Chapter 4
Decidability

CS 341: Foundations of CS II

Marvin K. Nakayama
Computer Science Department
New Jersey Institute of Technology
Newark, NJ 07102

Contents

- Decidable Languages
- TM Acceptance Problem is Undecidable
- Countable and Uncountable Sets
- Some languages are not Turing-recognizable

Decidable Languages

- We now tackle the question:

What can and can't computers do?

- We consider the questions:

$$
\begin{array}{ll}
\text { Which languages are } & \text { 1. Turing-decidable } \\
\text { 2. Turing-recognizable } \\
\text { 3. neither? }
\end{array}
$$

- Assuming the Church-Turing thesis,
- these are fundamental properties of languages and algorithms.
- Why study decidability?
- Certain problems are unsolvable by computers.
- You should be able to recognize these.

Describing TM Programs

- Three Levels of Describing Algorithms:
- Formal (state diagrams, CFGs, etc.)
- Implementation (pseudo-code)
- High-level (coherent and clear English)
- Describing input/output format:
- TMs allow only strings over some alphabet as input.
- If our input X and Y are of another form (graph, TM, polynomial),
« then we use $\langle X, Y\rangle$ to denote some kind of encoding as a string over some alphabet.
- When defining TM, make sure to specify its input!
- If TM M decides language L, then M
- always gives correct answer (YES/NO, accept/reject)
- never loops forever on any input.

Acceptance Problem for DFAs

Decision problem: Does a given DFA B accept a given string w ?

- Instance is a particular pair $\langle B, w\rangle$ of a DFA B and a string w.
- Universe comprises every possible instance

$$
\Omega=\{\langle B, w\rangle \mid B \text { is a DFA and } w \text { is a string }\}
$$

- Language comprises all YES instances
$A_{\text {DFA }}=\{\langle B, w\rangle \mid B$ is a DFA that accepts string $w\} \subseteq \Omega$

DFA D_{2}

- $\left\langle D_{1}, a b b\right\rangle \in A_{\text {DFA }}$ and $\left\langle D_{2}, \varepsilon\right\rangle \in A_{\text {DFA }}$ are YES instances.
- $\left\langle D_{1}, \varepsilon\right\rangle \notin A_{\text {DFA }}$ and $\left\langle D_{2}, a a b\right\rangle \notin A_{\text {DFA }}$ are NO instances.

Acceptance Problem for DFAs is Decidable

$$
A_{\mathrm{DFA}}=\{\langle B, w\rangle \mid B \text { is a DFA that accepts string } w\} .
$$

Theorem 4.1

$A_{\text {DFA }}$ is a decidable language.

Remarks:

- Recall universe for Acceptance Problem for DFAs

$$
\Omega=\{\langle B, w\rangle \mid B \text { is a DFA and } w \text { is a string }\}
$$

- To prove $A_{\text {DFA }}$ is decidable, need to show \exists TM M that decides $A_{\text {DFA }}$.
- For TM M to decide $A_{\text {DFA }}$, TM must
- take any instance $\langle B, w\rangle \in \Omega$ as input
- halt and accept if $\langle B, w\rangle \in A_{\text {DFA }}$
- halt and reject if $\langle B, w\rangle \notin A_{\text {DFA }}$

Proof: TM M that Decides $A_{\text {DFA }}$

$M=$ "On input $\langle B, w\rangle \in \Omega$, where

- $B=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is a DFA
- $w=w_{1} w_{2} \cdots w_{n} \in \Sigma^{*}$ is input string to process on B.

0 . Check if $\langle B, w\rangle$ is 'proper' encoding. If not, reject.

1. Simulate B on w with the help of two pointers, q and i :

- $q \in Q$ points to the current state of DFA B.
- Initially, $q=q_{0}$, the start state of B.
- $i \in\{1,2, \ldots,|w|\}$ points to the current position in string w.
- While i increases from 1 to $|w|$,
- $q=\delta\left(q, w_{i}\right)$; i.e., transition function δ determines next state from current state q and input symbol w_{i}.

2. If B ends in state $q \in F$, then M accepts; otherwise, reject."

CS 341: Chapter 4

Acceptance Problem for NFAs is Decidable

Decision problem: Does a given NFA B accept a given string w ?

$$
\begin{aligned}
A_{\text {NFA }} & =\{\langle B, w\rangle \mid B \text { is NFA that accepts string } w\} \\
& \subseteq\{\langle B, w\rangle \mid B \text { is NFA, } w \text { is string }\} \equiv \Omega
\end{aligned}
$$

Theorem 4.2

$A_{\text {NFA }}$ is a decidable language.
Proof. TM: "On input $\langle B, w\rangle \in \Omega$

- $B=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is NFA
- $w \in \Sigma^{*}$ is input string for B.

0 . If input $\langle B, w\rangle$ is not proper encoding of NFA B and string w, reject.

1. Use algo in Thm. 1.39 to transform NFA B into equivalent DFA C.
2. Run TM decider M for $A_{\text {DFA }}$ (Theorem 4.1) on input $\langle C, w\rangle$.
3. If M accepts $\langle C, w\rangle$, accept; otherwise, reject."

Proof reduces $A_{\text {NFA }}$ to $A_{\text {DFA }}$.

Acceptance Problem for Regular Expressions is Decidable

Decision problem: Does a reg $\exp R$ generate a given string w ?
$A_{\text {REX }}=\{\langle R, w\rangle \mid R$ is regular expression that generates string $w\}$

$$
\subseteq\{\langle R, w\rangle \mid R \text { is regular expression and } w \text { is string }\} \equiv \Omega
$$

Example: For regular expressions $R_{1}=a^{*} b$ and $R_{2}=b a^{*} b^{*}$,

$$
\left\langle R_{1}, a a b\right\rangle \in A_{\mathrm{REX}}, \quad\left\langle R_{1}, b a\right\rangle \notin A_{\mathrm{REX}}, \quad\left\langle R_{2}, a a b\right\rangle \notin A_{\mathrm{REX}} .
$$

Theorem 4.3

$A_{\text {REX }}$ is a decidable language.
Proof. "On input $\langle R, w\rangle \in \Omega$:
0 . Check if $\langle R, w\rangle$ is proper encoding of regular expression and string. If not, reject.

1. Convert R into DFA B using algos in Lemma 1.55 and Thm 1.39.
2. Run TM decider for $A_{\text {DFA }}$ (Theorem 4.1) on input $\langle B, w\rangle$ and give same output."
Proof reduces $A_{\text {REX }}$ to $A_{\text {DFA }}$.

Emptiness Problem for DFAs

Decision problem: Does a DFA recognize the empty language?

$$
\begin{aligned}
E_{\mathrm{DFA}} & =\{\langle B\rangle \mid B \text { is a DFA and } L(B)=\emptyset\} \\
& \subseteq\{\langle B\rangle \mid B \text { is a DFA }\} \equiv \Omega
\end{aligned}
$$

Examples: DFA C
DFA D

Note that $\langle C\rangle \notin E_{\text {DFA }}$ and $\langle D\rangle \in E_{\text {DFA }}$.

Theorem 4.4

$E_{\text {DFA }}$ is a decidable language.

Proof Idea:

- Check if any accept state is reachable from start state.
- If so, then reject; otherwise, accept.

Proof that $E_{\text {DFA }}$ is Decidable

On input $\langle B\rangle \in \Omega$, where $B=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is a DFA:
0. If $\langle B\rangle$ is not a proper encoding of a DFA, reject.

1. Define S as set of states reachable from q_{0}. Initially, $S=\left\{q_{0}\right\}$.
2. Repeat $|Q|$ times:
(a) If S has an element from F, then reject.
(b) Otherwise, add to S the elements that can be reached from S using transition function δ, i.e.,

- If $\exists q_{i} \in S$ and $\ell \in \Sigma$ with $\delta\left(q_{i}, \ell\right)=q_{j}$, then add q_{j} to S.

3. If $S \cap F=\emptyset$, then accept;
otherwise, reject.

Remark: TM just tests whether any accepting state is reachable from start state (transitive closure).

DFA Equivalence Problem is Decidable

Decision problem: Are 2 given DFAs equivalent?

$$
\begin{aligned}
E Q_{\mathrm{DFA}} & =\{\langle A, B\rangle \mid A \text { and } B \text { are DFAs and } L(A)=L(B)\} \\
& \subseteq\{\langle A, B\rangle \mid A \text { and } B \text { are DFAs }\} \equiv \Omega .
\end{aligned}
$$

- For DFAs A and B with same input alphabet Σ, $\langle A, B\rangle \in E Q_{\text {DFA }}$ iff A and B agree on every string in Σ^{*}.

Example:

DFAs A_{1} and B_{1} don't recognize same language, so $\left\langle A_{1}, B_{1}\right\rangle \notin E Q_{\text {DFA }}$.

Theorem 4.5

$E Q_{\text {DFA }}$ is a decidable language.
$E Q_{\text {DFA }}=\{\langle A, B\rangle \mid A$ and B are DFAs and $L(A)=L(B)\}$

- Given DFAs A and B, construct new DFA C such that C accepts any string accepted by A or B but not both:

$$
L(C)=[L(A) \cap \overline{L(B)}] \cup[\overline{L(A)} \cap L(B)]
$$

- $L(C)$ is the symmetric difference of $L(A)$ and $L(B)$.

- Note that $L(A)=L(B)$ if and only if $L(C)=\emptyset$.
- Construct DFA C using algorithms for DFA complements (slide 1-15), intersections (slide 1-34), and unions (Thm 1.25).
- DFA C can be constructed with one big TM.

Proof that $E Q_{\text {DFA }}$ is Decidable

On input $\langle A, B\rangle \in \Omega$, where A and B are DFAs:
0 . Check if $\langle A, B\rangle$ is a proper encoding of 2 DFAs. If not, reject.

1. Construct DFA C such that

$$
L(C)=[L(A) \cap \overline{L(B)}] \cup[\overline{L(A)} \cap L(B)]
$$

using algorithms for DFA complements (slide 1-15), intersections (slide 1-34), and unions (Thm 1.25).
2. Run TM decider for $E_{\text {DFA }}$ (Theorem 4.4) on input $\langle C\rangle$.
3. If $\langle C\rangle \in E_{\text {DFA }}$, accept;

If $\langle C\rangle \notin E_{\text {DFA }}$, reject.

Acceptance, Emptiness and Equivalence Problems for CFGs

$A_{\text {CFG }}=\{\langle G, w\rangle \mid G$ is a CFG that generates string $w\}$,
$E_{\text {CFG }}=\{\langle G\rangle \mid G$ is a CFG with $L(G)=\emptyset\}$,
$E Q_{\mathrm{CFG}}=\{\langle G, H\rangle \mid G$ and H are CFGs with $L(G)=L(H)\}$.

Example:

- Consider CFGs
- G_{1} with rules $S \rightarrow a S b \mid \varepsilon$, so $L\left(G_{1}\right)=\left\{a^{k} b^{k} \mid k \geq 0\right\}$,
- G_{2} with rules $S \rightarrow a S b$, so $L\left(G_{2}\right)=\emptyset$.
- $\left\langle G_{1}, a a b b\right\rangle \in A_{\mathrm{CFG}},\left\langle G_{1}, a a b\right\rangle \notin A_{\mathrm{CFG}}$, and $\left\langle G_{2}, a a b b\right\rangle \notin A_{\mathrm{CFG}}$.
- $\left\langle G_{1}\right\rangle \notin E_{\mathrm{CFG}}$ and $\left\langle G_{2}\right\rangle \in E_{\mathrm{CFG}}$.
- $\left\langle G_{1}, G_{2}\right\rangle \notin E Q_{\mathrm{CFG}}$.

Acceptance Problem for CFGs is Decidable

- Decision problem: Does a CFG G generate a string w ?

$$
\begin{aligned}
A_{\text {CFG }} & =\{\langle G, w\rangle \mid G \text { is a CFG that generates string } w\} \\
& \subseteq\{\langle G, w\rangle \mid G \text { is a CFG and } w \text { a string }\} \equiv \Omega .
\end{aligned}
$$

- For any specific pair $\langle G, w\rangle \in \Omega$ of a CFG G and string w,
- $\langle G, w\rangle \in A_{\text {CFG }}$ if G generates w, i.e., $w \in L(G)$.
- $\langle G, w\rangle \notin A_{\text {CFG }}$ if G doesn't generate w, i.e., $w \notin L(G)$.

Theorem 4.7

$A_{\text {CFG }}$ is a decidable language.

Bad Idea for Proof:

- Design a TM M that takes input $\langle G, w\rangle$, and enumerates all derivations using CFG G to see if any generates w.
- Problem: M might recognize $A_{\text {CFG }}$ but does not decide it. Why?
- If $w \notin L(G)$ and $|L(G)|=\infty$, then TM M never halts.

Better Approach: Use Chomsky Normal Form

- Recall: A context-free grammar $G=(V, \Sigma, R, S)$ is in

Chomsky normal form if each rule is of the form

$$
A \rightarrow B C \quad \text { or } \quad A \rightarrow x \quad \text { or } \quad S \rightarrow \varepsilon
$$

- variable $A \in V$
- variables $B, C \in V-\{S\}$
- terminal $x \in \Sigma$.
- Every CFG can be converted into Chomsky normal form (Theorem 2.9).
- CFG G in Chomsky normal form is easier to analyze.
- Can show that for any string $w \in L(G)$ with $w \neq \varepsilon$, derivation $S \stackrel{*}{\Rightarrow} w$ takes exactly $2|w|-1$ steps.
- $\varepsilon \in L(G)$ iff G includes rule $S \rightarrow \varepsilon$.

Proof that $A_{\text {CFG }}$ is Decidable

On input $\langle G, w\rangle \in \Omega$, where G is a CFG and w is a string,
0 . Check if $\langle G, w\rangle$ is proper encoding of CFG and string; if not, reject.

1. Convert G into equivalent CFG G^{\prime} in Chomsky normal form.
2. If $w=\varepsilon$, check if $S \rightarrow \varepsilon$ is a rule of G^{\prime}.

If so, accept; otherwise, reject.
3. If $w \neq \varepsilon$, list all derivations with $2 n-1$ steps, where $n=|w|$.
4. If any generates w, accept; otherwise, reject.

Remarks:

- \# derivations with $2 n-1$ steps is finite, so TM is a decider.
- We consider a more efficient algorithm in Chapter 7.

Emptiness Problem for CFGs is Decidable

Decision problem: Is a CFG's language empty?

$$
\begin{aligned}
E_{\mathrm{CFG}} & =\{\langle G\rangle \mid G \text { is a CFG with } L(G)=\emptyset\} \\
& \subseteq\{\langle G\rangle \mid G \text { is a CFG }\} \equiv \Omega
\end{aligned}
$$

Theorem 4.8

$E_{\text {CFG }}$ is decidable.
Proof. On input $\langle G\rangle \in \Omega$, where G is a CFG,
0 . Check if $\langle G\rangle$ is a proper encoding of a CFG $G=(V, \Sigma, R, S)$; if not, reject.

1. Define set $T \subseteq V \cup \Sigma$ such that $u \in T$ iff $u \stackrel{*}{\Rightarrow} w$ for some $w \in \Sigma^{*}$. Initially, $T=\Sigma$, and iteratively add to T.
2. Repeat $|V|$ times:

- Check each rule $B \rightarrow X_{1} \cdots X_{k}$ in R.
- If $B \notin T$ and each $X_{i} \in T$, then add B to T.

3. If $S \in T$, then reject; otherwise, accept.

CFLs are Decidable

Theorem 4.9

Every CFL L is a decidable language.

Bad Idea for Proof:

- Convert PDA for L directly into a TM.
- Can do this by using TM tape to simulate PDA stack.
- Nondeterministic PDA yields nondeterministic TM (NTM).
- NTM can be converted into deterministic TM (DTM).
- Problem:
- Some branch of PDA might run forever.
- Some branch of NTM might run forever.
- Corresponding DTM recognizes L,
Δ but does not decide L since it may not halt on every input.

Proof that Every CFL L is Decidable

- Let L be a CFL with alphabet Σ, so $L \subseteq \Sigma^{*}$
- G^{\prime} be a CFG for language L
- S be a TM from Theorem 4.7 that decides

$$
A_{\mathrm{CFG}}=\{\langle G, w\rangle \mid G \text { is a CFG that generates string } w\}
$$

- Construct TM $M_{G^{\prime}}$ for language L having CFG G^{\prime} as follows:
$M_{G^{\prime}}=$ "On input $w \in \Sigma^{*}$:

1. Run TM decider S on input $\left\langle G^{\prime}, w\right\rangle$.
2. If S accepts, accept; otherwise, reject."

- How do TMs S and $M_{G^{\prime}}$ differ?
- TM S has input $\langle G, w\rangle$ for any CFG G and string w.
- TM $M_{G^{\prime}}$ has input w for fixed G^{\prime}.

Hierarchy of Languages (so far)

- Is one TM capable of simulating all other TMs?
- Given an encoding $\langle M, w\rangle$ of a TM M and input w,
- can we simulate M on w ?
- We can do this via a universal TM U :
$U=$ "On input $\langle M, w\rangle$, where M is a TM and w is a string:

1. Simulate M on input w.
2. If M ever enters its accept state, accept; if M ever enters its reject state, reject."

- Can think of U as an emulator.

Acceptance Problem for TMs is Turing-Recognizable

- Decision problem: Does a given TM M accept a given string w ?
- Instance: $\langle M, w\rangle$, where M is TM, w is a string.
- Universe: $\Omega=\{\langle M, w\rangle \mid M$ is TM and w is string $\}$.
- Language:
$A_{\text {тМ }}=\{\langle M, w\rangle \mid M$ is TM that accepts string $w\} \subseteq \Omega$.
- For a specific pair $\langle M, w\rangle \in \Omega$ of TM M and string w,
- $\langle M, w\rangle \in A_{\text {Тм }}$ if M accepts w
- $\langle M, w\rangle \notin A_{\text {Тм }}$ if M does not accept w.
- Universal TM U
- U recognizes $A_{\text {TM }}$, so $A_{\text {TM }}$ is Turing-recognizable.
- U does not decide $A_{\text {тм }}$.
© If M loops on w, then U loops on $\langle M, w\rangle$.
- But can we also decide $A_{\text {TM }}$?
- We will see later that $A_{\text {Tм }}$ is undecidable.

Unsolvable Problems

- Computers (and computation) are limited in a very fundamental way.
- Common, every-day problems are unsolvable (i.e., undecidable)
- Does a program sort an array of integers?
- Both program and specification are precise mathematical objects.
- One might think that it is then possible to develop an algorithm that can determine if a program matches its specification.
- However, this is impossible.
- To show this, we need to introduce some new ideas.

Mappings and Functions

- Consider fcn $f: A \rightarrow B$ mapping objects in one set A to another B.
- Definition: f is one-to-one (aka injective) if every $x \in A$ has a unique image $f(x)$:
- If $f(x)=f(y)$, then $x=y$.
- Equivalently, if $x \neq y$, then $f(x) \neq f(y)$.

- Definition: f is onto (aka surjective) if every $z \in B$ is "hit" by f :
- If $z \in B$, then there is an $x \in A$ with $f(x)=z$.

- Definition: f is a correspondence (aka bijection)
if it both one-to-one and onto.
- Inverse fcn $f^{-1}: B \rightarrow A$ then exists.
- A way to pair elements from A

CS 341: Chapter 4
Example: $f: \mathcal{R} \rightarrow \mathcal{R}$ with $f(x)=e^{x}$ is

- one-to-one since $x \neq y$ implies $e^{x} \neq e^{y}$.
- not onto since $e^{x}>0$ for all $x \in \mathcal{R}$.

Example: $f: \mathcal{R} \rightarrow \mathcal{R}$ with $f(x)=x^{2}$ is

- not one-to-one since $3^{2}=(-3)^{2}=9$.
- not onto since $x^{2} \geq 0$ for all $x \in \mathcal{R}$.

Example: $f: \mathcal{R} \rightarrow \mathcal{R}$ with $f(x)=x^{3}$ is

- one-to-one since $x \neq y$ implies $x^{3} \neq y^{3}$.
- onto since for any $z \in \mathcal{R}$, letting $x=z^{1 / 3}$ yields $f(x)=\left(z^{1 / 3}\right)^{3}=z$.
- Thus, f is a correspondence between $A=\mathcal{R}$ and $B=\mathcal{R}$.

Cardinality

- Set T has $|T|=k$ iff \exists correspondence between $\{1,2, \ldots, k\}$ and T, in which case $\{1,2, \ldots, k\}$ and T are of the same size.
- Ex: $|T|=3$.

- If \exists one-to-one mapping from set S to set T, then T is at least as big as S, i.e., $|T| \geq|S|$.
- Ex: $|T| \geq 3$.

- Defn: Two sets S and T, possibly infinite, are of the same size if there is a correspondence between them.
- If \exists one-to-one fcn from S to T but \nexists correspondence from S to T, then T is strictly bigger than S.

Countable Sets

- Let $\mathcal{N}=\{1,2,3, \ldots\}$ be the set of natural numbers.
- Set T is infinite if there exists a one-to-one function $f: \mathcal{N} \rightarrow T$.
- "The set T is at least as big as the set \mathcal{N}."
- Set T is countable if it is finite or has the same size as \mathcal{N}.
- Can enumerate all elements in T in (possibly infinite) list.
- each element is eventually listed.

Fact: $\mathcal{N}=\{1,2,3, \ldots\}$ and $\mathcal{E}=\{2,4,6, \ldots\}$ have same size.
Proof. Define correspondence between \mathcal{N} and \mathcal{E} by function $f(i)=2 i$.
Remark: Set T and a proper subset of T can have the same size!

Set of Rational Numbers is Countable

Fact: The set of rational numbers

$$
\mathcal{Q}=\left\{\left.\frac{m}{n} \right\rvert\, m, n \in \mathcal{N}\right\}
$$

is countable.

Proof.

- Write out elements in \mathcal{Q} as an infinite 2-dimensional array:

$1 / 1$	$1 / 2$	$1 / 3$	$1 / 4$	$1 / 5$	\ldots
$2 / 1$	$2 / 2$	$2 / 3$	$2 / 4$	$2 / 5$	\ldots
$3 / 1$	$3 / 2$	$3 / 3$	$3 / 4$	$3 / 5$	\ldots
$4 / 1$	$4 / 2$	$4 / 3$	$4 / 4$	$4 / 5$	\ldots

- If we try to
- first list all elements in first row,
- then list all elements in second row,
- and so on,
then we will never get to the second row because the first row is infinitely long.
- Instead,
- enumerate elements along Southwest to Northeast diagonals,
- skip duplicates.

Uncountable Sets

Definition: A set is uncountable if it is not countable.

Remark: Uncountable sets are (much) larger than countable sets.
Definition: A real number is a number with a (possibly infinite) decimal representation.

- $\pi=3.1415926 \ldots$
- $\sqrt{2}=1.4142136 \ldots$
- $2=2.0000 \ldots$

Theorem 4.17

The set \mathcal{R} of all real numbers is uncountable.

Examples: \exists correspondence between $\mathcal{N}=\{1,2,3, \ldots\}$ and each of

- $\mathcal{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
- $\mathcal{N}^{2}=\{(i, j) \mid i, j \in \mathcal{N}\}$
- $\{a\}^{*}$
- Σ^{*}, for any alphabet Σ; e.g., $\Sigma=\{a, b\}$.
- Simply enumerate strings in Σ^{*} in string order.

\mathcal{N}	1	2	3	4	5	6	7	\ldots
\mathcal{Z}	0	+1	-1	+2	-2	+3	-3	\ldots
\mathcal{N}^{2}	$(1,1)$	$(2,1)$	$(1,2)$	$(3,1)$	$(2,2)$	$(1,3)$	$(4,1)$	\ldots
$\{a\}^{*}$	ε	a	$a a$	$a a a$	$a a a a$	$a a a a a$	$a a a a a a$	\ldots
$\{a, b\}^{*}$	ε	a	b	$a a$	$a b$	$b a$	$b b$	\ldots

So is every infinite set countable?

Set \mathcal{R} of All Real Numbers is Uncountable

Proof.

- Suppose that there is a correspondence between \mathcal{N} and \mathcal{R} :

n	$f(n)$
1	$3.14159 \ldots$
2	$0.55555 \ldots$
3	$40.00000 \ldots$
4	$15.20361 \ldots$
$:$	$:$

- Since correspondence exists, enumerated list is supposed to contain every real number.
- Each number is written as an infinite decimal expansion.
- We now construct a number x between 0 and 1 that is not in the list using Cantor's diagonalization method

Diagonalization Method

- Let $x=0 . d_{1} d_{2} d_{3} \ldots$, where
- d_{n} is nth digit after decimal point in decimal expansion of x
- d_{n} differs from the nth digit in the nth number in the list.

n	$f(n)$
1	$3 . \underline{1} 4159 \ldots$
2	$0.5 \underline{5} 555 \ldots$
3	$40.00 \underline{0} 00 \ldots$
4	$15.203 \underline{6} 1 \ldots$
$:$	$:$

- For example, can take $x=0.2617 \ldots$
- $\forall n, x$ differs from nth number $f(n)$ in the list in at least position n,
- so x is not in the list,
- contradiction since list is supposed to contain all of \mathcal{R}, including x.
- Thus, \nexists correspondence $f: \mathcal{N} \rightarrow \mathcal{R}$, so \mathcal{R} is uncountable.

Set of All TMs is Countable

Fact: If $S \subseteq T$ and T is countable, then S is countable.
Proof. In enumeration of T, skip elements in $T-S$ to enumerate S.
Fact: For any (finite) alphabet Ψ, the set ψ^{*} is countable.
Proof. Enumerate strings in string order.
Fact: The set of all TMs is countable.
Proof.

- Every TM has a finite description, e.g., as 7-tuple or source code.
- Can describe TM M using encoding $\langle M\rangle$
- Encoding is a finite string of symbols over some alphabet Ψ.
- So just enumerate all strings over Ψ
- omit any that are not legal TM encodings.
- Since Ψ^{*} is countable,
- there are only a countable number of different TMs.

Set of All Languages is Uncountable

Fact: The set \mathcal{B} of all infinite binary sequences is uncountable.
Proof. Use diagonalization argument as in proof that \mathcal{R} is uncountable.
Fact: The set \mathcal{L} of all languages over alphabet Σ is uncountable.
Proof.

- Idea: show \exists correspondence χ between \mathcal{L} and \mathcal{B},
so \mathcal{L} has same size as uncountable set \mathcal{B}.
- Each language $A \in \mathcal{L}$ has $A \subseteq \Sigma^{*}$, so $\mathcal{L}=\mathcal{P}\left(\Sigma^{*}\right)$.
- Language's characteristic sequence defined by correspondence

$$
\chi: \mathcal{L} \rightarrow \mathcal{B}
$$

- Write out elements in Σ^{*} in string order: $s_{1}, s_{2}, s_{3}, \ldots$.
- Each language $A \in \mathcal{L}$ has a unique sequence $\chi(A) \in \mathcal{B}$.
- The nth bit of $\chi(A)$ is 1 if and only if $s_{n} \in A$

CS 341: Chapter 4

- Recall: Each language $A \in \mathcal{L}$ has a unique sequence $\chi(A) \in \mathcal{B}$
- nth bit of $\chi(A)$ is 1 if and only if $s_{n} \in A$.
- $\chi(A)$ specifies which strings from Σ^{*} are or aren't in A.
- Example: For $\Sigma=\{0,1\}$,
$\left.\begin{array}{c}\Sigma^{*}\end{array}=\begin{array}{lccccccccc}\{ & \varepsilon, & 0, & 1, & 00, & 01, & 10, & 11, & 000, \ldots\end{array}\right\}$
- The mapping $\chi: \mathcal{L} \rightarrow \mathcal{B}$ is a correspondence because it is
- one-to-one: different languages A_{1} and A_{2} differ for at least one string s_{i}, so the i th bits of $\chi\left(A_{1}\right)$ and $\chi\left(A_{2}\right)$ differ;
- onto: for each sequence $b \in \mathcal{B}, \exists$ language A for which $\chi(A)=b$.
- Thus, \mathcal{L} is same size as uncountable set \mathcal{B},
- so \mathcal{L} is also uncountable.

Some Languages are not Turing-Recognizable

- Each TM recognizes some language.
- Set of all TMs is countable.
- Set of all languages is uncountable.
- Since uncountable sets are larger than countable ones,
- \exists more languages than there are TMs that can recognize them.

Corollary 4.18

Some languages are not Turing-recognizable.
-What kind of languages are not Turing-recognizable?

- We'll see some later ...

Revisit Acceptance Problem for TMs

- Decision problem: Does a TM M accept string w ?

$$
\begin{aligned}
A_{\text {TM }} & =\{\langle M, w\rangle \mid M \text { is a TM that accepts string } w\} \\
& \subseteq\{\langle M, w\rangle \mid M \text { is a TM and } w \text { is a string }\} \equiv \Omega
\end{aligned}
$$

- Universe Ω of instances
- contains all possible pairs $\langle M, w\rangle$ of TM M and string w
- not just one specific instance.
- For a specific TM M and string w,
- if M accepts w, then $\langle M, w\rangle \in A_{\text {TM }}$ is a YES instance
- if M doesn't accept w (rejects or loops),
then $\langle M, w\rangle \notin A_{\text {тм }}$ is a NO instance.

Theorem 4.11

$A_{\text {Тм }}$ is undecidable.

Outline of Proof by Contradiction

- Suppose $A_{\text {TM }}$ is decided by some TM H, with input $\langle M, w\rangle \in \Omega$.

$$
\langle M, w\rangle \longrightarrow \quad \begin{aligned}
& \text { accept, if }\langle M, w\rangle \in A_{\text {TM }} \\
& \text { reject, if }\langle M, w\rangle \notin A_{\text {TM }}
\end{aligned}
$$

- Use H as subroutine to define another TM D, with input $\langle M\rangle$.

- What happens when we run D with input $\langle D\rangle$?
- D accepts $\langle D\rangle$ iff D doesn't accept $\langle D\rangle$, which is impossible.

Proof by Contradiction that $A_{\text {TM }}$ is Undecidable

- Suppose there exists a TM H that decides $A_{\text {TM }}$.
- TM H takes input $\langle M, w\rangle \in \Omega$, where M is a TM and w a string.
- H accepts $\langle M, w\rangle \in A_{\text {Тм }}$; i.e., if M accepts w.
- H rejects $\langle M, w\rangle \notin A_{\text {тм }}$; i.e., if M does not accept w.
- Consider language $L=\{\langle M\rangle \mid M$ is TM that doesn't accept $\langle M\rangle\}$.
- Using TM H as subroutine, we can construct TM D that decides L :
$D=$ "On input $\langle M\rangle$, where M is a TM:

1. Run H on input $\langle M,\langle M\rangle\rangle$.
2. If H accepts, reject. If H rejects, accept."

- What happens when we run D with input $\langle D\rangle$?
- Stage 1 of D runs H on input $\langle D,\langle D\rangle\rangle$.
- D accepts $\langle D\rangle$ iff D doesn't accept $\langle D\rangle$, which is impossible.
- So TM H must not exist, i.e., $A_{\text {Tм }}$ is undecidable.

Another View of Proof

Remark: The proof implicitly used diagonalization...

- Since the set of all TMs is countable, we can enumerate them:

$$
M_{1}, M_{2}, M_{3}, M_{4}, \ldots
$$

- Construct table of acceptance behavior of TM M_{i} on input $\left\langle M_{j}\right\rangle$:

	$\left\langle M_{1}\right\rangle$	$\left\langle M_{2}\right\rangle$	$\left\langle M_{3}\right\rangle$	$\left\langle M_{4}\right\rangle$	\cdots
M_{1}	accept		accept		\cdots
M_{2}	accept	accept	accept	accept	\cdots
M_{3}					\cdots
M_{4}	accept	accept			\cdots
\vdots	\vdots	\vdots	\vdots	\vdots	\cdots

- Blank entries are reject or loop.

Another View of Proof

- Diagonal entries swapped for output of D on $\left\langle M_{i}\right\rangle$.
- D is a TM, so it must appear in the enumeration $M_{1}, M_{2}, M_{3}, \ldots$
- Contradiction occurs when evaluating D on $\langle D\rangle$:

	$\left\langle M_{1}\right\rangle$	$\left\langle M_{2}\right\rangle$	$\left\langle M_{3}\right\rangle$	$\left\langle M_{4}\right\rangle$	\cdots	$\langle D\rangle$	
M_{1}	accept	reject	accept	reject	\cdots	accept	\cdots
M_{2}	accept	accept	accept	accept	\cdots	accept	\cdots
M_{3}	reject	reject	$\frac{\text { reject }}{}$	reject	\cdots	reject	\cdots
M_{4}	accept	accept	reject	$\underline{\text { reject }}$	\cdots	accept	\cdots
\vdots	\vdots	\vdots	\vdots	\vdots	\cdots		
D	reject	reject	accept	accept	\cdots	\cdots	\cdots
$:$	\vdots	\vdots	\vdots	\vdots	\cdots		\cdots

Another View of Proof

- Another table
- entry (i, j) is value of "acceptance function" H on input $\left\langle M_{i},\left\langle M_{j}\right\rangle\right\rangle$:

	$\left\langle M_{1}\right\rangle$	$\left\langle M_{2}\right\rangle$	$\left\langle M_{3}\right\rangle$	$\left\langle M_{4}\right\rangle$	\cdots
M_{1}	accept	reject	accept	reject	\cdots
M_{2}	accept	accept	accept	accept	\cdots
M_{3}	reject	reject	reject	reject	\cdots
M_{4}	accept	accept	reject	reject	\cdots
$:$	\vdots	\vdots	\vdots	\vdots	\cdots

Another View of the Problem

- "Self-referential paradox"
- occurs when we force the TM D to disagree with itself.
- D knows what it is going to do on input $\langle D\rangle$ by H,
- but then D does the opposite instead.
- You cannot know for sure what you will do in the future.
- If you could, then you could change your actions and create a paradox.
- The diagonalization method implements the self-reference paradox in a mathematical way.
- In logic this approach often used to prove that certain things are impossible.
- Kurt Gödel gave a mathematical equivalent of the statement
"This sentence is not true" or "I am lying."

Co-Turing-Recognizable Languages

$$
A_{\text {TM }}=\{\langle M, w\rangle \mid M \text { is a TM that accepts string } w\}
$$

- $A_{\text {TM }}$ is not Turing-decidable, but is Turing-recognizable.
- Use universal TM U to simulate TM M on string w.
Δ If M accepts w, then U accepts $\langle M, w\rangle \in A_{\text {Tм }}$.
Δ If M rejects w, then U rejects $\langle M, w\rangle \notin A_{\text {TM }}$.
Δ If M loops on w, then U loops on $\langle M, w\rangle \notin A_{\text {тм }}$.
- What about a language that is not Turing-recognizable?
- Recall that complement of language A over alphabet Σ is

$$
\bar{A}=\Sigma^{*}-A=\Omega-A
$$

Definition: Language A is co-Turing-recognizable if its complement \bar{A} is Turing-recognizable.

Decidable \Rightarrow TM-recognizable and co-TM-recognizable

- Suppose language A is decidable.
- Then A is Turing-recognizable.
- Also, since A is decidable, $\exists \mathrm{TM} M$ that
- always halts
- correctly accepts strings $w \in A$
- correctly rejects strings $w \notin A$
- Define TM M^{\prime} same as M except swap accept and reject states.
- M^{\prime} rejects when M accepts,
- M^{\prime} accepts when M rejects.
- TM M^{\prime} always halts since M always halts, so M^{\prime} decides \bar{A}.
- Thus, \bar{A} is also Turing-recognizable
- i.e., A is co-Turing-recognizable.

Decidable \Longleftrightarrow Turing- and co-Turing-recognizable

Theorem 4.22

A language is decidable if and only if it is both

- Turing-recognizable and
- co-Turing-recognizable.

TM-recognizable and co-TM-recognizable \Rightarrow Decidable

- Suppose A is both TM-recognizable and co-TM-recognizable.
- Then there exists
- TM M recognizing A
- TM M^{\prime} recognizing \bar{A}.
- For any string $w \in \Sigma^{*}$, either $w \in A$ or $w \notin A$ (but not both), so either M or M^{\prime} accepts w (but not both).
- Construct another TM D from M and M^{\prime} as follows:
$D=$ "On input $w \in \Sigma^{*}$:

1. Alternate running one step on each of M and M^{\prime} both on input w. Wait for M or M^{\prime} to accept.
2. If M accepts, accept; if M^{\prime} accepts, reject."

- Note that D decides A, so A is decidable.

Remarks:

- $A_{\text {TM }}=\{\langle M, w\rangle \mid M$ is a TM that accepts string $w\}$ is Turing-recognizable (by UTM) but not decidable (Thm 4.11).
- Theorem 4.22: Decidable \Leftrightarrow Turing-recog and co-Turing-recognizable.
- $\overline{A_{\text {TM }}}=\{\langle M, w\rangle \mid M$ is a TM that does not accept string $w\}$.

Corollary 4.23

$\overline{A_{\text {TM }}}$ is not Turing-recognizable.

Proof.

- If $\overline{A_{\text {TM }}}$ were Turing-recognizable, then $A_{\text {TM }}$ would be both Turing-recognizable and co-Turing-recognizable.
- But then Theorem 4.22 would imply $A_{\text {TM }}$ is decidable, which is a contradiction.

Some Other Non-Turing-Recognizable Languages

We'll later show the following languages are also not Turing-recognizable:

- $E_{\mathrm{TM}}=\{\langle M\rangle \mid M$ is a TM with $L(M)=\emptyset\}$, which is co-Turing-recognizable.
- $E Q_{\text {TM }}=\{\langle M, N\rangle \mid M$ and N are TMs with $L(M)=L(N)\}$, which is not even co-Turing-recognizable.

Hierarchy of Languages

Examples
$\overline{A_{\text {TM }}}$
$A_{\text {TM }}$
$\left\{0^{n} 1^{n} 2^{n} \mid n \geq 0\right\}$
$\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
$(0 \cup 1)^{*}$
$\{110,01\}$

