
CS 341: Foundations of CS II

Marvin K. Nakayama
Computer Science Department

New Jersey Institute of Technology
Newark, NJ 07102

CS 341: Chapter 5 5-2

Chapter 5
Reducibility

Contents

• Reducing One Problem to Another

• Examples of Undecidable Problems (Languages)

•Mapping Reducibility

• Examples of Non-Turing-Recognizable Problems (Languages)

CS 341: Chapter 5 5-3

Introduction

• Previously, we saw

Church-Turing Thesis

Many problems are solvable using TMs

One problem (language), ATM, is unsolvable by TMs, where

ATM = { 〈M,w〉 | M is a TM that accepts string w }

•We now will see many other computationally unsolvable problems.

•We will do this by using reductions.

• Example:

Finding your way around a city

reduces to

obtaining a city map.

CS 341: Chapter 5 5-4

Reducibility

• Reduction always involves two problems (languages), A and B.

•Definition: If A reduces to B, then can use any solution of B to
solve A.

• Remarks:

We showed that ANFA is decidable by reducing ANFA to ADFA.

Definition of reduction says nothing about solving A or B alone.

If A is reducible to B, then A cannot be harder than B.

The statement “p ⇒ q” is equivalent to “¬q ⇒ ¬p”.

Suppose A reduces to B. Then

� If I can solve B, then I can solve A.

� Equivalently, if I can’t solve A, then I can’t solve B.

� Equivalently, if A is undecidable, then B is undecidable.



CS 341: Chapter 5 5-5

Reducibility

• It required some effort to prove that ATM is not decidable.

• But now we can build on this result as follows:

To show another language L is undecidable,
we typically show ATM reduces to L.

If “language L is decidable” implies “ATM is decidable,”
then L is not decidable.

• Typical approach to show L is undecidable via reduction from ATM to L

Suppose L is decidable.

Let R be a TM that decides L.

Using R as subroutine,

� can construct another TM S that decides ATM.

But ATM is not decidable.

Conclusion: L is not decidable.

CS 341: Chapter 5 5-6

Halting Problem for TMs is Undecidable

• Recall that ATM (acceptance problem for TMs) is undecidable, where

ATM = { 〈M,w〉 | M is TM that accepts string w }.

• Another decision problem: Does TM M halt on input w?

HALTTM = { 〈M,w〉 | M is TM that halts on string w }.

• In this case (but not others), ATM and HALTTM have same universe

Ω = { 〈M,w〉 | M is TM, w is string }.

• Given 〈M,w〉 ∈ Ω of specific pair of TM M and string w,

if M halts on input w, then 〈M,w〉 ∈ HALTTM,

if M doesn’t halt on input w, then 〈M,w〉 �∈ HALTTM.

• How does HALTTM differ from ATM?

Theorem 5.1
HALTTM is undecidable.

CS 341: Chapter 5 5-7

Basic Idea of Proof that HALTTM is Undecidable

ATM = { 〈M,w〉 | M is a TM and M accepts string w },

HALTTM = { 〈M,w〉 | M is a TM and M halts on string w }.

Basic idea of proof by contradiction: reduce ATM to HALTTM

• Suppose ∃ TM R that decides HALTTM.

• How could we use R to construct TM to decide ATM?

• Recall universal TM U recognizes ATM:

U = “On input 〈M,w〉 ∈ Ω, where M is a TM and w is a string:

1. Simulate M on input w.

2. If M ever enters its accept state, accept ;

if M ever enters its reject state, reject.”

• U doesn’t decide ATM since M may loop on w in stage 1.

• Solution: first run R on 〈M,w〉 to see if it’s safe to run M on w.

CS 341: Chapter 5 5-8

Proof that HALTTM is Undecidable

ATM = { 〈M,w〉 | M is a TM and M accepts string w },

HALTTM = { 〈M,w〉 | M is a TM and M halts on string w }.

• Assume ∃ TM R that decides HALTTM.

• Define TM S to decide ATM using TM R as follows:

S = “On input 〈M,w〉 ∈ Ω, where M is a TM and w a string:
1. Run R on input 〈M,w〉.
2. If R rejects, reject.
3. If R accepts, simulate M on input w until it halts.
4. If M accepts, accept ; otherwise, reject.”

• TM S always halts and decides ATM

S accepts 〈M,w〉 ∈ ATM, and S rejects 〈M,w〉 �∈ ATM.

• Thus, deciding ATM is reduced to deciding HALTTM.

• But ATM is undecidable, so HALTTM must also be undecidable.



CS 341: Chapter 5 5-9

Emptiness Problem for TMs is Undecidable

•Decision problem: Does a TM M recognize the empty language?

ETM = { 〈M〉 | M is a TM and L(M) = ∅ }

⊆ { 〈M〉 | M is a TM } ≡ ΩE,

where universe ΩE comprises all TMs.

• For a specific encoded TM 〈M〉 ∈ ΩE,

if M accepts at least one string, then 〈M〉 �∈ ETM,
if M accepts no strings, then 〈M〉 ∈ ETM.

Theorem 5.2
ETM is undecidable.

Proof Idea: Reduce ATM to ETM.

• Suppose ETM is decidable.

• Let R be a TM that decides ETM.

• Use TM R to construct another TM S that decides ATM.

• But since ATM is undecidable, ETM must also be.

CS 341: Chapter 5 5-10

Constructing Decider S for ATM From Decider R for ETM

ETM = { 〈M〉 | M is a TM and L(M) = ∅ }

• Bad Idea: When S receives input 〈M,w〉, it calls R with input 〈M〉.

If R accepts, then L(M) = ∅.

� In particular, M does not accept w, so S rejects input 〈M,w〉.

If R rejects, then L(M) �= ∅, so M accepts at least one string.

� But don’t know if M accepts w, so TM S can’t decide ATM.

• Fix: Create another TM M1 from TM M and w as follows:

M1 = “On input x:
1. If x �= w, reject.
2. If x = w, run M on input w, and accept iff M accepts.”

w is only string M1 could accept, so one of 2 cases occurs:

� If 〈M,w〉 ∈ ATM, then L(M1) = {w}, so 〈M1〉 �∈ ETM.

� If 〈M,w〉 �∈ ATM, then L(M1) = ∅, so 〈M1〉 ∈ ETM.

CS 341: Chapter 5 5-11

Proof: ETM = { 〈M〉 | M is TM and L(M) = ∅ } is Undecidable

• Reduce ATM to ETM: suppose ∃ TM R that decides ETM.

• Define TM S to decide ATM using decider R for ETM as follows:

S = “On input 〈M,w〉, where M is a TM and w is a string:
1. Construct TM M1 from M and w as follows:

M1 = “On input x:
(1) If x �= w, reject.
(2) If x = w, run M on input w,

and accept iff M accepts.”
2. Run R on input 〈M1〉.
3. If R accepts, reject ; if R rejects, accept .”

• Note that

〈M1〉 �∈ ETM ⇐⇒ L(M1) �= ∅ ⇐⇒ M accepts w

⇐⇒ 〈M,w〉 ∈ ATM.

• But then TM S decides ATM, which is undecidable.

• Therefore, TM R cannot exist, so ETM is undecidable.

CS 341: Chapter 5 5-12

TM Recognizing Regular Language is Undecidable

•Decision problem: Does a TM M recognize a regular language?

REGTM = { 〈M〉 | M is a TM and L(M) is a regular language }

⊆ { 〈M〉 | M is a TM } ≡ ΩREG,

where universe ΩREG comprises all TMs.

• For a specific encoded TM 〈M〉 ∈ ΩREG,

if L(M) is regular, then 〈M〉 ∈ REGTM,
if L(M) is nonregular, then 〈M〉 �∈ REGTM.

Theorem 5.3
REGTM is undecidable.

Proof Idea: Reduce ATM to REGTM.

• Assume REGTM is decidable.

• Let R be a TM that decides REGTM.

• Use TM R to construct TM S that decides ATM.

• But how do we do this?



CS 341: Chapter 5 5-13

Constructing Decider S for ATM from Decider R for REGTM

REGTM = { 〈M〉 | M is a TM and L(M) is a regular language }.

• TM S is given input 〈M,w〉.

• TM S first constructs a TM M ′ using 〈M,w〉 so that
L(M ′) is a regular language if and only if M accepts w.

If M does not accept w, then M ′ recognizes language

{0n 1n | n ≥ 0 },

which is nonregular.

If M accepts w, then M ′ recognizes language Σ∗, which is regular.

•We construct M ′ as follows:

M ′ automatically accepts all strings in {0n 1n | n ≥ 0 }.

In addition, if M accepts w, then M ′ accepts all other strings.

CS 341: Chapter 5 5-14

Proof that REGTM is Undecidable

• Suppose that REGTM is decidable.

• Let R be a TM that decides REGTM.

• Use R to construct TM S to decide ATM:

S = “On input 〈M,w〉, where M is a TM and w is a string:

1. Construct following TM M ′ from M and w:

M ′ = “On input x:

1. If x ∈ {0n1n | n ≥ 0 }, accept .

2. If x �∈ {0n1n | n ≥ 0 }, run M on input w

and accept iff M accepts w.”

2. Run R on input 〈M ′〉.

3. If R accepts, accept ; if R rejects, reject.”

• 〈M ′〉 ∈ REGTM ⇐⇒ 〈M,w〉 ∈ ATM,
so S decides ATM, which is impossible.

CS 341: Chapter 5 5-15

Equivalence of 2 TMs is Undecidable

•Decision problem: Do 2 TMs recognize the same language?

EQTM = { 〈M1,M2〉 | M1,M2 are TMs and L(M1) = L(M2) }

⊆ { 〈M1,M2〉 | M1, M2 are TMs } ≡ ΩEQ,

where universe ΩEQ comprises all pairs of TMs.

• For any specific encoded pair 〈M1,M2〉 ∈ ΩEQ,

if L(M1) = L(M2), then 〈M1,M2〉 ∈ EQTM,

if L(M1) �= L(M2), then 〈M1,M2〉 �∈ EQTM.

Theorem 5.4
EQTM is undecidable.

CS 341: Chapter 5 5-16

Proof that EQTM is Undecidable

• Recall

EQTM = { 〈M1,M2〉 | M1,M2 are TMs and L(M1) = L(M2) }.

• Reduce ETM to EQTM as follows:

Let M2 = M∅ be a TM with L(M∅) = ∅.

A TM that decides EQTM can also decide ETM by deciding if
〈M1,M∅〉 ∈ EQTM.

� 〈M1〉 ∈ ETM ⇐⇒ 〈M1,M∅〉 ∈ EQTM

• Since ETM is undecidable (Theorem 5.2), EQTM must be undecidable.

•We’ll see later that EQTM is

not Turing-recognizable

not co-Turing-recognizable



CS 341: Chapter 5 5-17

Other Undecidable Problems

• Does a TM recognize a finite language?

• Does a TM recognize a context-free language?

• Does a TM recognize a decidable language?

• Does a TM halt on all inputs?

• Does a TM have a state that is never entered on any input string?

Rice’s Theorem.

• Informally: Every non-trivial property P of languages of Turing
machines is undecidable.

• Formally: Let P be a language consisting of TM descriptions such that

1. P contains some, but not all, TM descriptions, and

2. whenever L(M1) = L(M2), we have 〈M1〉 ∈ P iff 〈M2〉 ∈ P.

Then P is undecidable.

CS 341: Chapter 5 5-18

Proof of Rice’s Theorem: Reduce ATM to P

• Suppose P is decided by TM RP .

• Let T∅ be a TM that always rejects, so L(T∅) = ∅.

•Without loss of generality, assume 〈T∅〉 �∈ P. (Otherwise, consider P .)

• Because we assumed P is nontrivial, ∃ TM T with 〈T 〉 ∈ P.

• Now design TM S to decide ATM using RP ’s ability to distinguish
between T∅ and T .

S = “On input 〈M,w〉, where M is a TM and w a string:

1. Use M and w to construct the following TM Mw:

Mw = “On input x:

1. Simulate M on input w. If it halts and rejects, reject.

2. Simulate T on input x. If it accepts, accept .”

2. Use TM RP to determine whether 〈Mw〉 ∈ P.

If YES, accept . If NO, reject.”

CS 341: Chapter 5 5-19

Proof of Rice’s Theorem: Reduce ATM to P (cont.)

• Note that TM Mw simulates T if M accepts w.

• Hence,

L(Mw) = L(T ) if M accepts w,

L(Mw) = ∅ if M does not accept w.

• Therefore, 〈Mw〉 ∈ P iff M accepts w.

• Hence, S decides ATM, which is impossible since ATM is undecidable.

• Thus, P is undecidable.

CS 341: Chapter 5 5-20

Limited Success Thus Far

• Our reductions have been straightforward:

Transform TM for some language into a similar TM that decides
another language

• As a result, the languages we proved are undecidable are similar:

ATM, EQTM, HALTTM, etc.

• For languages concerning questions not about TMs,
we have to use a different approach.

e.g., Hilbert’s 10th problem

• Recall interpretation of TM configuration:

1011q701

current state is q7
LHS of tape is 1011, and RHS of tape is 01

tape head is on RHS 0



CS 341: Chapter 5 5-21

Computation Histories

Definition: An accepting computation history for a TM M on a
string w is a sequence of configurations

C1, C2, . . . , Ck

for some k ≥ 1 such that the following properties hold:

1. C1 is the start configuration of M on w.

2. Each Cj yields Cj+1.

3. Ck is an accepting configuration.

Definition: A rejecting computation history for M on w is the
same except last configuration Ck is a rejecting configuration of M .

CS 341: Chapter 5 5-22

Remarks About Computation Histories

• Accepting and rejecting computation histories are finite.

• If M does not halt on w,

then no accepting or rejecting computation history exists.

• Useful for both

deterministic TMs (one history)

nondeterministic TMs (many histories).

• “〈M,w〉 �∈ ATM” is equivalent to

“� ∃ accepting computation history C1, . . . , Ck for M on w”

“All histories C1, . . . , Ck are non-accepting ones for M on w”.

CS 341: Chapter 5 5-23

Context-Free Languages

Decision problem: Does a CFG generate all strings over Σ?

ALLCFG = { 〈G〉 | G is CFG with L(G) = Σ∗ }

⊆ { 〈G〉 | G is CFG } ≡ ΩALLC.

Theorem 5.13
ALLCFG is undecidable.

Proof Idea: (see Sipser for full proof)

• Approach: Reduce ATM to ALLCFG.

• Construct a CFG G from TM M and input w.

If M does not accept w, then G generates all strings.

If M accepts w, then G generates all strings except the accepting
computation histories for M on w.

• CFG G generates all strings iff TM M does not accept w.

CS 341: Chapter 5 5-24

Mapping Reducibility

• Thus far, we have seen several ways to reduce one problem to another.

• Reductions appear in

decidability theory

complexity theory (as we’ll see later in Chapter 7).

• Now we want to formalize the notion of reducibility.



CS 341: Chapter 5 5-25

Computable Functions

• Suppose we have 2 languages A and B, where

A defined over alphabet Σ1, so A ⊆ Σ∗
1, i.e., universe Ω1 = Σ∗

1

B defined over alphabet Σ2, so B ⊆ Σ∗
2, i.e., universe Ω2 = Σ∗

2

• Informally speaking, A is reducible to B if we can use a “black box” for
B to build an algorithm for A.

•Definition: A function

f : Σ∗
1 → Σ∗

2

is a computable function if some TM M , on every input w ∈ Σ∗
1,

halts with just f(w) ∈ Σ∗
2 on its tape.

• All the usual integer computations are computable:

Addition, multiplication, sorting, etc.

CS 341: Chapter 5 5-26

Computable Functions

One useful class of computable functions transforms one TM into another.

Example:

T = “On input w:
1. If w = 〈M〉, where M is some TM,

• Construct 〈M ′〉, where M ′ is a TM such that
L(M ′) = L(M), but
M ′ never tries to move tape head off LHS of tape.”

The function T accomplishes this by adding several states to the
description of M .

CS 341: Chapter 5 5-27

Mapping Reducibility

Definition: Suppose

• A is defined over alphabet Σ1, so A ⊆ Σ∗
1, i.e., universe Ω1 = Σ∗

1

• B is defined over alphabet Σ2, so B ⊆ Σ∗
2, i.e., universe Ω2 = Σ∗

2

Then A is mapping reducible to B, written

A ≤m B

if there is a computable function

f : Σ∗
1 → Σ∗

2

such that, for every w ∈ Σ∗
1,

w ∈ A ⇐⇒ f(w) ∈ B.

The function f is called a reduction of A to B.
(f is also called a many-one reduction.)

CS 341: Chapter 5 5-28

Language A is Mapping Reducible to B

Ω1 = Σ∗
1

Ω2 = Σ∗
2

A B

f

f

w ∈ A ⇐⇒ f(w) ∈ B

YES instance for problem A ⇐⇒ YES instance for problem B

• Consider decision problems of membership for A and B:

Does instance from Ω1 belong to A?

Does instance from Ω2 belong to B?

• If A ≤m B and can solve membership problem for B,
then can solve membership problem for A.



CS 341: Chapter 5 5-29

Example: Mapping Reduction ATM ≤m HALTTM

• Recall that

ATM = { 〈M,w〉 | M is TM that accepts string w } ⊆ ΩA,

HALTTM = { 〈M,w〉 | M is TM that halts on string w } ⊆ ΩH.

• In this case (but not always), same universes ΩA = ΩH = Ω, with

Ω = { 〈M,w〉 | M is TM, w is string }

•We previously proved that HALTTM is undecidable by showing
ATM reduces to HALTTM.

• To show ATM ≤m HALTTM, need function f : ΩA → ΩH , with

input 〈M,w〉 ∈ ΩA is instance for acceptance problem for TMs

output f(〈M,w〉) = 〈M ′, w′〉 ∈ ΩH is instance for halting
problem for TMs

〈M,w〉 ∈ ATM ⇐⇒ f(〈M,w〉) = 〈M ′, w′〉 ∈ HALTTM.

CS 341: Chapter 5 5-30

Example: Mapping Reduction ATM ≤m HALTTM

• Recall ΩA = ΩH = Ω, with

Ω = { 〈M,w〉 | TM M , string w }

• TM F computes reducing fcn f

ΩA = Ω ΩH = Ω

ATM HALTTM

f

f

F = “On input 〈M,w〉 ∈ ΩA, where M is TM and w is string:

1. Construct the following TM M ′:

M ′ = “On input x:
(1) Run M on input x.
(2) If M accepts, accept .
(3) If M rejects, enter a loop.”

2. Output 〈M ′, w〉 ∈ ΩH .”

• Note that 〈M,w〉 ∈ ATM ⇐⇒ 〈M ′, w〉 ∈ HALTTM.

CS 341: Chapter 5 5-31

Decidability obeys ≤m Ordering

Theorem 5.22
If A ≤m B and B is decidable, then A is decidable.

Proof.

• Let MB be TM that decides B.

• Let f : Σ∗
1 → Σ∗

2 be reducing fcn
from A to B.

• Consider the following TM:

Ω1 = Σ∗
1

Ω2 = Σ∗
2

A B

f

f

MA = “On input w ∈ Σ∗
1:

1. Compute f(w) ∈ Σ∗
2.

2. Run MB on input f(w) and give the same result.”

• Since f is reducing function, w ∈ A ⇐⇒ f(w) ∈ B.

If w ∈ A, then f(w) ∈ B, so MB and MA accept.

If w �∈ A, then f(w) �∈ B, so MB and MA reject.

• Thus, MA decides A.

CS 341: Chapter 5 5-32

Undecidability obeys ≤m Ordering

Corollary 5.23
If A ≤m B and A is undecidable, then B is undecidable also.

Proof. Language A undecidable and B decidable contradicts the
previous theorem.

Recall: Complements A = Σ∗
1 −A and B = Σ∗

2 −B.

Fact: If A ≤m B, then A ≤m B.
Proof.

• Let f be reducing fcn of A to B:

w ∈ A ⇐⇒ f(w) ∈ B.

• Same fcn f shows A ≤m B since

w ∈ A ⇐⇒ f(w) ∈ B.

Ω1 = Σ∗
1

Ω2 = Σ∗
2

A B

f

f



CS 341: Chapter 5 5-33

Recognizability and ≤m

Theorem 5.28
If A ≤m B and B is Turing-recognizable, then A is Turing-recognizable.

Proof.

• Let MB be TM recognizing B.

• Let f be reducing fcn from A to B.

• Define a new TM as follows:

Ω1 = Σ∗
1

Ω2 = Σ∗
2

A B

f

f

MA = “On input w ∈ Σ∗
1:

1. Compute f(w) ∈ Σ∗
2.

2. Run MB on input f(w) and give the same result.”

• Since f is a reducing function, w ∈ A ⇐⇒ f(w) ∈ B.

If w ∈ A, then f(w) ∈ B, so MB and MA accept.

If w �∈ A, then f(w) �∈ B, so MB and MA reject or loop.

• Thus, MA recognizes A.

CS 341: Chapter 5 5-34

Unrecognizability and ≤m

Corollary 5.29
If A ≤m B and A is not Turing-recognizable,
then B is not Turing-recognizable.

Proof. Language A not Turing-recognizable and B Turing-recognizable
contradicts the previous theorem.

Fact: If A ≤m B and A is not co-Turing-recognizable,
then B is not co-Turing-recognizable.
Proof.

• If A is not co-Turing-recognizable,
then complement A is not Turing-recog.

• A ≤m B implies A ≤m B (see slide 5-32).

• B is not Turing-recog. (Corollary 5.29).

• Hence, B is not co-Turing-recognizable.

Ω1 = Σ∗
1

Ω2 = Σ∗
2

A B

f

f

CS 341: Chapter 5 5-35

ETM is not Turing-recognizable

Recall: the emptiness problem for TMs:

ETM = { 〈M〉 | M is TM with L(M) = ∅ }

⊆ { 〈M〉 | M is TM } ≡ ΩE

Proof. Reduce ATM ≤m ETM, and apply Corollary 5.29.

•ΩA = { 〈M,w〉 | TM M , string w }

• Reducing fcn f(〈M,w〉) = 〈M ′〉,
where M ′ is following TM:

ΩA ΩE

ATM ETM

f

f

M ′ = “On input x:

1. Ignore input x, and run M on input w.

2. If M accepts w, accept ; if M rejects w, reject.”

• If M accepts w (i.e., 〈M,w〉 �∈ ATM), then L(M ′) = Σ∗;
if M doesn’t accept w (i.e., 〈M,w〉 ∈ ATM), then L(M ′) = ∅.

• Thus, 〈M,w〉 ∈ ATM ⇐⇒ f(〈M,w〉) = 〈M ′〉 ∈ ETM.

• Cor. 5.29 implies ETM not TM-recog. since ATM also isn’t (Cor. 4.23).

CS 341: Chapter 5 5-36

Theorem 5.30: EQTM is not Turing-recognizable

EQTM = { 〈M1,M2〉 | M1,M2 are TMs with L(M1) = L(M2) }

⊆ { 〈M1,M2〉 | M1,M2 are TMs } ≡ ΩEQ

Proof. Reduce ATM ≤m EQTM, and apply Corollary 5.29.

• Reduction f(〈M,w〉) = 〈M1,M2〉
ΩA = {〈M,w〉 |

TM M , string w}
ΩEQ

ATM EQTM

f

f� M1 = “reject on all inputs.”

� M2 = “On input x:

1. Ignore input x, and run M on w.

2. If M accepts w, accept ; if M rejects w, reject.”

• L(M1) = ∅.

• If M accepts w (i.e., 〈M,w〉 �∈ ATM), then L(M2) = Σ∗.
If M doesn’t accept w (i.e., 〈M,w〉 ∈ ATM), then L(M2) = ∅.

• Thus, 〈M,w〉 ∈ ATM ⇐⇒ f(〈M,w〉) = 〈M1,M2〉 ∈ EQTM.

• ATM not TM-recognizable (Cor. 4.23),
so EQTM not TM-recognizable by Corollary 5.29.



CS 341: Chapter 5 5-37

Theorem 5.30: EQTM is not co-Turing-recognizable

EQTM = { 〈M1,M2〉 | M1,M2 are TMs with L(M1) = L(M2) }

⊆ { 〈M1,M2〉 | M1,M2 are TMs } ≡ ΩEQ

Proof. Reduce ATM ≤m EQTM, and apply Fact on slide 5-34.

• Reduction f(〈M,w〉) = 〈M1,M2〉
ΩA = {〈M,w〉 |

TM M , string w}
ΩEQ

ATM EQTM

f

f� M1 = “accept on all inputs.”

� M2 = “On input x:

1. Ignore input x, and run M on w.

2. If M accepts w, accept ; if M rejects w, reject.”

• L(M1) = Σ∗.

• If M accepts w (i.e., 〈M,w〉 ∈ ATM), then L(M2) = Σ∗.
If M doesn’t accept w (i.e., 〈M,w〉 �∈ ATM), then L(M2) = ∅.

• 〈M,w〉 ∈ ATM ⇐⇒ f(〈M,w〉) = 〈M1,M2〉 ∈ EQTM.

• Because ATM is not co-Turing-recognizable,
EQTM is not co-Turing-recognizable by Fact on slide 5-34.

CS 341: Chapter 5 5-38

Summary of Chapter 5

• Computable function f : Σ∗
1 → Σ∗

2 has TM that maps

strings in Σ∗
1 (i.e., instances of one problem)

to strings in Σ∗
2 (i.e., instances of another problem)

•Mapping reduction A ≤m B:
w ∈ A ⇐⇒ f(w) ∈ B, for some computable function f .

If I can solve B, then I can solve A.

If I can’t solve A, then I can’t solve B.

• Undecidable problems: ATM, HALTTM, ETM, REGTM, EQTM,
ALLCFG

• Rice’s Theorem: any nontrivial property of the language of a TM is
undecidable.

• ETM is not Turing-recognizable.

• EQTM is neither Turing-recognizable nor co-Turing-recognizable.


