| CS 341: Foundations of CS II<br>Marvin K. Nakayama<br>Computer Science Department<br>New Jersey Institute of Technology<br>Newark, NJ 07102                                                                                                                                                                                       | 42<br>Chapter 4<br>Decidability<br>Contents<br>Decidable Languages<br>TM Acceptance Problem is Undecidable<br>Countable and Uncountable Sets<br>Some languages are not Turing-recognizable<br>42                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CS 341: Chapter 4 4-3 Decidable Languages                                                                                                                                                                                                                                                                                         | CS 341: Chapter 4 4-4<br>Describing TM Programs                                                                                                                                                                                                                                                                                                                                                                                             |
| <ul> <li>We now tackle the question:<br/>What can and can't computers do?</li> <li>We consider the questions:<br/>Which languages are 1. Turing-decidable<br/>2. Turing-recognizable<br/>3. neither?</li> <li>Assuming the Church-Turing thesis,</li> <li>these are fundamental properties of languages and algorithms</li> </ul> | <ul> <li>Three Levels of Describing Algorithms:</li> <li>Formal (state diagrams, CFGs, etc.)</li> <li>Implementation (pseudo-code)</li> <li>High-level (coherent and clear English)</li> <li>Describing input/output format:</li> <li>TMs allow only strings over some alphabet as input.</li> <li>If our input X and Y are of another form (graph, TM, polynomial),</li> <li>then we use ⟨X, Y⟩ to denote some kind of encoding</li> </ul> |
| <ul> <li>Why study decidability?</li> <li>Certain problems are unsolvable by computers.</li> <li>You should be able to recognize these.</li> </ul>                                                                                                                                                                                | <ul> <li>When defining TM, make sure to specify its input!</li> <li>If TM M decides language L, then M</li> <li>always gives correct answer (YES/NO, accept/reject)</li> <li>never loops forever on any input.</li> </ul>                                                                                                                                                                                                                   |

#### 4-5

4-7

# Acceptance Problem for DFAs is Decidable

 $A_{\mathsf{DFA}} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts string } w \}.$ 

# **Theorem 4.1** $A_{\text{DFA}}$ is a decidable language.

#### **Remarks:**

CS 341: Chapter 4

• Recall universe for Acceptance Problem for DFAs

 $\Omega = \{ \langle B, w \rangle \mid B \text{ is a DFA and } w \text{ is a string} \}.$ 

- To prove  $A_{\mathsf{DFA}}$  is decidable, need to show  $\exists \mathsf{TM} \ M$  that decides  $A_{\mathsf{DFA}}$ .
- $\bullet$  For TM M to decide  $A_{\rm DFA},$  TM must
  - ${\scriptstyle \blacksquare}$  take any instance  $\langle B,w\rangle\in\Omega$  as input
  - ${\scriptstyle \blacksquare}$  halt and  ${\it accept}$  if  $\langle B,w\rangle\in A_{\rm DFA}$
  - ${\scriptstyle \blacksquare}$  halt and  ${\it reject}$  if  $\langle B,w\rangle \not\in A_{\rm DFA}$
- CS 341: Chapter 4

#### 4-8

# Acceptance Problem for NFAs is Decidable

**Decision problem:** Does a given NFA B accept a given string w?

 $A_{\mathsf{NFA}} = \{ \langle B, w \rangle \mid B \text{ is NFA that accepts string } w \} \\ \subseteq \{ \langle B, w \rangle \mid B \text{ is NFA, } w \text{ is string } \} \equiv \Omega$ 

**Theorem 4.2**  $A_{\text{NFA}}$  is a decidable language.

**Proof.** TM: "On input  $\langle B, w \rangle \in \Omega$ 

- $B = (Q, \Sigma, \delta, q_0, F)$  is NFA
- $w \in \Sigma^*$  is input string for B.

0. If input  $\langle B,w\rangle$  is not proper encoding of NFA B and string w , reject.

- 1. Use algo in Thm. 1.39 to transform NFA B into equivalent DFA C.
- 2. Run TM decider M for  $A_{\text{DFA}}$  (Theorem 4.1) on input  $\langle C, w \rangle$ .

3. If M accepts  $\langle C,w\rangle,\ accept;$  otherwise, reject."

Proof **reduces**  $A_{\text{NFA}}$  to  $A_{\text{DFA}}$ .

**Decision problem:** Does a given DFA B accept a given string w?

- Instance is a particular pair  $\langle B,w\rangle$  of a DFA B and a string w.
- Universe comprises every possible instance

 $\Omega = \{ \langle B, w \rangle \mid B \text{ is a DFA and } w \text{ is a string} \}$ 

• Language comprises all YES instances

 $A_{\mathsf{DFA}} = \{ \langle B, w \rangle \mid B \text{ is a DFA that } \mathbf{accepts} \text{ string } w \} \subseteq \Omega$ 



•  $\langle D_1, abb \rangle \in A_{\text{DFA}}$  and  $\langle D_2, \varepsilon \rangle \in A_{\text{DFA}}$  are YES instances. •  $\langle D_1, \varepsilon \rangle \notin A_{\text{DFA}}$  and  $\langle D_2, aab \rangle \notin A_{\text{DFA}}$  are NO instances.

CS 341: Chapter 4

# Proof: TM M that Decides $A_{\rm DFA}$

M= "On input  $\langle B,w\rangle\in\Omega,$  where

- $B = (Q, \Sigma, \delta, q_0, F)$  is a DFA
- $w = w_1 w_2 \cdots w_n \in \Sigma^*$  is input string to process on B.
- 0. Check if  $\langle B,w\rangle$  is 'proper' encoding. If not, reject.
- 1. Simulate  $B \mbox{ on } w$  with the help of two pointers, q and i:
  - $q \in Q$  points to the current state of DFA B.
  - Initially,  $q = q_0$ , the start state of B.
  - $i \in \{1, 2, \dots, |w|\}$  points to the current position in string w.
  - $\bullet$  While i increases from 1 to |w|,
  - $q = \delta(q, w_i)$ ; i.e., transition function  $\delta$  determines next state from current state q and input symbol  $w_i$ .
- 2. If B ends in state  $q \in F$ , then M accepts; otherwise, reject."

| <i>CS 341: Chapter 4</i> 4-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <i>CS 341: Chapter 4</i> 4-10                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acceptance Problem for Regular Expressions is Decidable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Emptiness Problem for DFAs                                                                                                                                                                                                                                                                                                                                                                                       |
| <b>Decision problem:</b> Does a reg exp $R$ generate a given string $w$ ?<br>$A_{\text{REX}} = \{ \langle R, w \rangle \mid R \text{ is regular expression that generates string } w \}$<br>$\subseteq \{ \langle R, w \rangle \mid R \text{ is regular expression and } w \text{ is string} \} \equiv \Omega.$                                                                                                                                                                                                                                                                                                                                                                     | <b>Decision problem:</b> Does a DFA recognize the empty language?<br>$E_{DFA} = \{ \langle B \rangle   B \text{ is a DFA and } L(B) = \emptyset \}$<br>$\subseteq \{ \langle B \rangle   B \text{ is a DFA} \} \equiv \Omega.$                                                                                                                                                                                   |
| <ul> <li>Example: For regular expressions R<sub>1</sub> = a*b and R<sub>2</sub> = ba*b*,<br/>⟨R<sub>1</sub>, aab⟩ ∈ A<sub>REX</sub>, ⟨R<sub>1</sub>, ba⟩ ∉ A<sub>REX</sub>, ⟨R<sub>2</sub>, aab⟩ ∉ A<sub>REX</sub>.</li> <li>Theorem 4.3<br/>A<sub>REX</sub> is a decidable language.</li> <li>Proof. "On input ⟨R, w⟩ ∈ Ω:</li> <li>0. Check if ⟨R, w⟩ is proper encoding of regular expression and string.<br/>If not, reject.</li> <li>1. Convert R into DFA B using algos in Lemma 1.55 and Thm 1.39.</li> <li>2. Run TM decider for A<sub>DFA</sub> (Theorem 4.1) on input ⟨B, w⟩ and give same output."</li> <li>Proof reduces A<sub>REX</sub> to A<sub>DFA</sub>.</li> </ul> | <b>Examples:</b> DFA $C$ DFA $D$<br>$ \begin{array}{c}  \end{array} \\  \end{array} $                                                                                                                                                                                                                            |
| <i>CS 341: Chapter 4</i> 4-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <i>CS 341: Chapter 4</i> 4-12                                                                                                                                                                                                                                                                                                                                                                                    |
| Proof that $E_{DFA}$ is Decidable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DFA Equivalence Problem is Decidable                                                                                                                                                                                                                                                                                                                                                                             |
| On input $\langle B \rangle \in \Omega$ , where $B = (Q, \Sigma, \delta, q_0, F)$ is a DFA:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Decision problem: Are 2 given DFAs equivalent?                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>0. If ⟨B⟩ is not a proper encoding of a DFA, <i>reject</i>.</li> <li>1. Define S as set of states reachable from q<sub>0</sub>. Initially, S = {q<sub>0</sub>}.</li> <li>2. Repeat  Q  times:</li> <li>(a) If S has an element from F, then <i>reject</i>.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{split} EQ_{DFA} &= \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \} \\ &\subseteq \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs} \} \equiv \Omega. \end{split}$<br>• For DFAs A and B with same input alphabet $\Sigma$ ,<br>$\langle A, B \rangle \in EQ_{DFA} \text{ iff } A \text{ and } B \text{ agree on every string in } \Sigma^*. \end{split}$ |
| <ul> <li>(b) Otherwise, add to S the elements that can be reached from S using transition function δ, i.e.,</li> <li>If ∃ q<sub>i</sub> ∈ S and ℓ ∈ Σ with δ(q<sub>i</sub>, ℓ) = q<sub>j</sub>, then add q<sub>j</sub> to S.</li> <li>3. If S ∩ F = Ø, then accept; otherwise, reject.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                   | Example:<br>DFA $A_1$ DFA $B_1$<br>$\xrightarrow{q_0} a, b$ $q_1$ $a, b$ $q_2$ $\xrightarrow{q_0} a, b$ $q_1$ $a, b$ $q_1$ $a, b$ $q_1$                                                                                                                                                                                                                                                                          |
| <b>Remark:</b> TM just tests whether any accepting state is reachable from start state ( <b>transitive closure</b> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DFAs $A_1$ and $B_1$ don't recognize same language, so $\langle A_1, B_1 \rangle \notin EQ_{\text{DFA}}$ .<br><b>Theorem 4.5</b>                                                                                                                                                                                                                                                                                 |

Theorem 4.5  $EQ_{\rm DFA}$  is a decidable language. CS 341: Chapter 4

$$EQ_{\mathsf{DFA}} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$$

• Given DFAs A and B, construct new DFA C such that C accepts any string accepted by A or B but not both:

 $L(C) = \left[ L(A) \cap \overline{L(B)} \right] \cup \left[ \overline{L(A)} \cap L(B) \right]$ 

• L(C) is the symmetric difference of L(A) and L(B).



- Note that L(A) = L(B) if and only if  $L(C) = \emptyset$ .
- Construct DFA *C* using algorithms for DFA complements (slide 1-15), intersections (slide 1-34), and unions (Thm 1.25).

 $\bullet$  DFA C can be constructed with one big TM.

CS 341: Chapter 4

4-15

# Acceptance, Emptiness and Equivalence Problems for CFGs

$$\begin{split} A_{\mathsf{CFG}} &= \{ \langle G, w \rangle \mid G \text{ is a CFG that generates string } w \}, \\ E_{\mathsf{CFG}} &= \{ \langle G \rangle \mid G \text{ is a CFG with } L(G) = \emptyset \}, \\ EQ_{\mathsf{CFG}} &= \{ \langle G, H \rangle \mid G \text{ and } H \text{ are CFGs with } L(G) = L(H) \}. \end{split}$$

#### Example:

#### • Consider CFGs

- $G_1$  with rules  $S \rightarrow aSb \mid \varepsilon$ , so  $L(G_1) = \{ a^k b^k \mid k \ge 0 \}$ ,
- $G_2$  with rules  $S \rightarrow aSb$ , so  $L(G_2) = \emptyset$ .
- $\bullet\;\langle G_1, aabb\rangle \in A_{\mathsf{CFG}},\;\; \langle G_1, aab\rangle \not\in A_{\mathsf{CFG}},\;\; \mathsf{and}\; \langle G_2, aabb\rangle \not\in A_{\mathsf{CFG}},\;.$
- $\langle G_1 \rangle \not\in E_{\mathsf{CFG}}$  and  $\langle G_2 \rangle \in E_{\mathsf{CFG}}$ .
- $\langle G_1, G_2 \rangle \not\in EQ_{\mathsf{CFG}}.$

CS 341: Chapter 4

4-13

#### **Proof that** $EQ_{DFA}$ is Decidable

On input  $\langle A, B \rangle \in \Omega$ , where A and B are DFAs: 0. Check if  $\langle A, B \rangle$  is a proper encoding of 2 DFAs. If not, reject. 1. Construct DFA C such that  $L(C) = \left[ L(A) \cap \overline{L(B)} \right] \cup \left[ \overline{L(A)} \cap L(B) \right]$ using algorithms for DFA complements (slide 1-15), intersections (slide 1-34), and unions (Thm 1.25). 2. Run TM decider for  $E_{\text{DFA}}$  (Theorem 4.4) on input  $\langle C \rangle$ . 3. If  $\langle C \rangle \in E_{\text{DFA}}$ , accept; If  $\langle C \rangle \not\in E_{\mathsf{DFA}}$ , reject. CS 341: Chapter 4 4-16 Acceptance Problem for CFGs is Decidable

• **Decision problem:** Does a CFG G generate a string w?

$$\begin{split} A_{\mathsf{CFG}} &= \{ \langle G, w \rangle \mid G \text{ is a CFG that generates string } w \} \\ &\subseteq \{ \langle G, w \rangle \mid G \text{ is a CFG and } w \text{ a string } \} \equiv \Omega. \end{split}$$

- $\bullet$  For any specific pair  $\langle G,w\rangle\in\Omega$  of a CFG G and string w,
  - $\langle G, w \rangle \in A_{\mathsf{CFG}}$  if G generates w, i.e.,  $w \in L(G)$ .
  - $\langle G, w \rangle \notin A_{CFG}$  if G doesn't generate w, i.e.,  $w \notin L(G)$ .

#### Theorem 4.7

 $A_{\rm CFG}$  is a decidable language.

#### Bad Idea for Proof:

- Design a TM M that takes input  $\langle G,w\rangle$ , and enumerates all derivations using CFG G to see if any generates w.
- Problem: M might recognize  $A_{CFG}$  but does not decide it. Why?
  - If  $w \notin L(G)$  and  $|L(G)| = \infty$ , then TM M never halts.

| <i>CS 341: Chapter 4</i> 4-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <i>CS 341: Chapter 4</i> 4-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Better Approach: Use Chomsky Normal Form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>Proof that</b> $A_{CFG}$ is Decidable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <ul> <li>Recall: A context-free grammar G = (V, Σ, R, S) is in<br/>Chomsky normal form if each rule is of the form<br/>A → BC or A → x or S → ε</li> <li>variable A ∈ V</li> <li>variables B, C ∈ V - {S}</li> <li>terminal x ∈ Σ.</li> <li>Every CFG can be converted into Chomsky normal form (Theorem 2.9).</li> <li>CFG G in Chomsky normal form is easier to analyze.</li> <li>Can show that for any string w ∈ L(G) with w ≠ ε,<br/>derivation S * w takes exactly 2 w  - 1 steps.</li> <li>ε ∈ L(G) iff G includes rule S → ε.</li> </ul> | <ul> <li>On input ⟨G, w⟩ ∈ Ω, where G is a CFG and w is a string,</li> <li>0. Check if ⟨G, w⟩ is proper encoding of CFG and string; if not, reject.</li> <li>1. Convert G into equivalent CFG G' in Chomsky normal form.</li> <li>2. If w = ε, check if S → ε is a rule of G'.<br/>If so, accept; otherwise, reject.</li> <li>3. If w ≠ ε, list all derivations with 2n - 1 steps, where n =  w .</li> <li>4. If any generates w, accept; otherwise, reject.</li> <li>Remarks:</li> <li># derivations with 2n - 1 steps is finite, so TM is a decider.</li> <li>We consider a more efficient algorithm in Chapter 7.</li> </ul> |
| CS 341: Chapter 4 4-19<br>Emptiness Problem for CFGs is Decidable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CS 341: Chapter 4 4-20 Are Two CFGs Equivalent?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>Decision problem:</b> Is a CFG's language empty?<br>$E_{CFG} = \{ \langle G \rangle \mid G \text{ is a CFG with } L(G) = \emptyset \}$ $\subseteq \{ \langle G \rangle \mid G \text{ is a CFG} \} \equiv \Omega$                                                                                                                                                                                                                                                                                                                              | • Decision problem: Are two CFGs equivalent?<br>$EQ_{CFG} = \{ \langle G, H \rangle   G, H \text{ are CFGs and } L(G) = L(H) \}$<br>$\subseteq \{ \langle G, H \rangle   G, H \text{ are CFGs} \} \equiv \Omega.$                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>Proof.</b> On input $\langle G \rangle \in \Omega$ , where G is a CFG,<br>0. Check if $\langle G \rangle$ is a proper encoding of a CFG $G = (V, \Sigma, R, S)$ ;<br>if not, reject.<br>1. Define set $T \subseteq V \cup \Sigma$ such that $u \in T$ iff $u \stackrel{*}{\Rightarrow} w$ for some $w \in \Sigma^*$ .<br>Initially, $T = \Sigma$ , and iteratively add to T.<br>2. Repeat $ V $ times:<br>• Check each rule $B \rightarrow X_1 \cdots X_k$ in R.<br>• If $B \notin T$ and each $X_i \in T$ , then add B to T.                 | <ul> <li>For DFAs, used emptiness decision procedure to solve equality problem.</li> <li>Try to construct CFG C from CFGs G and H such that <ul> <li>L(C) = [L(G) ∩ L(H)] ∪ [L(G) ∩ L(H)]</li> <li>and check if L(C) is empty using TM decider for E<sub>CFG</sub>.</li> </ul> </li> <li>We can't define CFG C for symmetric difference. Why? <ul> <li>Class of CFLs not closed under complementation nor intersection.</li> </ul> </li> <li>Fact: EQ<sub>CFG</sub> is not a decidable language. <ul> <li>We'll prove this later (HW 9).</li> </ul> </li> </ul>                                                                 |

| CS 341: Chapter 4                                                                                                                                                                                                                                                                                                                                                                                          | 4-21                                                                                                | CS 341: Chapter 4                                                                                                                                                                                                                                                                                                                                                                                         | 4-22           |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|
| CFLs are Decidable                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                     | • Let <i>L</i> be a CFL with alphabet $\Sigma$ , so $L \subseteq \Sigma^*$<br>• <i>G'</i> be a CFG for language <i>L</i>                                                                                                                                                                                                                                                                                  |                |  |
| <b>Theorem 4.9</b> Every CFL $L$ is a decidable language.                                                                                                                                                                                                                                                                                                                                                  |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                           |                |  |
| Bad Idea for Proof:                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                     | ■ S be a TM from Theorem 4.7 that decides                                                                                                                                                                                                                                                                                                                                                                 |                |  |
| • Convert PDA for L directly into a TM.                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                     | $A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates string } w \}$                                                                                                                                                                                                                                                                                                                   |                |  |
| <ul> <li>Can do this by using TM tape to simulate PD.</li> <li>Nondeterministic PDA yields nondeterministic TM</li> <li>NTM can be converted into deterministic TM (D</li> <li>Problem: <ul> <li>Some branch of PDA might run forever.</li> <li>Some branch of NTM might run forever.</li> <li>Corresponding DTM recognizes L,</li> <li>but does not decide L since it may not have</li> </ul> </li> </ul> | Α stack.<br>Λ (NTM).<br>TM).<br>alt on every input.                                                 | <ul> <li>Construct TM M<sub>G'</sub> for language L having CFG G' as follows:<br/>M<sub>G'</sub> = "On input w ∈ Σ*:</li> <li>1. Run TM decider S on input ⟨G', w⟩.</li> <li>2. If S accepts, accept;<br/>otherwise, reject."</li> <li>How do TMs S and M<sub>G'</sub> differ?</li> <li>TM S has input ⟨G, w⟩ for any CFG G and string w.</li> <li>TM M<sub>G'</sub> has input w for fixed G'.</li> </ul> |                |  |
| CS 341: Chapter 4<br>Hierarchy of Languages (so                                                                                                                                                                                                                                                                                                                                                            | 4-23                                                                                                | CS 341: Chapter 4<br>The Universal TM U                                                                                                                                                                                                                                                                                                                                                                   | 4-24           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                            | Examples                                                                                            | <ul> <li>Is one TM capable of simulating all other TMs?</li> </ul>                                                                                                                                                                                                                                                                                                                                        |                |  |
| All languages                                                                                                                                                                                                                                                                                                                                                                                              | ???                                                                                                 | <ul> <li>Given an encoding ⟨M, w⟩ of a TM M and input w,</li> <li>an we simulate M on w?</li> </ul>                                                                                                                                                                                                                                                                                                       |                |  |
| Turing-recognizable         TM, k-tape TM, NTM, enumerator,         Decidable         Decider (deterministic, nondet, k-tape,)         Context-free         CFG, PDA         Regular         DFA, NFA, Reg Exp         Finite                                                                                                                                                                              | ???<br>$\{0^n1^n2^n \mid n \ge 0\}$<br>$\{0^n1^n \mid n \ge 0\}$<br>$(0 \cup 1)^*$<br>$\{110, 01\}$ | <ul> <li>We can do this via a universal TM U:<br/>U = "On input ⟨M, w⟩, where M is a TM and w is a string<br/>1. Simulate M on input w.</li> <li>2. If M ever enters its accept state, accept;<br/>if M ever enters its reject state, reject."</li> <li>Can think of U as an emulator.</li> </ul>                                                                                                         | <del>۶</del> : |  |

| <i>CS 341: Chapter 4</i> 4-25                                                                                                                                                             | <i>CS 341: Chapter 4</i> 4-26                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acceptance Problem for TMs is Turing-Recognizable                                                                                                                                         | Unsolvable Problems                                                                                                                                     |
| • Decision problem: Does a given TM $M$ accept a given string $w$ ?                                                                                                                       | Computer (and computation) and limited in a complementation                                                                                             |
| • Instance: $\langle M, w \rangle$ , where $M$ is TM, $w$ is a string.                                                                                                                    | • Computers (and computation) are limited in a very fundamental way.                                                                                    |
| • Universe: $\Omega = \{ \langle M, w \rangle \mid M \text{ is TM and } w \text{ is string } \}.$                                                                                         | • Common, every-day problems are unsolvable (i.e., undecidable)                                                                                         |
| • Language:<br>$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is TM that accepts string } w \} \subseteq \Omega.$                                                                        | Does a program sort an array of integers?                                                                                                               |
| $ullet$ For a specific pair $\langle M,w angle\in \Omega$ of TM $M$ and string $w$ ,                                                                                                      | <ul> <li>Both program and specification are precise mathematical objects.</li> </ul>                                                                    |
| • $\langle M, w \rangle \in A_{TM}$ if $M$ accepts $w$<br>• $\langle M, w \rangle \not\in A_{TM}$ if $M$ does not accept $w$ .                                                            | <ul> <li>One might think that it is then possible to develop an algorithm that<br/>can determine if a program matches its specification.</li> </ul>     |
| • Universal TM $U$                                                                                                                                                                        | <ul> <li>However, this is impossible.</li> </ul>                                                                                                        |
| <ul> <li>U recognizes A<sub>TM</sub>, so A<sub>TM</sub> is Turing-recognizable.</li> <li>U does not decide A<sub>TM</sub>.</li> <li>▲ If M loops on w, then U loops on ⟨M, w⟩.</li> </ul> | • To show this, we need to introduce some new ideas.                                                                                                    |
| • But can we also decide $A_{TM}$ ?                                                                                                                                                       |                                                                                                                                                         |
| • We will see later that $A_{TM}$ is <b>undecidable</b> .                                                                                                                                 |                                                                                                                                                         |
| <i>CS 341: Chapter 4</i> 4-27                                                                                                                                                             | <i>CS 341: Chapter 4</i> 4-28                                                                                                                           |
| Mappings and Functions                                                                                                                                                                    | <b>Example:</b> $f : \mathcal{R} \to \mathcal{R}$ with $f(x) = e^x$ is                                                                                  |
| • Consider fcn $f : A \to B$ mapping objects in one set A to another B.                                                                                                                   | • one-to-one since $x \neq y$ implies $e^x \neq e^y$ .                                                                                                  |
| • <b>Definition:</b> $f$ is <b>one-to-one</b> (aka <b>injective</b> ) if every $x \in A$ has a unique image $f(x)$ :                                                                      | • not onto since $e^x > 0$ for all $x \in \mathcal{R}$ .                                                                                                |
| If $f(x) = f(y)$ , then $x = y$ .<br>Equivalently, if $x \neq y$ , then $f(x) \neq f(y)$ .                                                                                                | <b>Example:</b> $f : \mathcal{R} \to \mathcal{R}$ with $f(x) = x^2$ is                                                                                  |
| • <b>Definition:</b> $f$ is <b>onto</b> (aka <b>surjective</b> ) if every $z \in B$ is "hit" by $f$ :                                                                                     | • not onto since $x^2 \ge 0$ for all $x \in \mathcal{R}$ .                                                                                              |
| If $z \in B$ , then there is an $x \in A$ with $f(x) = z$ .                                                                                                                               | <b>Example:</b> $f : \mathcal{R} \to \mathcal{R}$ with $f(x) = x^3$ is                                                                                  |
| • <b>Definition:</b> <i>f</i> is a <b>correspondence</b> (aka <b>bijection</b> ) if it both one-to-one and onto.                                                                          | <ul> <li>one-to-one since x ≠ y implies x<sup>3</sup> ≠ y<sup>3</sup>.</li> <li>onto since for any z ∈ R, letting x = z<sup>1/3</sup> yields</li> </ul> |
| Inverse fcn $f^{-1}: B \to A$ then exists.                                                                                                                                                |                                                                                                                                                         |
|                                                                                                                                                                                           | $f(x) = (z^{1/3})^3 = z.$                                                                                                                               |

CS 341: Chapter 4

#### 4-29

## Cardinality

- Set T has |T| = k iff  $\exists$  correspondence between  $\{1, 2, ..., k\}$  and T, in which case  $\{1, 2, ..., k\}$  and T are of the same size.
  - **Ex:** |T| = 3.

| S | 1 | f | <b>—</b> <i>T</i> | 1 |
|---|---|---|-------------------|---|
|   | 3 |   | ►●                |   |

• If  $\exists$  one-to-one mapping from set S to set T, then T is **at least as big** as S, i.e.,  $|T| \ge |S|$ .





- **Defn:** Two sets S and T, possibly infinite, are of the same size if there is a *correspondence* between them.
- If  $\exists$  one-to-one fcn from S to T but  $\not\equiv$  correspondence from S to T, then T is strictly bigger than S.

#### CS 341: Chapter 4

#### **Countable Sets**

- Let  $\mathcal{N} = \{1, 2, 3, \ldots\}$  be the set of natural numbers.
- Set T is **infinite** if there exists a **one-to-one** function  $f : \mathcal{N} \to T$ .
  - "The set T is at least as big as the set  $\mathcal{N}.$ "
- Set T is **countable** if it is finite or has the same size as  $\mathcal{N}$ .
  - Can enumerate all elements in T in (possibly infinite) list.
  - each element is eventually listed.

**Fact:**  $\mathcal{N} = \{1, 2, 3, ...\}$  and  $\mathcal{E} = \{2, 4, 6, ...\}$  have same size.

**Proof.** Define correspondence between  $\mathcal{N}$  and  $\mathcal{E}$  by function f(i) = 2i.

**Remark:** Set T and a proper subset of T can have the same size!

CS 341: Chapter 4

#### Set of Rational Numbers is Countable

Fact: The set of rational numbers

 $\mathcal{Q} = \left\{ \left. \frac{m}{n} \right| \ m, n \in \mathcal{N} \right\}$ 

is countable.

#### Proof.

 $\bullet$  Write out elements in  ${\cal Q}$  as an infinite 2-dimensional array:

| 1/1 | 1/2 | 1/3 | 1/4 | 1/5 |     |  |
|-----|-----|-----|-----|-----|-----|--|
| 2/1 | 2/2 | 2/3 | 2/4 | 2/5 | ••• |  |
| 3/1 | 3/2 | 3/3 | 3/4 | 3/5 |     |  |
| 4/1 | 4/2 | 4/3 | 4/4 | 4/5 | ••• |  |
| :   | :   | :   | :   | :   | ·   |  |

4-31

CS 341: Chapter 4

- If we try to
  - first list all elements in first row,
  - then list all elements in second row,
  - and so on,

then we will never get to the second row because the first row is infinitely long.

- Instead,
  - enumerate elements along Southwest to Northeast diagonals,
  - skip duplicates.

4-32



- Since correspondence exists, enumerated list is supposed to contain every real number.
- Each number is written as an infinite decimal expansion.
- We now construct a number x between 0 and 1 that is not in the list using Cantor's diagonalization method

#### Theorem 4.17

• 2 = 2.0000...

The set  $\mathcal{R}$  of all real numbers is uncountable.

#### More Countable Sets

**Examples:**  $\exists$  correspondence between  $\mathcal{N} = \{1, 2, 3, ...\}$  and each of

- $\mathcal{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$
- $\mathcal{N}^2 = \{ (i, j) \mid i, j \in \mathcal{N} \}$
- $\Sigma^*$ , for any alphabet  $\Sigma$ ; e.g.,  $\Sigma = \{a, b\}$ .
  - Simply enumerate strings in  $\Sigma^*$  in *string order*.

| $\mathcal{N}$   | 1      | 2      | 3      | 4      | 5     | 6      | 7      |  |
|-----------------|--------|--------|--------|--------|-------|--------|--------|--|
| $\mathcal{Z}$   | 0      | +1     | -1     | +2     | -2    | +3     | -3     |  |
| $\mathcal{N}^2$ | (1, 1) | (2, 1) | (1, 2) | (3, 1) | (2,2) | (1, 3) | (4, 1) |  |
| ${a}^{*}$       | ε      | a      | aa     | aaa    | aaaa  | aaaaa  | aaaaaa |  |
| $\{a,b\}^*$     | ε      | a      | b      | aa     | ab    | ba     | bb     |  |

So is every infinite set countable?

4-36

4-34

#### Set $\mathcal{R}$ of All Real Numbers is Uncountable

• Suppose that there is a correspondence between  $\mathcal{N}$  and  $\mathcal{R}$ :

| n | f(n)     |
|---|----------|
| 1 | 3.14159  |
| 2 | 0.55555  |
| 3 | 40.00000 |
| 4 | 15.20361 |
| : | :        |

| <i>CS 341: Chapter 4</i> 4-37                                                                                                                                                                                                            | <i>CS 341: Chapter 4</i> 4-38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Diagonalization Method                                                                                                                                                                                                                   | Set of All TMs is Countable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| • Let $x = 0. d_1 d_2 d_3 \dots$ , where                                                                                                                                                                                                 | <b>Fact:</b> If $S \subseteq T$ and T is countable, then S is countable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| <ul> <li>d<sub>n</sub> is nth digit after decimal point in decimal expansion of x</li> <li>d<sub>n</sub> differs from the nth digit in the nth number in the list.</li> </ul>                                                            | <ul> <li>Proof. In enumeration of T, skip elements in T - S to enumerate S.</li> <li>Fact: For any (finite) alphabet Ψ, the set Ψ* is countable.</li> <li>Proof. Enumerate strings in string order.</li> <li>Fact: The set of all TMs is countable.</li> <li>Proof.</li> <li>Every TM has a finite description, e.g., as 7-tuple or source code.</li> <li>Can describe TM M using encoding ⟨M⟩</li> <li>Encoding is a finite string of symbols over some alphabet Ψ.</li> <li>So just enumerate all strings over Ψ</li> <li>omit any that are not legal TM encodings.</li> <li>Since Ψ* is countable,</li> <li>there are only a countable number of different TMs.</li> </ul> |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| <i>CS 341: Chapter 4</i> 4-39                                                                                                                                                                                                            | <i>CS 341: Chapter 4</i> 4-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Set of All Languages is Uncountable                                                                                                                                                                                                      | • <b>Recall:</b> Each language $A \in \mathcal{L}$ has a unique sequence $\chi(A) \in \mathcal{B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| <b>Fact:</b> The set $\mathcal{B}$ of all <i>infinite</i> binary sequences is uncountable.<br><b>Proof.</b> Use diagonalization argument as in proof that $\mathcal{R}$ is uncountable.                                                  | <ul> <li>nth bit of χ(A) is 1 if and only if s<sub>n</sub> ∈ A.</li> <li>χ(A) specifies which strings from Σ* are or aren't in A.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| <ul> <li>Fact: The set <i>L</i> of all languages over alphabet Σ is uncountable.</li> <li>Proof.</li> <li>Idea: show ∃ correspondence χ between <i>L</i> and <i>B</i>, so <i>L</i> has same size as uncountable set <i>B</i>.</li> </ul> | • Example: For $\Sigma = \{0, 1\}$ ,<br>$\Sigma^* = \{ \varepsilon, 0, 1, 00, 01, 10, 11, 000, \dots \}$<br>$A = \{ 0, 00, 01, 000, \dots \}$<br>$\chi(A) = 0 1 0 1 1 0 0 1 \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| • Each language $A \in \mathcal{L}$ has $A \subset \Sigma^*$ , so $\mathcal{L} = \mathcal{P}(\Sigma^*)$ .                                                                                                                                | $ullet$ The mapping $\chi:\mathcal{L}	o\mathcal{B}$ is a <b>correspondence</b> because it is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| <ul> <li>Language's characteristic sequence defined by correspondence<br/>χ : L → B</li> <li>Write out elements in Σ* in string order: s<sub>1</sub>, s<sub>2</sub>, s<sub>3</sub>,</li> </ul>                                           | <ul> <li>one-to-one: different languages A<sub>1</sub> and A<sub>2</sub> differ for at least one string s<sub>i</sub>, so the <i>i</i>th bits of χ(A<sub>1</sub>) and χ(A<sub>2</sub>) differ;</li> <li>onto: for each sequence b ∈ B, ∃ language A for which χ(A) = b.</li> <li>Thus, L is same size as uncountable set B.</li> </ul>                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| ■ Each language $A \in \mathcal{L}$ has a unique sequence $\chi(A) \in \mathcal{B}$ .<br>■ The <i>n</i> th bit of $\chi(A)$ is 1 if and only if $s_n \in A$                                                                              | • so $\mathcal{L}$ is also uncountable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |

| <i>CS 341: Chapter 4</i> 4-41                                                                                                                                                                                                                                 | <i>CS 341: Chapter 4</i> 4-42                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Some Languages are not Turing-Recognizable                                                                                                                                                                                                                    | Revisit Acceptance Problem for TMs                                                                                                                                                                                                                               |
| • Each TM recognizes some language.                                                                                                                                                                                                                           | • Decision problem: Does a TM $M$ accept string $w$ ?                                                                                                                                                                                                            |
| • Set of all TMs is countable.                                                                                                                                                                                                                                | $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that } \mathbf{accepts} \text{ string } w \} \\ \subseteq \{ \langle M, w \rangle \mid M \text{ is a TM and } w \text{ is a string} \} \equiv \Omega$                                                    |
| • Set of all languages is uncountable.                                                                                                                                                                                                                        | $ullet$ Universe $\Omega$ of instances                                                                                                                                                                                                                           |
| <ul> <li>Since uncountable sets are larger than countable ones,</li> <li>∃ more languages than there are TMs that can recognize them.</li> </ul>                                                                                                              | <ul> <li>contains all possible pairs (M, w) of TM M and string w</li> <li>not just one specific instance.</li> <li>For a specific TM M and string w,</li> </ul>                                                                                                  |
| <b>Corollary 4.18</b><br>Some languages are not Turing-recognizable.                                                                                                                                                                                          | <ul> <li>if M accepts w, then ⟨M, w⟩ ∈ A<sub>TM</sub> is a YES instance</li> <li>if M doesn't accept w (rejects or loops),<br/>then ⟨M, w⟩ ∉ A<sub>TM</sub> is a NO instance.</li> </ul>                                                                         |
| <ul> <li>What kind of languages are not Turing-recognizable?</li> <li>We'll see some later</li> </ul>                                                                                                                                                         | Theorem 4.11 $A_{\text{TM}}$ is undecidable.                                                                                                                                                                                                                     |
| <i>CS 341: Chapter 4</i> 4-43                                                                                                                                                                                                                                 | <i>CS 341: Chapter 4</i> 4-44                                                                                                                                                                                                                                    |
| Outline of Proof by Contradiction                                                                                                                                                                                                                             | Proof by Contradiction that $A_{TM}$ is Undecidable                                                                                                                                                                                                              |
| • Suppose $A_{TM}$ is decided by some TM $H$ , with input $\langle M, w \rangle \in \Omega$ .                                                                                                                                                                 | • Suppose there exists a TM H that decides $A_{\text{TM}}$ .                                                                                                                                                                                                     |
| $\langle M, w \rangle \longrightarrow H$ $\overset{accept, \text{ if } \langle M, w \rangle \in A_{TM}}{\overset{cept, \text{ if } \langle M, w \rangle \notin A_{TM}}}$                                                                                      | <ul> <li>TM H takes input ⟨M, w⟩ ∈ Ω, where M is a TM and w a string.</li> <li>H accepts ⟨M, w⟩ ∈ A<sub>TM</sub>; i.e., if M accepts w.</li> <li>H rejects ⟨M, w⟩ ∉ A<sub>TM</sub>; i.e., if M does not accept w.</li> </ul>                                     |
| • Use H as subroutine to define another TM D, with input $\langle M \rangle$ .                                                                                                                                                                                | • Consider language $L = \{ \langle M \rangle \mid M \text{ is TM that doesn't accept } \langle M \rangle \}.$                                                                                                                                                   |
| $\langle M \rangle \longrightarrow \begin{bmatrix} D \\ \langle M, \langle M \rangle \rangle \longrightarrow \end{bmatrix} H \xrightarrow{accept} \begin{bmatrix} accept \\ reject \end{bmatrix} \\ constant \\ constant \\ constant \\ reject \end{bmatrix}$ | <ul> <li>Using TM H as subroutine, we can construct TM D that decides L:</li> <li>D = "On input \langle M \rangle, where M is a TM:</li> <li>1. Run H on input \langle M, \langle M \rangle.</li> <li>2. If H accepts, reject. If H rejects, accept."</li> </ul> |
|                                                                                                                                                                                                                                                               | $ullet$ What happens when we run $D$ with input $\langle D  angle$ ?                                                                                                                                                                                             |
| <ul> <li>What happens when we run D with input ⟨D⟩ ?</li> <li>D accepts ⟨D⟩ iff D doesn't accept ⟨D⟩, which is impossible.</li> </ul>                                                                                                                         | <ul> <li>Stage 1 of D runs H on input (D, (D)).</li> <li>D accepts (D) iff D doesn't accept (D), which is impossible.</li> </ul>                                                                                                                                 |

| CS 341: Chapter 4                    |                       |                       |                         |                                   |                     | 4-45                    | CS 341: Chapter 4                                                                                                               | 4-46 |  |
|--------------------------------------|-----------------------|-----------------------|-------------------------|-----------------------------------|---------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------|------|--|
| Another View of Proof                |                       |                       |                         |                                   |                     | Another View of Proof   |                                                                                                                                 |      |  |
| Remark: The pro                      | of implicit           | ly used di            | agonaliza               | tion                              |                     |                         | • Another table                                                                                                                 |      |  |
| • Since the set of                   | all TMs is            | countabl              | e, we can               | enume                             | rate the            | m:                      |                                                                                                                                 |      |  |
|                                      | $M_1$                 | $, M_2, N_2$          | $M_3, M_4,$             |                                   |                     |                         | • entry $(i, j)$ is value of "acceptance function" $H$ on input $\langle M_i, \langle M_j \rangle \rangle$ :                    |      |  |
| • Construct table of                 | of accepta            | nce behav             | vior of TN              | $M M_i$ o                         | n input             | $\langle M_j \rangle$ : | $\langle M_1 \rangle \langle M_2 \rangle \langle M_3 \rangle \langle M_4 \rangle \cdots$                                        |      |  |
|                                      | $\langle M_1 \rangle$ | $\langle M_2 \rangle$ | $\langle M_3 \rangle$   | $\langle M_{\mathcal{A}} \rangle$ |                     |                         | $\overline{M_1}$ accept reject accept reject $\cdots$                                                                           |      |  |
| $M_1$                                | accept                | \ 2/                  | accept                  | \ +/                              |                     |                         | $M_2$ accept accept accept accept $\cdots$                                                                                      |      |  |
| $M_2$                                | accept                | accept                | accept                  | accept                            |                     |                         | $M_3$ reject reject reject reject $\cdots$                                                                                      |      |  |
| $M_3$                                |                       |                       |                         |                                   | • • •               |                         | $M_4$ accept accept reject reject $\cdots$                                                                                      |      |  |
| $M_{4}$                              | accept                | accept                |                         |                                   | •••                 |                         |                                                                                                                                 |      |  |
| <ul> <li>Blank entries</li> </ul>    | are reject            | or loop.              |                         |                                   |                     |                         |                                                                                                                                 |      |  |
| CS 341: Chapter 4                    |                       |                       |                         |                                   |                     | 4-47                    | CS 341: Chapter 4                                                                                                               | 4-48 |  |
|                                      | Another View of Proof |                       |                         |                                   |                     |                         | Another View of the Problem                                                                                                     |      |  |
| <ul> <li>Diagonal entries</li> </ul> | swapped f             | for output            | t of $D$ on             | $\langle M_i \rangle$ .           |                     |                         | • "Self-referential paradox"                                                                                                    |      |  |
| • $D$ is a TM, so it                 | : must app            | ear in the            | e enumera               | ation $M$                         | $M_1, M_2, M_2$     | $M_3,\ldots$            | • occurs when we force the TM $D$ to disagree with itself.                                                                      |      |  |
| <ul> <li>Contradiction oc</li> </ul> | curs when             | evaluatir             | ng Don (                | $\langle D \rangle$ :             |                     |                         | $ullet$ $D$ knows what it is going to do on input $\langle D  angle$ by $H$ ,                                                   |      |  |
|                                      |                       |                       | .6 2 0                  | (2).                              |                     |                         | but then D does the opposite instead.                                                                                           |      |  |
| $\langle M_1 \rangle$                | $\langle M_2 \rangle$ | $\langle M_3 \rangle$ | $\langle M_{4} \rangle$ |                                   | $\langle D \rangle$ |                         | • You cannot know for sure what you will do in the future.                                                                      |      |  |
| M <sub>1</sub> accept                | reject                | accept                | reject                  | •••                               | accept              | • • •                   | If you could, then you could change your actions and create a                                                                   |      |  |
| $M_2$ accept                         | accept                | accept                | accept                  | •••                               | accept              | •••                     | paradox.                                                                                                                        |      |  |
| $M_{3}$ reject                       | reject                | reject                | reject                  | •••                               | reject              | •••                     | • The diagonalization method implements the self-reference paradox                                                              | in a |  |
| $M_4$ accept                         | accept                | reject                | reject                  | •••                               | accept              | •••                     | mathematical way.                                                                                                               | in a |  |
| : :                                  | ÷                     | :                     | :                       | ··.                               | _                   |                         | • In logic this approach often used to prove that certain things are                                                            |      |  |
| D reject                             | reject                | accept                | accept                  | • • •                             | ?                   |                         | impossible.                                                                                                                     |      |  |
| :   :                                | ł                     | ÷                     | :                       | ··.                               |                     | ··.                     | <ul> <li>Kurt Gödel gave a mathematical equivalent of the statement<br/>"This sentence is not true" or "I am lying."</li> </ul> |      |  |



#### **Co-Turing-Recognizable Languages**

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts string } w \}$ 

# • $A_{\text{TM}}$ is not Turing-decidable, but is Turing-recognizable.

- $\blacksquare$  Use universal TM U to simulate TM M on string w.
  - ▲ If M accepts w, then U accepts  $\langle M, w \rangle \in A_{\mathsf{TM}}$ .
  - ▲ If M rejects w, then U rejects  $\langle M, w \rangle \notin A_{\mathsf{TM}}$ .
  - ▲ If M loops on w, then U loops on  $\langle M, w \rangle \notin A_{\mathsf{TM}}$ .
- What about a language that is **not** Turing-recognizable?
- $\bullet$  Recall that complement of language A over alphabet  $\Sigma$  is

$$\overline{A} = \Sigma^* - A = \Omega - A$$

**Definition:** Language A is **co-Turing-recognizable** if its complement  $\overline{A}$  is Turing-recognizable.

CS 341: Chapter 4

 $\label{eq:decomposition} \text{Decidable} \Rightarrow \text{TM-recognizable} \text{ and } \text{co-TM-recognizable}$ 

- Suppose language A is **decidable**.
- Then A is **Turing-recognizable**.
- $\bullet$  Also, since A is decidable,  $\exists \mbox{ TM } M$  that
  - always halts
  - correctly accepts strings  $w \in A$
  - correctly rejects strings  $w \not\in A$
- Define TM M' same as M except swap accept and reject states.
  - M' rejects when M accepts,
  - M' accepts when M rejects.
- TM M' always halts since M always halts, so M' decides  $\overline{A}$ .
  - Thus,  $\overline{A}$  is also Turing-recognizable
  - i.e., A is **co-Turing-recognizable**.

#### CS 341: Chapter 4

4-49

4-51

# $\label{eq:deltacomplex} \text{Decidable} \iff \text{Turing- and co-Turing-recognizable}$

#### Theorem 4.22

A language is decidable if and only if it is both

- Turing-recognizable and
- co-Turing-recognizable.



• Note that D decides A, so A is decidable.

CS 341: Chapter 4

 $\overline{A_{\mathsf{TM}}}$  is not Turing-recognizable

#### **Remarks:**

- $A_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts string } w \}$ is **Turing-recognizable** (by UTM) but **not decidable** (Thm 4.11).
- Theorem 4.22: Decidable  $\Leftrightarrow$  Turing-recog and co-Turing-recognizable.

**Hierarchy of Languages** 

Examples

 $\overline{A_{\mathsf{TM}}}$ 

 $A_{\mathsf{TM}}$ 

 $(0 \cup 1)^*$ 

 $\{110, 01\}$ 

•  $\overline{A_{\mathsf{TM}}} = \{ \langle M, w \rangle \mid M \text{ is a TM that does$ **not** $accept string <math>w \}.$ 

# Corollary 4.23

 $\overline{A_{\text{TM}}}$  is not Turing-recognizable.

# Proof.

CS 341: Chapter 4

- If  $\overline{A_{TM}}$  were Turing-recognizable, then  $A_{TM}$  would be both Turing-recognizable and co-Turing-recognizable.
- But then Theorem 4.22 would imply  $A_{\text{TM}}$  is **decidable**, which is a **contradiction**.

All languages

**Turing-recognizable** TM, *k*-tape TM, NTM, enumerator, ...

Decidable Decider (deterministic, nondet, k-tape,

Context-free

Regular

Finite

DFA, NFA, Reg Exp

CFG, PDA

#### CS 341: Chapter 4

4-53

# Some Other Non-Turing-Recognizable Languages

4-54

We'll later show the following languages are also not Turing-recognizable:

- $E_{\mathsf{TM}} = \{ \langle M \rangle \mid M \text{ is a TM with } L(M) = \emptyset \},\$ which is co-Turing-recognizable.
- $EQ_{\mathsf{TM}} = \{ \langle M, N \rangle \mid M \text{ and } N \text{ are TMs with } L(M) = L(N) \},\$ which is not even co-Turing-recognizable.

