Devise an algorithm that tests whether a polynomial has an integral root.	
• A polynomial is a sum of terms:	• In Hilbert's words:	
$6x^3yz^2 + 3xy^2 - x^3 - 10$	"to devise a process according to which it can be determined by a finite number of operations"	
• A root of a polynomial is an assignment of values to variables so that the value of the polynomial is zero.	• Hilbert seemed to assume that such an algorithm exists.	
• The above polynomial has a root at $(x, y, z) = (5, 3, 0)$.	• However, Matijasevič proved in 1970 that no such algorithm exists.	
• We are interested in integral roots.	 Mathematicians in 1900 couldn't have proved this. 	
 Some polynomials have integral roots; some don't. Neither 21x² - 81xy + 1 nor x² - 2 has an integral root. 	 No formal notion of an algorithm existed. Informal notions work fine for constructing algorithms. Formal notion needed to show no algorithm exists for a problem. 	

Church-Turing Thesis

Alan Turing (1912 – 1954) source: wikipedia

- Formal notion of algorithm developed in 1936
 - λ -calculus of Alonzo Church
 - Turing machines of Alan Turing
 - Definitions appear very different, but are equivalent.
- Church-Turing Thesis

The informal notion of an **algorithm** corresponds exactly to a Turing machine that halts on all inputs.

CS 341: Chapter 3

3-63

Hilbert's 10th Problem

- Consider simpler language of polynomials over single variable:
 - $D_1 = \{ p \mid p \text{ is a polynomial over } x \text{ with an integral root } \}$ $\subseteq \{ p \mid p \text{ is a polynomial over } x \} \equiv \Omega_1$
- D_1 is recognized by following TM M_1 :
 - On input p ∈ Ω₁, i.e., p is a polynomial over variable x
 1. Evaluate p with x set successively to values

 $0, 1, -1, 2, -2, 3, -3, \ldots$

2. If at any point the polynomial evaluates to 0, accept.

- M_1 recognizes D_1 , but does not decide D_1 .
 - $\hfill\blacksquare$ If p has an integral root, the machine eventually accepts.
 - If not, machine loops.

CS 341: Chapter 3

Hilbert's 10th Problem

• It turns out, though, that D_1 is decidable.

■ i.e., Is there a TM that decides D?

• Can show that the roots of p (over single variable x) lie between

$$\pm k \frac{c_{\max}}{c_1}$$

where

- k is number of terms in polynomial
- c_{max} is maximum coefficient
- c_1 is coefficient of highest-order term
- Thus, only have to check integers between $-k \frac{c_{\text{max}}}{c_1}$ and $k \frac{c_{\text{max}}}{c_1}$.
- Matijasevič proved such bounds don't exist for multivariate polynomials.

3-62

3-64

(x, y, z) = (5, 3, 0).

• For universe $\Omega = \{ p \mid p \text{ is a polynomial } \}$, consider language

• Since $6x^3yz^2 + 3xy^2 - x^3 - 10$ has an integral root at

• Hilbert's 10th problem asks whether this language is decidable.

• Since $21x^2 - 81xy + 1$ has no integral root,

• D is not decidable, but it is Turing-recognizable.

 $D = \{ p \mid p \text{ is a polynomial with an integral root } \} \subset \Omega.$

 $6x^3uz^2 + 3xu^2 - x^3 - 10 \in D.$

 $21x^2 - 81xy + 1 \notin D.$

3-66

3-68

Encoding

- Input to a Turing machine is a string of symbols over an alphabet.
- \bullet But we want TMs (algorithms) that work on
 - polynomials
 - graphs
 - grammars
 - Turing machines
 - etc.
- Need to **encode** an *object* as a *string of symbols* over an alphabet.
- Can often do this in many reasonable ways.
- \bullet We sometimes distinguish between
 - \blacksquare an object X
 - its encoding $\langle X \rangle$.

CS 341: Chapter 3

3-67

Connected Graphs

Definition: An undirected graph is **connected** if every node can be reached from any other node by travelling along edges.

Example: Let A be the language consisting of strings representing connected undirected graphs:

 $A = \{ \langle G \rangle \mid G \text{ is a connected undirected graph } \}.$

•
$$A \subseteq \Omega \equiv \{ \langle G \rangle \mid G \text{ is an undirected graph } \}.$$

• $\langle G_1 \rangle \in A$, $\langle G_2 \rangle \not\in A$.

- Encoding an Undirected Graph
- \bullet Undirected graph G

CS 341: Chapter 3

• One possible encoding

$$\langle G \rangle = \underbrace{(1,2,3,4)}_{\text{nodes}} \underbrace{((1,2), (1,3), (2,3), (3,4))}_{\text{edges}}$$

- In this encoding scheme, $\langle G \rangle$ of graph G is string of symbols over alphabet $\Sigma = \{0, 1, \dots, 9, (,), \}$, where the string
 - starts with list of nodes
 - followed by list of edges
- CS 341: Chapter 3

Decision Problems

- **Decision problem:** (computational) question with YES/NO answer.
 - Answer depends on particular value of **input** to question.
- Example: Graph connectedness problem:

Is an undirected graph connected?

- Input to question is from $\Omega \equiv \{ \langle G \rangle \mid G \text{ is an undirected graph } \}.$
- For input $\langle G_1 \rangle$, answer is YES.
- For input $\langle G_2 \rangle$, answer is NO.

<i>CS 341: Chapter 3</i> 3-69	<i>CS 341: Chapter 3</i> 3-70		
Instance and Language of Decision Problem	Proving a Language is Decidable		
• Instance of decision problem is specific input value to question.	 Recall for graph connectedness problem, 		
 Instance is encoded as string over some alphabet Σ. YES instance has answer YES. NO instance has answer NO. Universe Ω of a decision problem comprises all instances. Language of a decision problem comprises all its YES instances. Example: For graph connectedness problem, Universe consists of (encodings of) every undirected graph G: Ω = { ⟨G⟩ G is an undirected graph } Language A of decision problem A = { ⟨G⟩ G is a connected undirected graph } is subset of universe; i.e., A ⊆ Ω 	$\Omega = \{ \langle G \rangle \mid G \text{ is an undirected graph } \}, \\ A = \{ \langle G \rangle \mid G \text{ is a connected undirected graph } \subseteq \Omega.$ • To prove A is decidable language, need to show \exists TM that decides A. • For a TM M to decide A, the TM must • take any instance $\langle G \rangle \in \Omega$ as input • halt and accept if $\langle G \rangle \in A$ • halt and reject if $\langle G \rangle \notin A$ (i.e., never loops indefinitely)		
CS 341: Chapter 3 3-71 TM to Decide if Graph is Connected	CS 341: Chapter 3 3-72 TM M for Deciding Language A		
$A = \{ \langle G \rangle \mid G \text{ is a connected undirected graph} \} \subseteq \{ \langle G \rangle \mid G \text{ is an undirected graph} \} \equiv \Omega$ Graph G_1 $Graph G_2$ $M = \text{"On input } \langle G \rangle \in \Omega, \text{ where } G \text{ is an undirected graph:} \\ O. \text{ Check if } \langle G \rangle \text{ is a valid graph encoding. If not, reject.} \\ Select first node of G and mark it. \\ Select first node in G, mark it if it's attached by an edge to a node already marked. \\ Scan all nodes of G to see whether they all are marked. If they are, accept; otherwise, reject."}$	 For TM M that decides A = { ⟨G⟩ G is a connected undirected graph Stage 0 checks that input ⟨G⟩ ∈ Ω is valid graph encoding, e.g., two lists first is a list of numbers second is a list of pairs of numbers first list contains no duplicates every node in second list appears in first list Stages 1–4 then check if G is connected. When defining a TM, we often do not explicitly include stage 0 to check if the input is a valid encoding. Instead, the check is often only implicitly included. 		

Hierarchy of Languages (so far)

3-73

CS 341: Chapter 3

Summary of Chapter 3

