Chapter 3
Church-Turing Thesis

Contents

- Turing Machines
- Turing-recognizable
- Turing-decidable
- Variants of Turing Machines
- Algorithms
- Encoding input for TM

Previous Machines

- DFA
 - Reads input from left to right
 - Finite control (i.e., transition function) based on
 ▲ current state,
 ▲ current input symbol read.

- PDA
 - Has stack for extra memory
 - Reads input from left to right
 - Can read/write to memory (stack) by popping/pushing
 - Finite control based on
 ▲ current state,
 ▲ what’s read from input,
 ▲ what’s popped from stack.

Turing machine (TM)

- Infinitely long tape, divided into cells, for memory
- Tape initially contains input string followed by all blanks □

```
  0 0 1 □ □ □ ...
```

- Tape head (↓) can move both right and left
- Can read from and write to tape
- Finite control based on
 - current state,
 - current symbol that head reads from tape.
- Machine has one accept state and one reject state.
- Machine can run forever: infinite loop.
Key Difference between TMs and Previous Machines

- Turing machine can both read from tape and write on it.
- Tape head can move both right and left.
- Tape is infinite and can be used for storage.
- Accept and reject states take immediate effect.

Example: Machine for recognizing language

\[A = \{ s\#s \mid s \in \{0, 1\}^* \} \]

Idea: Zig-zag across tape, crossing off matching symbols.

- Consider string 01101#01101 ∈ A.
- Tape head starts over leftmost symbol

\[
\begin{array}{cccccc}
0 & 1 & 1 & 0 & 1 & \# \parallel \parallel \\
\end{array}
\]

- Record symbol in control and overwrite it with X

\[
\begin{array}{cccccc}
X & 1 & 1 & 0 & 1 & \# \parallel \parallel \\
\end{array}
\]

- Scan right: reject if blank “∥” encountered before #

When # encountered, move right one cell.

\[
\begin{array}{cccccc}
X & 1 & 1 & 0 & 1 & \# \parallel \parallel \\
\end{array}
\]

- If current symbol doesn’t match previously recorded symbol, reject.
- Overwrite current symbol with X

\[
\begin{array}{cccccc}
X & 1 & 1 & 0 & 1 & \# \parallel \parallel \\
\end{array}
\]

- Scan left, past # to X
- Move one cell right
- Record symbol and overwrite it with X

\[
\begin{array}{cccccc}
X & X & X & X & \# & X & X & X & X & \parallel & \parallel \\
\end{array}
\]

- After several more iterations of zigzagging, we have

\[
\begin{array}{cccccc}
X & X & X & X & \# & X & X & X & X & \parallel & \parallel \\
\end{array}
\]

- After all symbols left of # have been matched to symbols right of #, check for any remaining symbols to the right of #.
 - If blank “∥” encountered, accept.
 - If 0 or 1 encountered, reject.

\[
\begin{array}{cccccc}
X & X & X & X & \# & X & X & X & X & \parallel & \parallel \\
\end{array}
\]

- The string that is accepted or not by our machine is the original input string 01101#01101.
Description of TM M_1 for $\{ s#s \mid s \in \{0,1\}^* \}$

$M_1 = \text{"On input string } w:\text{"}

1. Scan input to be sure that it contains a single #.
 If not, reject.
2. Zig-zag across tape to corresponding positions on
either side of the # to check whether these positions
contain the same symbol. If they do not, reject.
3. Cross off symbols as they are checked off to keep track
 of which symbols correspond.
4. When all symbols to the left of # have been crossed off
 along with the corresponding symbols to the right of the #,
 check for any remaining symbols to the right of the #.
 If any symbols remain, reject; otherwise, accept.

Formal Definition of Turing Machine

Definition: A Turing machine (TM) is a 7-tuple
$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$, where

- Q is a finite set of states
- Σ is the input alphabet not containing blank symbol \sqcup
- Γ is tape alphabet with blank $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$
- $\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L,R\}$ is the transition function, where
 - L means move tape head one cell to left
 - R means move tape head one cell to right
- $q_0 \in Q$ is the start state
- $q_{accept} \in Q$ is the accept state
- $q_{reject} \in Q$ is the reject state, with $q_{reject} \neq q_{accept}$.

Transition Function of TM

- Transition function $\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L,R\}$
- $\delta(q,a) = (s,b,L)$ means
 - if TM
 - in state $q \in Q$, and
 - tape head reads tape symbol $a \in \Gamma$,
 - then TM
 - moves to state $s \in Q$
 - overwrites a with $b \in \Gamma$
 - moves head left (i.e., $L \in \{L,R\}$)

Start of TM Computation

$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ begins computation as follows:

- Given input string $w = w_1 w_2 \cdots w_n \in \Sigma^*$ with each $w_i \in \Sigma$,
 i.e., w is a string of length n for some $n \geq 0$.
- TM begins in start state q_0
- Input string is on n leftmost tape cells

```
  w_1 w_2 w_3 \cdots w_n \sqcup \sqcup \sqcup \sqcup \cdots
```

- Rest of tape contains blanks \sqcup
- Head starts on leftmost cell of tape
- Because $\sqcup \not\in \Sigma$, first blank denotes end of input string.
TM Computation

When computation on TM $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ starts,

- TM M proceeds according to transition function

$$\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$$

- If M tries to move head off left end of tape, then head remains on first cell.
- Computation continues until q_{accept} or q_{reject} is entered.
- Otherwise, M runs forever: infinite loop.

In this case, input string is neither accepted nor rejected.

Example: Turing machine M_2 recognizing language

$$A = \{0^{2^n} \mid n \geq 0\},$$

which consists of strings of Os whose length is a power of 2.

Idea: The number k of zeros is a power of 2 iff successively halving k always results in a power of 2 (i.e., each result > 1 is never odd).

$$M_2 = \text{"On input string } w:\text{"

1. Sweep left to right across the tape, crossing off every other 0.
2. If in stage 1 the tape contained a single 0, accept.
3. If in stage 1 the tape contained more than a single 0 and the number of 0s was odd, reject.
4. Return the head to the left end of the tape.
5. Go to stage 1."

Run TM M_2 with Input 0000

- Tape initially contains input 0000.
 $$\uparrow \ 0 \ 0 \ 0 \ 0 \ \omega \ \cdots$$
- Run stage 1: Sweep left to right across tape, crossing off every other 0.
 $$\omega \ x \ 0 \ x \ \downarrow \ \cdots \ \text{(Put } \omega \text{ in first cell to mark beginning of tape.)}$$
- Run stage 4: Return head to left end of tape (marked by ω).
 $$\uparrow \ \omega \ x \ x \ x \ \omega \ \cdots$$
- Run stage 1: Sweep left to right across tape, crossing off every other 0.
 $$\omega \ x \ x \ x \ x \ \downarrow \ \cdots$$
- Run stages 4 and 1: Return head to left end and scan tape.
- Run stage 2: If in stage 1 the tape contained a single 0, accept.

Diagram of TM for $\{0^{2^n} \mid n \geq 0\}$
Run TM on input $w = 0000$

Turing machine $M_2 = (Q, \Sigma, \Gamma, \delta, q_1, q_{accept}, q_{reject})$, where
- $Q = \{q_1, q_2, q_3, q_4, q_5, q_{accept}, q_{reject}\}$
- $\Sigma = \{0\}$
- $\Gamma = \{0, x, \downarrow \}$
- q_1 is start state
- q_{accept} is accept state
- q_{reject} is reject state
- Transition function $\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$ is specified in previous diagram. For example,
 - $\delta(q_4, 0) = (q_3, x, R)$
 - $\delta(q_3, \downarrow) = (q_5, \downarrow, L)$

TM Configurations
- Computation changes
 - current state
 - current head position
 - tape contents
- **Configuration** provides “snapshot” of TM at any point during computation:
 - current state $q \in Q$
 - current tape contents $\in \Gamma^*$
 - current head location

Definition: a configuration of a TM $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ is a string uqv with $u, v \in \Gamma^*$ and $q \in Q$, and specifies that currently
 - M is in state q
 - tape contains uv
 - tape head is pointing to the cell containing the first symbol in v.

Profile:
- Current state is q_2
- LHS of tape is 1011
- RHS of tape is 01
- Head is on RHS 0
TM Transitions

Definition: Configuration \(C_1 \) **yields** configuration \(C_2 \) if the Turing machine can legally go from \(C_1 \) to \(C_2 \) in a single step.

- Specifically, for TM \(M = (\Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}}) \), suppose
 - \(u, v \in \Gamma^* \)
 - \(a, b, c \in \Gamma \)
 - \(q_i, q_j \in Q \)
 - transition function \(\delta : Q \times \Gamma \to Q \times \Gamma \times \{ L, R \} \).

- Then configuration \(uaq_ibv \) **yields** configuration \(uacq_jv \) if
 \[
 \delta(q_i, b) = (q_j, c, R) .
 \]

 ![Diagram](diagram1.png)

 Before \(u \ | a \ | b \ | v \ | _____ \ldots \)

 After \(u \ | a \ | c \ | v \ | _____ \ldots \)

- Similarly, configuration \(uaq_ibv \) **yields** configuration \(uq_jacv \) if
 \[
 \delta(q_i, b) = (q_j, c, L) .
 \]

 ![Diagram](diagram2.png)

 Before \(u \ | a \ | b \ | v \ | _____ \ldots \)

 After \(u \ | a \ | c \ | v \ | _____ \ldots \)

TM Transitions

- **Special case:** \(q_ibv \) yields \(q_jcv \) if
 \[
 \delta(q_i, b) = (q_j, c, L) .
 \]

 ![Diagram](diagram3.png)

 Before \(_____ \ | b \ | v \ | _____ \ldots \)

 After \(c \ | v \ | _____ \ldots \)

Remarks on TM Configurations

- Consider TM \(M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}}) \).

- **Starting configuration** on input \(w \in \Sigma^* \) is
 \[
 q_0w
 \]

 An **accepting configuration** is
 \[
 uq_{\text{accept}}v
 \]
 for some \(u, v \in \Gamma^* \)

 A **rejecting configuration** is
 \[
 uq_{\text{reject}}v
 \]
 for some \(u, v \in \Gamma^* \)

- Accepting and rejecting configurations are **halting configurations**.

- Configuration \(wq_i \) is the same as \(wq_i _ \)
Formal Definition of TM Computation

- Turing machine $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$.
- Input string $w \in \Sigma^*$.

- **Definition:** M accepts input w if there is a finite sequence of configurations C_1, C_2, \ldots, C_k for some $k \geq 1$ with
 - C_1 is the starting configuration q_0w
 - C_i yields C_{i+1} for all $i = 1, \ldots, k-1$
 - sequence of configurations obeys transition function δ
 - C_k is an accepting configuration $uq_{\text{accept}}v$ for some $u, v \in \Gamma^*$.

- **Definition:** The set of all input strings accepted by TM M is the language **recognized** by M and is denoted by $L(M)$.
 - Note that $L(M) \subseteq \Sigma^*$.

Turing-recognizable

Definition: Language A is **Turing-recognizable** if there is a TM M such that $A = L(M)$.

Remarks:
- Also called a recursively enumerable or enumerable language.
- On an input $w \notin L(M)$, the machine M can either
 - halt in a rejecting state, or
 - it can **loop indefinitely**
- How do you distinguish between
 - a very long computation and
 - one that will never halt?
- Turing-recognizable not practical because never know if TM will halt.

Turing-decidable

Definition: A **decider** is TM that halts on all inputs, i.e., never loops.

Definition: Language $A = L(M)$ is **decided** by TM M if on each possible input $w \in \Sigma^*$, the TM finishes in a halting configuration, i.e.,
- M ends in q_{accept} for each $w \in A$
- M ends in q_{reject} for each $w \notin A$.

Definition: Lang A is **Turing-decidable** if \exists TM M that decides A.

Remarks:
- Also called a recursive or decidable language.
- Differences between Turing-decidable language A and Turing-recognizable language B
 - A has TM that halts on every string $w \in \Sigma^*$.
 - TM for B may loop on strings $w \notin B$.
Describing TMs

- It is assumed that you are familiar with TMs and with programming computers.
- Clarity above all:
 - high-level description of TMs is allowed
 - but it should not be used as a trick to hide the important details of the program.
- Standard tools: Expanding tape alphabet \(\Gamma \) with
 - separator “#”
 - dotted symbols 0, •, to indicate “activity,” as we’ll see later.
- Typical example: \(\Gamma = \{0, 1, #, \uparrow, 0, 1\} \)

Example: Turing machine \(M_3 \) to decide language

\[C = \{ a^i b^j c^k \mid i \times j = k \text{ and } i, j, k \geq 1 \} \]

Idea: If \(i \) collections of \(j \) things each, then \(i \times j \) things total.

TM: for each a, cross off j c’s by matching each b with a c.

\[M_3 = "\text{On input string } w:\n1. \text{ Scan input ...}"
2. \text{ Return the head to the left-hand end of the tape}
3. \text{ Cross off an a and scan to the right until a b occurs. Shuttle between the b’s and the c’s, crossing off each until all b’s are gone. If all c’s have been crossed off and some b’s remain, reject.}
4. \text{ Restore the crossed off b’s and repeat stage 3 if there is another a to cross off. If all a’s are crossed off, check whether all c’s also are crossed off. If yes, accept; otherwise, reject."} \]
TM Tricks

- **Question:** How to tell when a TM is at the left end of the tape?
- **One Approach:** Mark it with a special symbol.
- **Alternative method:**
 - remember current symbol
 - overwrite it with special symbol
 - move left
 - if special symbol still there, head is at start of tape
 - otherwise, restore previous symbol and move left.

Variant of TM: **k-tape

- Each tape has its own head.
- Transitions determined by
 - current state, and
 - what all the heads read.
- Each head writes and moves independently of other heads.

Multi-Tape TM

- Transition function

$$\delta : Q \times \Gamma^k \rightarrow Q \times \Gamma^k \times \{L, R\}^k$$

- Suppose

$$\delta(q_i, a_1, a_2, \ldots, a_k) = (q_j, b_1, b_2, \ldots, b_k, L, R, \ldots, L)$$

- Interpretation: If
 - machine is in state q_i, and
 - heads 1 through k read $a_1, \ldots a_k$,
 - then
 - machine moves to state q_j
 - heads 1 through k write b_1, \ldots, b_k
 - each head moves left (L) or right (R) as specified.
Multi-Tape TM Equivalent to 1-Tape TM

Theorem 3.13
For every multi-tape TM M, there is a single-tape TM M' such that $L(M) = L(M')$.

Remarks:

- In other words, for every multi-tape TM M, there is an equivalent single-tape TM M'.
- Proving and understanding this kind of robustness result is essential for appreciating the power of the TM model.
- We will consider different variants of TMs, and show each has equivalent basic TM.

Basic Idea of Proof of Theorem 3.13

Simulate k-tape TM using 1-tape TM

Tape 1	0	1	1	⌞⌟	⌞⌟	⌞⌟	
Tape 2	0	0	⌞⌟	⌞⌟	⌞⌟	⌞⌟	
Tape 3	1	0	0	1	⌞⌟	⌞⌟	⌞⌟

Equivalent 1-tape TM

| Tape | # | 0 | 1 | ⌞⌟ | # | 0 | # | 1 | 0 | 1 | # | ⌞⌟ | ⌞⌟ | ⌞⌟ | ⌞⌟ | ⌞⌟ |

Proof of Theorem 3.13

- Let $M_k = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$ be a k-tape TM.

- Initially, M_k has
 - input $w = w_1 \cdots w_n$ on tape 1
 - other tapes contain only blanks ⌞⌟
 - each head points to first cell.

- Construct 1-tape TM M_1 with expanded tape alphabet
 $\Gamma' = \Gamma \cup \Gamma \cup \{\#\}$
 Head positions are marked by dotted symbols.

- For each step of M_k, TM M_1 scans tape **twice**
 1. Scans its tape from
 - first # (which marks left end of tape) to
 - $(k + 1)$st # (which marks right end of used part of tape) to read symbols under “virtual” heads
 2. Recans to write new symbols and move heads
 - If M_1 tries to move virtual head to the right onto #, then
 - M_k is trying to move head onto unused blank cell.
 - So M_1 has to write blank on tape and shift rest of tape right one cell.
Corollary 3.15
Language \(L \) is TM-recognizable if and only if some multi-tape TM recognizes \(L \).

Nondeterministic TM
Definition: A **nondeterministic Turing machine** (NTM) \(M \) can have several options at every step. It is defined by the 7-tuple
\[
M = (Q, \Sigma, \Gamma, \delta, q_0, \text{q}_{\text{accept}}, \text{q}_{\text{reject}})
\]
where
- \(Q \) is finite set of states
- \(\Sigma \) is input alphabet (without blank \(\sqcup \))
- \(\Gamma \) is tape alphabet with \(\{\sqcup\} \cup \Sigma \subseteq \Gamma \)
- \(q_0 \) is start state \(\in Q \)
- \(\text{q}_{\text{accept}} \) is accept state \(\in Q \)
- \(\text{q}_{\text{reject}} \) is reject state \(\in Q \)
- \(\delta \) is transition function
\[
\delta : Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\})
\]

Transition Function \(\delta \) of NTM
\[
\delta : Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\})
\]

Multiple choices when in state \(q_i \) and reading \(c \) from tape:
\[
\delta(q_i, c) = \{(q_j, a, L), (q_k, c, R), (q_\ell, a, L), (q_\ell, d, R)\}
\]
NTM Equivalent to TM

Theorem 3.16
Every nondeterministic TM N has an equivalent deterministic TM D.

Proof Idea:
- Build TM D to simulate NTM N on each input w.
- D tries all possible branches of N’s tree of configurations.
- If D finds any accepting configuration, then it accepts input w.
- If all branches reject, then D rejects input w.
- If no branch accepts and at least one loops, then D loops on w.

Proof of Equivalence of NTM and TM

On each input w, NTM N’s computation is a tree
- Each branch is branch of nondeterminism.
- Each node is a configuration arising from running N on w.
- Root is starting configuration.
- TM D searches through tree to see if it has an accepting configuration.
- Depth-first search (DFS) doesn’t work. Why?
- Breadth-first search (BFS) works.
- Tree doesn’t actually exist.
- So TM D needs to build tree as it searches through it.

Proof of Equivalence of NTM and TM

Simulating TM D has 3 tapes
1. **Input tape**
 - contains input string w
 - never altered
2. **Simulation tape**
 - used as N’s tape when simulating N’s execution on some path in N’s computation tree.
3. **Address tape**
 - keeps track of current location of BFS of N’s computation tree.

Address Tape Works as Follows
- Every node in the tree has at most b children.
 - b is size of largest set of possible choices for N’s transition function.
- Every node in tree has an address that is a string over the alphabet
 $\Gamma_b = \{1, 2, \ldots, b\}$
- To get to node with address 231
 - start at root
 - take second branch
 - then take third branch
 - then take first branch
- Ignore meaningless addresses.
- Visit nodes in BFS order by listing addresses in Γ_b^* in string order:
 $\varepsilon, 1, 2, \ldots, b, 11, 12, \ldots, 1b, 21, 22, \ldots$
Proof of Equivalence of NTM and TM

• “accept” configuration has address 231.
• Configuration C_6 has address 12.
• Configuration C_1 has address ε.
• Address 132 is meaningless.

Simulating TM D Works as Follows

1. Initially, input tape contains input string w.
 • Simulation and address tapes are initially empty.
2. Copy input tape to simulation tape.
3. Use simulation tape to simulate NTM N on input w
 on path in tree from root to the address on address tape.
 • At each node, consult next symbol on address tape to determine
 which branch to take.
 • $Accept$ if accepting configuration reached.
 • Skip to next step if
 ■ symbols on address tape exhausted
 ■ nondeterministic choice invalid
 ■ rejecting configuration reached
4. Replace string on address tape with next string in Γ^* in string order,
 and go to Stage 2.

Remarks on TM Variants

Corollary 3.18
Language L is Turing-recognizable iff a nondeterministic TM recognizes it.

Proof.
• Every nondeterministic TM has an equivalent 3-tape TM
 1. input tape
 2. simulation tape
 3. address tape
• 3-tape TM, in turn, has an equivalent 1-tape TM by Theorem 3.13.

Remarks:
• k-tape TMs and NTMs are not more powerful than standard TMs:
• The Turing machine model is extremely robust.

TM Decidable \iff NTM Decidable

Definition: A nondeterministic TM is a decider if all branches halt on all inputs.

Remark: Can modify proof of previous theorem (3.16) so that
if NTM N always halts on all branches, then TM D will always halt.

Corollary 3.19
A language is decidable iff some nondeterministic TM decides it.
Enumerators

Remarks:

• Recall: a language is enumerable if some TM recognizes it.
• But why enumerable?

Definition: An enumerator is a TM with a printer
• TM takes no input
• TM simply sends strings to printer
• may create infinite list of strings
• duplicates may appear in list
• enumerates a language

Theorem 3.21
Language A is Turing-recognizable iff some enumerator enumerates it.

Proof. Must show
1. If E enumerates language A, then some TM M recognizes A.
2. If TM M recognizes A, then some enumerator E enumerates A.

To show 1, given enumerator E, build TM M for A using E as black box:

- $M =$ “On input string w,
 1. Run E.
 2. Every time E outputs a string, compare it to w.
 3. If w is output, accept.”

Second Half of Proof of Theorem 3.21

We now show 2: If TM M recognizes A, then some enumerator E enumerates A.

- Let s_1, s_2, s_3, \ldots be a list of all strings in Σ^*
- Given TM M, define E using M as black box as follows:
 - Repeat the following for $i = 1, 2, 3, \ldots$
 - Run M for i steps on each input s_1, s_2, \ldots, s_i.
 - If any computation accepts, print out corresponding string s
- Note that duplicates may appear.

“Algorithm” is Independent of Computation Model

- All reasonable variants of TM models are equivalent to TM:
 - k-tape TM
 - nondeterministic TM
 - enumerator
 - random-access TM: head can jump to any cell in one step.
- Similarly, all “reasonable” programming languages are equivalent.
 - Can take program in LISP and convert it into C, and vice versa.
- The notion of an algorithm is independent of the computation model.
Algorithms

What is an algorithm?
- Informally
 - a recipe
 - a procedure
 - a computer program

- Historically,
 - algorithms have long history in mathematics
 - but not precisely defined until 20th century
 - informal notions rarely questioned, but insufficient to show a problem has no algorithm.

Hilbert's 10th Problem

In 1900, David Hilbert delivered a now-famous address
- Presented 23 open mathematical problems
- Challenge for the next century
- 10th problem concerned algorithms and polynomials

Polynomials

- A term is a product of variables and a constant coefficient:
 \(6x^3yz^2\)

- A polynomial is a sum of terms:
 \(6x^3yz^2 + 3xy^2 - x^3 - 10\)

- A root of a polynomial is an assignment of values to variables so that the value of the polynomial is zero.

- The above polynomial has a root at \((x,y,z) = (5,3,0)\).

- We are interested in integral roots.

- Some polynomials have integral roots; some don’t.
 - Neither \(21x^2 - 81xy + 1\) nor \(x^2 - 2\) has an integral root.
Church-Turing Thesis

- Formal notion of algorithm developed in 1936
 - λ-calculus of Alonzo Church
 - Turing machines of Alan Turing
 - Definitions appear very different, but are equivalent.

- **Church-Turing Thesis**
 The informal notion of an algorithm corresponds exactly to a Turing machine that halts on all inputs.

Hilbert’s 10th Problem

- Consider language
 \[D = \{ p \mid p \text{ is a polynomial with an integral root} \} \]
 - Since $6x^3yz^2 + 3xy^2 - x^3 - 10$ has an integral root at $(x, y, z) = (5, 3, 0)$,
 \[6x^3yz^2 + 3xy^2 - x^3 - 10 \in D. \]
 - Since $21x^2 - 81xy + 1$ has no integral root,
 \[21x^2 - 81xy + 1 \notin D. \]

- Hilbert’s 10th problem asks whether this language is decidable.
 - i.e., Is there a TM that decides D?

- D is **not decidable**, but it is **Turing-recognizable**.

Hilbert’s 10th Problem

- Consider simpler language of polynomials over single variable:
 \[D_1 = \{ p \mid p \text{ is a polynomial over } x \text{ with an integral root} \} \]

- D_1 is recognized by following TM M_1:
 - On input p, which is a polynomial over variable x
 1. Evaluate p with x set successively to values
 \[0, 1, -1, 2, -2, 3, -3, \ldots. \]
 2. If at any point the polynomial evaluates to 0, accept.

- Note that
 - If p has an integral root, the machine eventually accepts.
 - If not, machine loops.
 - M_1 recognizes D_1, but does not decide D_1.
Encoding

- Input to a Turing machine is a string of symbols over an alphabet.
- But we want TMs (algorithms) that work on
 - graphs
 - languages
 - Turing machines
 - etc.
- Need to encode an object as a string of symbols over an alphabet.
- Can often do this in many reasonable ways.
- We sometimes distinguish between
 - an object \(X \)
 - its encoding \(\langle X \rangle \).

Encoding an Undirected Graph

- Undirected graph \(G \)
- One possible encoding
 \[
 \langle G \rangle = (1, 2, 3, 4) \quad (1, 2), (1, 3), (2, 3), (3, 4)
 \]
- In this encoding scheme, \(\langle G \rangle \) of graph \(G \) is string of symbols over some alphabet \(\Sigma \), where the string
 - starts with list of nodes
 - followed by list of edges

Connected Graphs

Definition: An undirected graph is **connected** if every node can be reached from any other node by travelling along edges.

Example: Let \(A \) be the language consisting of strings representing connected undirected graphs:

\[
A = \{ \langle G \rangle \mid G \text{ is a connected undirected graph} \}
\]

So \(\langle G_1 \rangle \in A \) and \(\langle G_2 \rangle \notin A \).

Decision Problems

- Decision problem: (computational) question with YES/NO answer.
 - Answer depends on particular value of input to question.
- Example: Graph connectedness problem:
 Is an undirected graph connected?

\[
\begin{align*}
\text{Graph } G_1 & \quad \text{Graph } G_2 \\
1 & \quad 1 \\
2 & \quad 2 \\
3 & \quad 3 \\
4 & \quad 4
\end{align*}
\]
- Input to question is undirected graph.
- For input \(\langle G_1 \rangle \), answer is YES.
- For input \(\langle G_2 \rangle \), answer is NO.
Instance and Language of Decision Problem

- **Instance** of decision problem is specific input value to question.
 - Instance is encoded as string over some alphabet Σ.
 - YES instance has answer YES.
 - NO instance has answer NO.

- **Universe** Ω of a decision problem comprises all instances.

- **Language** of a decision problem comprises all its YES instances.

Example: For graph connectedness problem,

- Universe Ω consists of (encodings of) every undirected graph G:
 $\Omega = \{ \langle G \rangle \mid G$ is an undirected graph $\}$

- Language A of decision problem
 $A = \{ \langle G \rangle \mid G$ is a connected undirected graph $\}$
 is subset of universe; i.e., $A \subseteq \Omega$

Proving a Language is Decidable

- Recall for graph connectedness problem,
 $\Omega = \{ \langle G \rangle \mid G$ is an undirected graph $\}$,
 $A = \{ \langle G \rangle \mid G$ is a connected undirected graph $\}$

- To prove A is decidable language, need to show \exists TM that decides A.

- For a TM M to decide A, the TM must
 - take any instance $\langle G \rangle \in \Omega$ as input
 - halt and accept if $\langle G \rangle \in A$
 - halt and reject if $\langle G \rangle \not\in A$ (i.e., never loops indefinitely)

TM to Decide if Graph is Connected

For TM M that decides $A = \{ \langle G \rangle \mid G$ is a connected undirected graph $\}$

- Stage 0 checks that input $\langle G \rangle \in \Omega$ is valid graph encoding, e.g.,
 - two lists
 - first is a list of numbers
 - second is a list of pairs of numbers
 - first list contains no duplicates
 - every node in second list appears in first list
 - Stages 1–4 then check if G is connected.

- When defining a TM, we often do not explicitly include stage 0 to check if the input is a valid encoding.
 - Instead, the check is often only implicitly included.
Hierarchy of Languages (so far)

<table>
<thead>
<tr>
<th>All languages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turing-recognizable</td>
</tr>
<tr>
<td>TM, (k)-tape TM, NTM, enumerator, …</td>
</tr>
<tr>
<td>Decidable</td>
</tr>
<tr>
<td>Decider (deterministic, nondet, (k)-tape, …)</td>
</tr>
<tr>
<td>Context-free</td>
</tr>
<tr>
<td>CFG, PDA</td>
</tr>
<tr>
<td>Regular</td>
</tr>
<tr>
<td>DFA, NFA, Reg Exp</td>
</tr>
<tr>
<td>Finite</td>
</tr>
</tbody>
</table>

Examples

- \(\{0^n1^n2^n \mid n \geq 0\}\)
- \(\{0^n1^n \mid n \geq 0\}\)
- \((0 \cup 1)^*\)
- \(\{110, 01\}\)

Summary of Chapter 3

- Turing machines
 - tape head can move right and **left**
 - tape head can read and **write**
- TM computation can be expressed as sequence of configurations
- Language is **Turing-recognizable** if some TM recognizes it
 - But TM may loop forever on input string not in language
- Language is **Turing-decidable** if a TM decides it (must always halt)
- Variants of TM (\(k\)-tape, nondeterministic, etc.) have equivalent TM
- Church-Turing Thesis
 - Informal notion of algorithm is same as deciding by TM.
- Hilbert’s 10th problem undecidable.
- Encoding TM input and decision problems.