
CS 341: Foundations of CS II

Marvin K. Nakayama
Computer Science Department

New Jersey Institute of Technology
Newark, NJ 07102

CS 341: Chapter 4 4-2

Chapter 4
Decidability

Contents

• Decidable Languages

• TM Acceptance Problem is Undecidable

• Countable and Uncountable Sets

• Some languages are not Turing-recognizable

CS 341: Chapter 4 4-3

Decidable Languages

•We now tackle the question:

What can and can’t computers do?

•We consider the questions:

Which languages are 1. Turing-decidable

2. Turing-recognizable

3. neither?

• Assuming the Church-Turing thesis,

these are fundamental properties of languages and algorithms.

•Why study decidability?

Certain problems are unsolvable by computers.

You should be able to recognize these.

CS 341: Chapter 4 4-4

Describing TM Programs

• Three Levels of Describing Algorithms:

Formal (state diagrams, CFGs, etc.)

Implementation (pseudo-code)

High-level (coherent and clear English)

• Describing input/output format:

TMs allow only strings over some alphabet as input.

If our input X and Y are of another form (graph, TM, polynomial),

� then we use 〈X,Y 〉 to denote some kind of encoding
as a string over some alphabet.

•When defining TM, make sure to specify its input!

• If TM M decides language L, then M

always gives correct answer (YES/NO, accept/reject)

never loops forever on any input.

CS 341: Chapter 4 4-5

Acceptance Problem for DFAs

Decision problem: Does a given DFA B accept a given string w?

• Instance is a particular pair 〈B,w〉 of a DFA B and a string w.

• Universe comprises every possible instance

Ω = { 〈B,w〉 | B is a DFA and w is a string }
• Language comprises all YES instances

ADFA = { 〈B,w〉 | B is a DFA that accepts string w } ⊆ Ω

DFA D1

a, b

a

b
DFA D2

a, b

a
b

a, b

• 〈D1, abb〉 ∈ ADFA and 〈D2, ε〉 ∈ ADFA are YES instances.

• 〈D1, ε〉 �∈ ADFA and 〈D2, aab〉 �∈ ADFA are NO instances.

CS 341: Chapter 4 4-6

Acceptance Problem for DFAs is Decidable

ADFA = { 〈B,w〉 | B is a DFA that accepts string w }.

Theorem 4.1
ADFA is a decidable language.

Remarks:

• Recall universe for Acceptance Problem for DFAs

Ω = { 〈B,w〉 | B is a DFA and w is a string }.
• To prove ADFA is decidable, need to show ∃ TM M that decides ADFA.

• For TM M to decide ADFA, TM must

take any instance 〈B,w〉 ∈ Ω as input

halt and accept if 〈B,w〉 ∈ ADFA

halt and reject if 〈B,w〉 �∈ ADFA

CS 341: Chapter 4 4-7

Proof: TM M that Decides ADFA

M = “On input 〈B,w〉 ∈ Ω, where

• B = (Q,Σ, δ, q0, F) is a DFA

• w = w1w2 · · ·wn ∈ Σ∗ is input string to process on B.

0. Check if 〈B,w〉 is ‘proper’ encoding. If not, reject.
1. Simulate B on w with the help of two pointers, q and i:

• q ∈ Q points to the current state of DFA B.

Initially, q = q0, the start state of B.

• i ∈ {1,2, . . . , |w|} points to the current position in string w.

•While i increases from 1 to |w|,
q = δ(q, wi); i.e., transition function δ determines next state
from current state q and input symbol wi.

2. If B ends in state q ∈ F , then M accepts ; otherwise, reject.”

CS 341: Chapter 4 4-8

Acceptance Problem for NFAs is Decidable

Decision problem: Does a given NFA B accept a given string w?

ANFA = { 〈B,w〉 | B is NFA that accepts string w }
⊆ { 〈B,w〉 | B is NFA, w is string } ≡ Ω

Theorem 4.2
ANFA is a decidable language.

Proof. TM: “On input 〈B,w〉 ∈ Ω

• B = (Q,Σ, δ, q0, F) is NFA

• w ∈ Σ∗ is input string for B.

0. If input 〈B,w〉 is not proper encoding of NFA B and string w, reject.

1. Use algo in Thm. 1.39 to transform NFA B into equivalent DFA C.

2. Run TM decider M for ADFA (Theorem 4.1) on input 〈C,w〉.
3. If M accepts 〈C,w〉, accept ; otherwise, reject.”
Proof reduces ANFA to ADFA.

CS 341: Chapter 4 4-9

Acceptance Problem for Regular Expressions is Decidable

Decision problem: Does a reg exp R generate a given string w?

AREX = { 〈R,w〉 | R is regular expression that generates string w }
⊆ { 〈R,w〉 | R is regular expression and w is string } ≡ Ω.

Example: For regular expressions R1 = a∗b and R2 = ba∗b∗,
〈R1, aab〉 ∈ AREX, 〈R1, ba〉 �∈ AREX, 〈R2, aab〉 �∈ AREX.

Theorem 4.3
AREX is a decidable language.

Proof. “On input 〈R,w〉 ∈ Ω:

0. Check if 〈R,w〉 is proper encoding of regular expression and string.
If not, reject.

1. Convert R into DFA B using algos in Lemma 1.55 and Thm 1.39.

2. Run TM decider for ADFA (Theorem 4.1) on input 〈B,w〉 and give
same output.”

Proof reduces AREX to ADFA.

CS 341: Chapter 4 4-10

Emptiness Problem for DFAs

Decision problem: Does a DFA recognize the empty language?

EDFA = { 〈B〉 | B is a DFA and L(B) = ∅ }
⊆ { 〈B〉 | B is a DFA } ≡ Ω.

Examples: DFA C DFA D

q0 q1 q2
a, b

a, b

a, b

q0 q1 q2
a, b

a, b

a, b

Note that 〈C〉 �∈ EDFA and 〈D〉 ∈ EDFA.

Theorem 4.4
EDFA is a decidable language.

Proof Idea:

• Check if any accept state is reachable from start state.

• If so, then reject ; otherwise, accept .

CS 341: Chapter 4 4-11

Proof that EDFA is Decidable

On input 〈B〉 ∈ Ω, where B = (Q,Σ, δ, q0, F) is a DFA:

0. If 〈B〉 is not a proper encoding of a DFA, reject.

1. Define S as set of states reachable from q0. Initially, S = {q0}.
2. Repeat |Q| times:
(a) If S has an element from F , then reject.

(b) Otherwise, add to S the elements that can be reached from S using
transition function δ, i.e.,

• If ∃ qi ∈ S and � ∈ Σ with δ(qi, �) = qj, then add qj to S.

3. If S ∩ F = ∅, then accept ;
otherwise, reject.

Remark: TM just tests whether any accepting state is reachable from
start state (transitive closure).

CS 341: Chapter 4 4-12

DFA Equivalence Problem is Decidable

Decision problem: Are 2 given DFAs equivalent?

EQDFA = { 〈A,B〉 | A and B are DFAs and L(A) = L(B) }
⊆ { 〈A,B〉 | A and B are DFAs } ≡ Ω.

• For DFAs A and B with same input alphabet Σ,
〈A,B〉 ∈ EQDFA iff A and B agree on every string in Σ∗.

Example:
DFA A1 DFA B1

q0 q1 q2
a, b

a, b

a, b

q0 q1
a, b

a, b

DFAs A1 and B1 don’t recognize same language, so 〈A1, B1〉 �∈ EQDFA.

Theorem 4.5
EQDFA is a decidable language.

CS 341: Chapter 4 4-13

EQDFA = { 〈A,B〉 | A and B are DFAs and L(A) = L(B) }

• Given DFAs A and B, construct new DFA C such that C accepts any
string accepted by A or B but not both:

L(C) =
[
L(A) ∩ L(B)

]
∪

[
L(A) ∩ L(B)

]

• L(C) is the symmetric difference of L(A) and L(B).

L(A) L(B)

• Note that L(A) = L(B) if and only if L(C) = ∅.
• Construct DFA C using algorithms for DFA complements (slide 1-15),
intersections (slide 1-34), and unions (Thm 1.25).

• DFA C can be constructed with one big TM.

CS 341: Chapter 4 4-14

Proof that EQDFA is Decidable

On input 〈A,B〉 ∈ Ω, where A and B are DFAs:

0. Check if 〈A,B〉 is a proper encoding of 2 DFAs. If not, reject.

1. Construct DFA C such that

L(C) =
[
L(A) ∩ L(B)

]
∪

[
L(A) ∩ L(B)

]
using algorithms for DFA complements (slide 1-15), intersections (slide
1-34), and unions (Thm 1.25).

2. Run TM decider for EDFA (Theorem 4.4) on input 〈C〉.

3. If 〈C〉 ∈ EDFA, accept ;
If 〈C〉 �∈ EDFA, reject.

CS 341: Chapter 4 4-15

Acceptance, Emptiness and Equivalence Problems for CFGs

ACFG = { 〈G,w〉 | G is a CFG that generates string w },
ECFG = { 〈G〉 | G is a CFG with L(G) = ∅ },

EQCFG = { 〈G,H〉 | G and H are CFGs with L(G) = L(H) }.

Example:

• Consider CFGs

G1 with rules S → aSb | ε, so L(G1) = { akbk | k ≥ 0 },
G2 with rules S → aSb, so L(G2) = ∅.

• 〈G1, aabb〉 ∈ ACFG, 〈G1, aab〉 �∈ ACFG, and 〈G2, aabb〉 �∈ ACFG, .

• 〈G1〉 �∈ ECFG and 〈G2〉 ∈ ECFG.

• 〈G1, G2〉 �∈ EQCFG.

CS 341: Chapter 4 4-16

Acceptance Problem for CFGs is Decidable

•Decision problem: Does a CFG G generate a string w?

ACFG = { 〈G,w〉 | G is a CFG that generates string w }
⊆ { 〈G,w〉 | G is a CFG and w a string } ≡ Ω.

• For any specific pair 〈G,w〉 ∈ Ω of a CFG G and string w,

〈G,w〉 ∈ ACFG if G generates w, i.e., w ∈ L(G).

〈G,w〉 �∈ ACFG if G doesn’t generate w, i.e., w �∈ L(G).

Theorem 4.7
ACFG is a decidable language.

Bad Idea for Proof:

• Design a TM M that takes input 〈G,w〉, and enumerates all
derivations using CFG G to see if any generates w.

• Problem: M might recognize ACFG but does not decide it. Why?

If w �∈ L(G) and |L(G)| = ∞, then TM M never halts.

CS 341: Chapter 4 4-17

Better Approach: Use Chomsky Normal Form

• Recall: A context-free grammar G = (V,Σ, R, S) is in
Chomsky normal form if each rule is of the form

A → BC or A → x or S → ε

variable A ∈ V

variables B,C ∈ V − {S}
terminal x ∈ Σ.

• Every CFG can be converted into Chomsky normal form (Theorem 2.9).

• CFG G in Chomsky normal form is easier to analyze.

Can show that for any string w ∈ L(G) with w �= ε,
derivation S

∗⇒ w takes exactly 2|w| − 1 steps.

ε ∈ L(G) iff G includes rule S → ε.

CS 341: Chapter 4 4-18

Proof that ACFG is Decidable

On input 〈G,w〉 ∈ Ω, where G is a CFG and w is a string,

0. Check if 〈G,w〉 is proper encoding of CFG and string; if not, reject.

1. Convert G into equivalent CFG G′ in Chomsky normal form.

2. If w = ε, check if S → ε is a rule of G′.
If so, accept ; otherwise, reject.

3. If w �= ε, list all derivations with 2n− 1 steps, where n = |w|.
4. If any generates w, accept ;
otherwise, reject.

Remarks:

• # derivations with 2n− 1 steps is finite, so TM is a decider.

•We consider a more efficient algorithm in Chapter 7.

CS 341: Chapter 4 4-19

Emptiness Problem for CFGs is Decidable

Decision problem: Is a CFG’s language empty?

ECFG = { 〈G〉 | G is a CFG with L(G) = ∅ }
⊆ { 〈G〉 | G is a CFG } ≡ Ω

Theorem 4.8
ECFG is decidable.

Proof. On input 〈G〉 ∈ Ω, where G is a CFG,

0. Check if 〈G〉 is a proper encoding of a CFG G = (V,Σ, R, S);
if not, reject.

1. Define set T ⊆ V ∪Σ such that u ∈ T iff u
∗⇒ w for some w ∈ Σ∗.

Initially, T = Σ, and iteratively add to T .

2. Repeat |V | times:
• Check each rule B → X1 · · ·Xk in R.

• If B �∈ T and each Xi ∈ T , then add B to T .

3. If S ∈ T , then reject ; otherwise, accept .

CS 341: Chapter 4 4-20

Are Two CFGs Equivalent?

•Decision problem: Are two CFGs equivalent?

EQCFG = { 〈G,H〉 | G,H are CFGs and L(G) = L(H) }
⊆ { 〈G,H〉 | G,H are CFGs } ≡ Ω.

• For DFAs, used emptiness decision procedure to solve equality problem.

Try to construct CFG C from CFGs G and H such that

L(C) =
[
L(G) ∩ L(H)

]
∪

[
L(G) ∩ L(H)

]
and check if L(C) is empty using TM decider for ECFG.

•We can’t define CFG C for symmetric difference. Why?

Class of CFLs not closed under complementation nor intersection.

• Fact: EQCFG is not a decidable language.

We’ll prove this later (HW 9).

CS 341: Chapter 4 4-21

CFLs are Decidable

Theorem 4.9
Every CFL L is a decidable language.

Bad Idea for Proof:

• Convert PDA for L directly into a TM.

Can do this by using TM tape to simulate PDA stack.

• Nondeterministic PDA yields nondeterministic TM (NTM).

• NTM can be converted into deterministic TM (DTM).

• Problem:

Some branch of PDA might run forever.

Some branch of NTM might run forever.

Corresponding DTM recognizes L,

� but does not decide L since it may not halt on every input.

CS 341: Chapter 4 4-22

Proof that Every CFL L is Decidable

• Let L be a CFL with alphabet Σ, so L ⊆ Σ∗

G′ be a CFG for language L

S be a TM from Theorem 4.7 that decides

ACFG = { 〈G,w〉 | G is a CFG that generates string w }

• Construct TM MG′ for language L having CFG G′ as follows:
MG′ = “On input w ∈ Σ∗:
1. Run TM decider S on input 〈G′, w〉.
2. If S accepts, accept ;
otherwise, reject.”

• How do TMs S and MG′ differ?

TM S has input 〈G,w〉 for any CFG G and string w.

TM MG′ has input w for fixed G′.

CS 341: Chapter 4 4-23

Hierarchy of Languages (so far)

Finite {110, 01 }

Regular
DFA, NFA, Reg Exp

(0 ∪ 1)∗

Context-free
CFG, PDA

{0n1n | n ≥ 0 }

Decidable
Decider (deterministic, nondet, k-tape, . . .)

{0n1n2n | n ≥ 0 }

Turing-recognizable
TM, k-tape TM, NTM, enumerator, . . .

???

All languages ???

Examples

CS 341: Chapter 4 4-24

The Universal TM U

• Is one TM capable of simulating all other TMs?

• Given an encoding 〈M,w〉 of a TM M and input w,

can we simulate M on w?

•We can do this via a universal TM U :

U = “On input 〈M,w〉, where M is a TM and w is a string:

1. Simulate M on input w.

2. If M ever enters its accept state, accept ;

if M ever enters its reject state, reject.”

• Can think of U as an emulator.

CS 341: Chapter 4 4-25

Acceptance Problem for TMs is Turing-Recognizable

•Decision problem: Does a given TM M accept a given string w?

• Instance: 〈M,w〉, where M is TM, w is a string.

• Universe: Ω = { 〈M,w〉 | M is TM and w is string }.
• Language:
ATM = { 〈M,w〉 | M is TM that accepts string w } ⊆ Ω.

• For a specific pair 〈M,w〉 ∈ Ω of TM M and string w,

〈M,w〉 ∈ ATM if M accepts w

〈M,w〉 �∈ ATM if M does not accept w.

• Universal TM U

U recognizes ATM, so ATM is Turing-recognizable.

U does not decide ATM.

� If M loops on w, then U loops on 〈M,w〉.
• But can we also decide ATM?

We will see later that ATM is undecidable.

CS 341: Chapter 4 4-26

Unsolvable Problems

• Computers (and computation) are limited in a very fundamental way.

• Common, every-day problems are unsolvable (i.e., undecidable)

Does a program sort an array of integers?

Both program and specification are precise mathematical objects.

One might think that it is then possible to develop an algorithm that
can determine if a program matches its specification.

However, this is impossible.

• To show this, we need to introduce some new ideas.

CS 341: Chapter 4 4-27

Mappings and Functions

• Consider fcn f : A → B mapping objects in one set A to another B.

•Definition: f is one-to-one (aka injective) if every x ∈ A has a
unique image f(x):

If f(x) = f(y), then x = y.

Equivalently, if x �= y, then f(x) �= f(y).

A Bf

•Definition: f is onto (aka surjective) if every z ∈ B is “hit” by f :

If z ∈ B, then there is an x ∈ A with
f(x) = z.

A Bf

•Definition: f is a correspondence (aka bijection)
if it both one-to-one and onto.

Inverse fcn f−1 : B → A then exists.

A way to pair elements from A

with elements from B.

A Bf

CS 341: Chapter 4 4-28

Example: f : R → R with f(x) = ex is

• one-to-one since x �= y implies ex �= ey.

• not onto since ex > 0 for all x ∈ R.

Example: f : R → R with f(x) = x2 is

• not one-to-one since 32 = (−3)2 = 9.

• not onto since x2 ≥ 0 for all x ∈ R.

Example: f : R → R with f(x) = x3 is

• one-to-one since x �= y implies x3 �= y3.

• onto since for any z ∈ R, letting x = z1/3 yields
f(x) = (z1/3)3 = z.

• Thus, f is a correspondence between A = R and B = R.

CS 341: Chapter 4 4-29

Cardinality

• Set T has |T | = k iff ∃ correspondence between {1,2, . . . , k} and T ,
in which case {1,2, . . . , k} and T are of the same size.

Ex: |T | = 3.
TfS 1

2
3

• If ∃ one-to-one mapping from set S to set T ,
then T is at least as big as S, i.e., |T | ≥ |S|.

Ex: |T | ≥ 3.
S Tf1

2
3

•Defn: Two sets S and T , possibly infinite, are of the same size if
there is a correspondence between them.

• If ∃ one-to-one fcn from S to T but � ∃ correspondence from S to T ,
then T is strictly bigger than S.

CS 341: Chapter 4 4-30

Countable Sets

• Let N = {1,2,3, . . .} be the set of natural numbers.

• Set T is infinite if there exists a one-to-one function f : N → T .

“The set T is at least as big as the set N .”

• Set T is countable if it is finite or has the same size as N .

Can enumerate all elements in T in (possibly infinite) list.

each element is eventually listed.

Fact: N = {1,2,3, . . .} and E = {2,4,6, . . .} have same size.

Proof. Define correspondence between N and E by function f(i) = 2i.

Remark: Set T and a proper subset of T can have the same size!

CS 341: Chapter 4 4-31

Set of Rational Numbers is Countable

Fact: The set of rational numbers

Q =

{
m

n

∣∣∣∣∣ m,n ∈ N
}

is countable.

Proof.

•Write out elements in Q as an infinite 2-dimensional array:

1/1 1/2 1/3 1/4 1/5 · · ·

2/1 2/2 2/3 2/4 2/5 · · ·

3/1 3/2 3/3 3/4 3/5 · · ·

4/1 4/2 4/3 4/4 4/5 · · ·
...

CS 341: Chapter 4 4-32

• If we try to

first list all elements in first row,

then list all elements in second row,

and so on,

then we will never get to the second row because the first row is
infinitely long.

• Instead,

enumerate elements along Southwest to Northeast diagonals,

skip duplicates.

CS 341: Chapter 4 4-33

1/2 1/3 1/4 1/51/1

2/1

3/1

4/1

5/1

2/2 2/3 2/4 2/5

3/2 3/3 3/4 3/5

4/2 4/3 4/4

5/35/2

CS 341: Chapter 4 4-34

More Countable Sets

Examples: ∃ correspondence between N = {1,2,3, . . .} and each of

• Z = {. . . ,−2,−1,0,1,2, . . .}
• N2 = { (i, j) | i, j ∈ N }
• {a}∗
•Σ∗, for any alphabet Σ; e.g., Σ = {a, b}.

Simply enumerate strings in Σ∗ in string order.

N 1 2 3 4 5 6 7 . . .

Z 0 +1 −1 +2 −2 +3 −3 . . .
N2 (1,1) (2,1) (1,2) (3,1) (2,2) (1,3) (4,1) . . .
{a}∗ ε a aa aaa aaaa aaaaa aaaaaa . . .
{a, b}∗ ε a b aa ab ba bb . . .

So is every infinite set countable?

CS 341: Chapter 4 4-35

Uncountable Sets

Definition: A set is uncountable if it is not countable.

Remark: Uncountable sets are (much) larger than countable sets.

Definition: A real number is a number with a (possibly infinite)
decimal representation.

• π = 3.1415926 . . .

• √
2 = 1.4142136 . . .

• 2 = 2.0000 . . .

Theorem 4.17
The set R of all real numbers is uncountable.

CS 341: Chapter 4 4-36

Set R of All Real Numbers is Uncountable

Proof.

• Suppose that there is a correspondence between N and R:

n f(n)

1 3 .14159 . . .

2 0 .55555 . . .

3 40 .00000 . . .

4 15 .20361 . . .
... ...

• Since correspondence exists, enumerated list is supposed to contain
every real number.

• Each number is written as an infinite decimal expansion.

•We now construct a number x between 0 and 1 that is not in the list
using Cantor’s diagonalization method

CS 341: Chapter 4 4-37

Diagonalization Method

• Let x = 0. d1 d2 d3 . . ., where

dn is nth digit after decimal point in decimal expansion of x

dn differs from the nth digit in the nth number in the list.

n f(n)

1 3 .14159 . . .

2 0 .55555 . . .

3 40 .00000 . . .

4 15 .20361 . . .
... ...

• For example, can take x = 0.2617

• ∀n, x differs from nth number f(n) in the list in at least position n,

so x is not in the list,
contradiction since list is supposed to contain all of R, including x.

• Thus, � ∃ correspondence f : N → R, so R is uncountable.

CS 341: Chapter 4 4-38

Set of All TMs is Countable

Fact: If S ⊆ T and T is countable, then S is countable.

Proof. In enumeration of T , skip elements in T − S to enumerate S.

Fact: For any (finite) alphabet Ψ, the set Ψ∗ is countable.

Proof. Enumerate strings in string order.

Fact: The set of all TMs is countable.

Proof.

• Every TM has a finite description, e.g., as 7-tuple or source code.

Can describe TM M using encoding 〈M〉
Encoding is a finite string of symbols over some alphabet Ψ.

• So just enumerate all strings over Ψ

omit any that are not legal TM encodings.

• Since Ψ∗ is countable,

there are only a countable number of different TMs.

CS 341: Chapter 4 4-39

Set of All Languages is Uncountable

Fact: The set B of all infinite binary sequences is uncountable.

Proof. Use diagonalization argument as in proof that R is uncountable.

Fact: The set L of all languages over alphabet Σ is uncountable.

Proof.

• Idea: show ∃ correspondence χ between L and B,
so L has same size as uncountable set B.

• Each language A ∈ L has A ⊆ Σ∗, so L = P(Σ∗).
• Language’s characteristic sequence defined by correspondence

χ : L → B
Write out elements in Σ∗ in string order: s1, s2, s3,

Each language A ∈ L has a unique sequence χ(A) ∈ B.
The nth bit of χ(A) is 1 if and only if sn ∈ A

CS 341: Chapter 4 4-40

• Recall: Each language A ∈ L has a unique sequence χ(A) ∈ B
nth bit of χ(A) is 1 if and only if sn ∈ A.

χ(A) specifies which strings from Σ∗ are or aren’t in A.

• Example: For Σ = {0,1},
Σ∗ = { ε, 0, 1, 00, 01, 10, 11, 000, . . . }
A = { 0, 00, 01, 000, . . . }

χ(A) = 0 1 0 1 1 0 0 1 . . .

• The mapping χ : L → B is a correspondence because it is

one-to-one: different languages A1 and A2 differ for at least one
string si, so the ith bits of χ(A1) and χ(A2) differ;

onto: for each sequence b ∈ B, ∃ language A for which χ(A) = b.

• Thus, L is same size as uncountable set B,
so L is also uncountable.

CS 341: Chapter 4 4-41

Some Languages are not Turing-Recognizable

• Each TM recognizes some language.

• Set of all TMs is countable.

• Set of all languages is uncountable.

• Since uncountable sets are larger than countable ones,

∃ more languages than there are TMs that can recognize them.

Corollary 4.18
Some languages are not Turing-recognizable.

•What kind of languages are not Turing-recognizable?

We’ll see some later . . .

CS 341: Chapter 4 4-42

Revisit Acceptance Problem for TMs

•Decision problem: Does a TM M accept string w?

ATM = { 〈M,w〉 | M is a TM that accepts string w }
⊆ { 〈M,w〉 | M is a TM and w is a string } ≡ Ω

• Universe Ω of instances

contains all possible pairs 〈M,w〉 of TM M and string w

not just one specific instance.

• For a specific TM M and string w,

if M accepts w, then 〈M,w〉 ∈ ATM is a YES instance

if M doesn’t accept w (rejects or loops),
then 〈M,w〉 �∈ ATM is a NO instance.

Theorem 4.11
ATM is undecidable.

CS 341: Chapter 4 4-43

Outline of Proof by Contradiction

• Suppose ATM is decided by some TM H, with input 〈M,w〉 ∈ Ω.

H−→〈M,w〉 �
�

�
��

�
�

�
��

accept, if 〈M,w〉 ∈ ATM

reject, if 〈M,w〉 �∈ ATM

• Use H as subroutine to define another TM D, with input 〈M〉.

HH

D

−→〈M, 〈M〉〉 �
�

�
��

�
�

�
��

accept

reject
−→〈M〉

�
�
�
�
�
�
�
����

�
�
�
�
�
�
���

accept

reject

•What happens when we run D with input 〈D〉 ?
D accepts 〈D〉 iff D doesn’t accept 〈D〉, which is impossible.

CS 341: Chapter 4 4-44

Proof by Contradiction that ATM is Undecidable

• Suppose there exists a TM H that decides ATM.

TM H takes input 〈M,w〉 ∈ Ω, where M is a TM and w a string.

H accepts 〈M,w〉 ∈ ATM; i.e., if M accepts w.

H rejects 〈M,w〉 �∈ ATM; i.e., if M does not accept w.

• Consider language L = { 〈M〉 | M is TM that doesn’t accept 〈M〉 }.
• Using TM H as subroutine, we can construct TM D that decides L:

D = “On input 〈M〉, where M is a TM:
1. Run H on input 〈M, 〈M〉〉.
2. If H accepts, reject. If H rejects, accept .”

•What happens when we run D with input 〈D〉 ?
Stage 1 of D runs H on input 〈D, 〈D〉〉.
D accepts 〈D〉 iff D doesn’t accept 〈D〉, which is impossible.

• So TM H must not exist, i.e., ATM is undecidable.

CS 341: Chapter 4 4-45

Another View of Proof

Remark: The proof implicitly used diagonalization . . .

• Since the set of all TMs is countable, we can enumerate them:

M1, M2, M3, M4, . . .

• Construct table of acceptance behavior of TM Mi on input 〈Mj〉:

〈M1〉 〈M2〉 〈M3〉 〈M4〉 · · ·
M1 accept accept · · ·
M2 accept accept accept accept · · ·
M3 · · ·
M4 accept accept · · ·
...

Blank entries are reject or loop.

CS 341: Chapter 4 4-46

Another View of Proof

• Another table

entry (i, j) is value of “acceptance function” H on input
〈Mi, 〈Mj〉 〉:

〈M1〉 〈M2〉 〈M3〉 〈M4〉 · · ·
M1 accept reject accept reject · · ·
M2 accept accept accept accept · · ·
M3 reject reject reject reject · · ·
M4 accept accept reject reject · · ·
...

CS 341: Chapter 4 4-47

Another View of Proof

• Diagonal entries swapped for output of D on 〈Mi〉.
•D is a TM, so it must appear in the enumeration M1,M2,M3, . . .

• Contradiction occurs when evaluating D on 〈D〉:

〈M1〉 〈M2〉 〈M3〉 〈M4〉 · · · 〈D〉
M1 accept reject accept reject · · · accept · · ·
M2 accept accept accept accept · · · accept · · ·
M3 reject reject reject reject · · · reject · · ·
M4 accept accept reject reject · · · accept · · ·
...

D reject reject accept accept · · · ? · · ·
...

CS 341: Chapter 4 4-48

Another View of the Problem

• “Self-referential paradox”

occurs when we force the TM D to disagree with itself.

•D knows what it is going to do on input 〈D〉 by H,

but then D does the opposite instead.

• You cannot know for sure what you will do in the future.

If you could, then you could change your actions and create a
paradox.

• The diagonalization method implements the self-reference paradox in a
mathematical way.

• In logic this approach often used to prove that certain things are
impossible.

• Kurt Gödel gave a mathematical equivalent of the statement
“This sentence is not true” or “I am lying.”

CS 341: Chapter 4 4-49

Co-Turing-Recognizable Languages

ATM = { 〈M,w〉 | M is a TM that accepts string w }

• ATM is not Turing-decidable, but is Turing-recognizable.

Use universal TM U to simulate TM M on string w.

� If M accepts w, then U accepts 〈M,w〉 ∈ ATM.

� If M rejects w, then U rejects 〈M,w〉 �∈ ATM.

� If M loops on w, then U loops on 〈M,w〉 �∈ ATM.

•What about a language that is not Turing-recognizable?

• Recall that complement of language A over alphabet Σ is

A = Σ∗ −A = Ω−A

Definition: Language A is co-Turing-recognizable if its
complement A is Turing-recognizable.

CS 341: Chapter 4 4-50

Decidable ⇐⇒ Turing- and co-Turing-recognizable

Theorem 4.22
A language is decidable if and only if it is both

• Turing-recognizable and

• co-Turing-recognizable.

Turing-recognizable

Decidable

co-Turing-recognizable

CS 341: Chapter 4 4-51

Decidable ⇒ TM-recognizable and co-TM-recognizable

• Suppose language A is decidable.

• Then A is Turing-recognizable.

• Also, since A is decidable, ∃ TM M that

always halts

correctly accepts strings w ∈ A

correctly rejects strings w �∈ A

• Define TM M ′ same as M except swap accept and reject states.

M ′ rejects when M accepts,

M ′ accepts when M rejects.

• TM M ′ always halts since M always halts, so M ′ decides A.

Thus, A is also Turing-recognizable

i.e., A is co-Turing-recognizable.

CS 341: Chapter 4 4-52

TM-recognizable and co-TM-recognizable ⇒ Decidable

• Suppose A is both TM-recognizable and co-TM-recognizable.

• Then there exists

TM M recognizing A

TM M ′ recognizing A.

• For any string w ∈ Σ∗, either w ∈ A or w �∈ A (but not both),
so either M or M ′ accepts w (but not both).

• Construct another TM D from M and M ′ as follows:
D = “On input w ∈ Σ∗:

1. Alternate running one step on each of M and M ′
both on input w. Wait for M or M ′ to accept.

2. If M accepts, accept ;
if M ′ accepts, reject.”

• Note that D decides A, so A is decidable.

CS 341: Chapter 4 4-53

ATM is not Turing-recognizable
Remarks:

• ATM = { 〈M,w〉 | M is a TM that accepts string w }
is Turing-recognizable (by UTM) but not decidable (Thm 4.11).

• Theorem 4.22: Decidable ⇔ Turing-recog and co-Turing-recognizable.

• ATM = { 〈M,w〉 | M is a TM that does not accept string w }.

Corollary 4.23
ATM is not Turing-recognizable.

Proof.

• If ATM were Turing-recognizable, then ATM would be both
Turing-recognizable and co-Turing-recognizable.

• But then Theorem 4.22 would imply ATM is decidable,
which is a contradiction.

CS 341: Chapter 4 4-54

Some Other Non-Turing-Recognizable Languages

We’ll later show the following languages are also not Turing-recognizable:

• ETM = { 〈M〉 | M is a TM with L(M) = ∅ },
which is co-Turing-recognizable.

• EQTM = { 〈M,N〉 | M and N are TMs with L(M) = L(N) },
which is not even co-Turing-recognizable.

Turing-recognizable

Decidable

EQTM

ETM

ATM

co-Turing-recognizable

CS 341: Chapter 4 4-55

Hierarchy of Languages

Finite {110, 01 }

Regular
DFA, NFA, Reg Exp

(0 ∪ 1)∗

Context-free
CFG, PDA

{0n1n | n ≥ 0 }

Decidable
Decider (deterministic, nondet, k-tape, . . .)

{0n1n2n | n ≥ 0 }

Turing-recognizable
TM, k-tape TM, NTM, enumerator, . . .

ATM

All languages ATM

Examples

CS 341: Chapter 4 4-56

Summary of Chapter 4

• Decidable languages: ADFA, ANFA, AREX, EDFA, EQDFA, ACFG, ECFG,
CFL

• Universal TM (UTM): can simulate any given TM on given string

• ATM (acceptance problem for TM) is Turing-recognizable but
undecidable.

• Countable and uncountable sets

Diagonalization method used to prove certain sets are uncountable

Set of all TMs is countable

Set of all languages is uncountable

So some languages not Turing-recognizable, e.g., ATM.

• Language is co-Turing-recognizable if its complement is
Turing-recognizable.

• Decidable ⇐⇒ Turing-recognizable and co-Turing-recognizable.

