CS 341: Foundations of CS Il

Marvin K. Nakayama
Computer Science Department
New Jersey Institute of Technology
Newark, NJ 07102

CS 341: Chapter 5 5-2

Chapter 5
Reducibility
Contents
e Reducing One Problem to Another
e Examples of Undecidable Problems (Languages)
e Mapping Reducibility

e Examples of Non-Turing-Recognizable Problems (Languages)

CS 341: Chapter 5

Introduction

e Previously, we saw

» Church-Turing Thesis
= Many problems are solvable using TMs
= One problem (language), Atwm, is unsolvable by TMs, where

Atm = {(M,w) | M is a TM that accepts string w }

e We now will see many other computationally unsolvable problems.

e We will do this by using reductions.

e Example:

Finding your way around a city
reduces to
obtaining a city map.

5-3

CS 341: Chapter 5
Reducibility

e Reduction always involves two problems (languages), A and B.

e Definition: If A reduces to B, then can use any solution of B to
solve A.

e Remarks:
= We showed that Aypa is decidable by reducing Anra to Apfa.
= Definition of reduction says nothing about solving A or B alone.
m If A is reducible to B, then A cannot be harder than B.
= [he statement “p = ¢" is equivalent to “—q = —p".
= Suppose A reduces to B. Then

A If | can solve B, then | can solve A.
a Equivalently, if | can't solve A, then | can't solve B.
a Equivalently, if A is undecidable, then B is undecidable.

5-4

CS 341: Chapter 5 5-5
Reducibility

e |t required some effort to prove that Aty is not decidable.

e But now we can build on this result as follows:
= To show another language L is undecidable,
we typically show Aty reduces to L.
» If “language L is decidable” implies “Aty is decidable,”
then L is not decidable.

e Typical approach to show L is undecidable via reduction from A1y to L

= Suppose L is decidable.
s Let R be a TM that decides L.
= Using R as subroutine,
A can construct another TM S that decides Aty.
s But Aty is not decidable.
= Conclusion: L is not decidable.

CS 341: Chapter 5 5-6
Halting Problem for TMs is Undecidable
e Recall that Aty (acceptance problem for TMs) is undecidable, where
At = {(M,w)| M is TM that accepts string w }.
e Another decision problem: Does TM M halt on input w?
HALTty = {(M,w)| M is TM that halts on string w }.
e In this case (but not others), Aty and HALT' 1y have same universe
Q = {(M,w)| M is TM, w is string }.
e Given (M, w) € €2 of specific pair of TM M and string w,

w if M halts on input w, then (M, w) € HALT 1y,
w if M doesn't halt on input w, then (M, w) ¢ HALT 1.

e How does HALTTM differ from ATM?

Theorem 5.1
HALT+Ty is undecidable.

CS 341: Chapter 5 5-7
Basic ldea of Proof that HALT 1y is Undecidable

At = {(M,w)| M isa TM and M accepts string w },
HALTty = {(M,w)| M isa TM and M halts on string w }.

Basic idea of proof by contradiction: reduce Aty to HALT 1\

e Suppose 3 TM R that decides HALT 1.
e How could we use R to construct TM to decide Aty?
e Recall universal TM U recognizes Ay:

U = "“Oninput (M, w) € 2, where M isa TM and w is a string:
1. Simulate M on input w.
2. If M ever enters its accept state, accept;
if M ever enters its reject state, reject.”

e U doesn’t decide Aty since M may loop on w in stage 1.

e Solution: first run R on (M, w) to see if it's safe to run M on w.

CS 341: Chapter 5 5-8
Proof that HALT 1\ is Undecidable
Amm = {(M,w)| M isa TM and M accepts string w },
HALTty = {{(M,w)| M isa TM and M halts on string w }.
e Assume 3 TM R that decides HALT 1.

e Define TM S to decide Aty using TM R as follows:

S = "On input (M, w) € €2, where M isa TM and w a string:
1. Run R on input (M, w).
2. If R rejects, reject.
3. If R accepts, simulate M on input w until it halts.
4. If M accepts, accept; otherwise, reject.”

e TM S always halts and decides Aty
» S accepts (M, w) € Aty, and S rejects (M, w) & Arw.
e Thus, deciding Aty is reduced to deciding HALT 1.
e But Aty is undecidable, so HA LT 1) must also be undecidable.

CS 341: Chapter 5 5-9

Emptiness Problem for TMs is Undecidable
e Decision problem: Does a TM M recognize the empty language?
Emwm={(M)|MisaTMand L(M) =0}
C{(M)| MisaTM} = Qp,
where universe 2z comprises all TMs.
e For a specific encoded TM (M) € Qf,

n if M accepts at least one string, then (M) ¢ Erw,
w if M accepts no strings, then (M) € Ey.

Theorem 5.2
Eq\ is undecidable.
Proof ldea: Reduce Aty to Etw.

e Suppose FEmy is decidable.
e Let R be a TM that decides Ery.
e Use TM R to construct another TM S that decides Aty.

e But since Aty is undecidable, Ety must also be.

CS 341: Chapter 5 5-10

Constructing Decider S for Aty From Decider R for Ety
Emm = {(M)| MisaTMand L(M) =0}
e Bad Idea: When S receives input (M, w), it calls R with input (M).

s If R accepts, then L(M) = 0.
a In particular, M does not accept w, so S rejects input (M, w).
s If R rejects, then L(M) # (), so M accepts at least one string.
A But don't know if M accepts w, so TM S can't decide At.

e Fix: Create another TM M7 from TM M and w as follows:

M1 = "“On input z:
1. If x # w, reject.
2. If x = w, run M on input w, and accept iff M accepts.”

= w is only string Mq could accept, so one of 2 cases occurs:
alf (M, w> € Atwm, then L(M7) = {w}, SO <M1> Z ETw.
a If (M, w) & Ary, then L(M7) =0, so (M1) € Etn.

CS 341: Chapter 5 5-11

Proof: Exm = {(M)| M is TM and L(M) = (0} is Undecidable

e Reduce Aty to Eqy: suppose 3 TM R that decides Eqy.

e Define TM S to decide Aty using decider R for Ety as follows:
S = "On input (M, w), where M is a TM and w is a string:
1. Construct TM M7 from M and w as follows:
My = "On input z:
(1) If x #= w, reject.
(2) If z = w, run M on input w,
and accept iff M accepts.”
2. Run R on input (M7).
3. If R accepts, reject; if R rejects, accept.”

e Note that

(M1) € Etm <= L(Mj1) #0 <= M accepts w

= (M,w) € Atm.
e But then TM S decides A1y, which is undecidable.

e Therefore, TM R cannot exist, so E1y is undecidable.

CS 341: Chapter 5 5-12

TM Recognizing Regular Language is Undecidable

e Decision problem: Does a TM M recognize a regular language?
REGtq = {(M)| M isa TM and L(M) is a regular language }
C{{M)|MisaTM} = Qppg,

where universe Q2 p ¢ comprises all TMs.
e For a specific encoded TM (M) € Qrpa,

w if L(M) is regular, then (M) € REG 1w,
w if L(M) is nonregular, then (M) € REG 1y.

Theorem 5.3
REG 1y is undecidable.
Proof Idea: Reduce Aty to REG 1.

e Assume REG 1y is decidable.
e Let R be a TM that decides REG 1.
e Use TM R to construct TM S that decides Atp.

e But how do we do this?

CS 341: Chapter 5 5-13
Constructing Decider S for Aty from Decider R for REG 1

REGty = {{(M)| M isa TM and L(M) is a regular language }.
e TM S is given input (M, w).

e TM S first constructs a TM M’ using (M, w) so that
L(M") is a regular language if and only if M accepts w.

» If M does not accept w, then M’ recognizes language
{0"1"|n>0},
which is nonregular.
» If M accepts w, then M’ recognizes language > *, which is regular.
e We construct M’ as follows:

» M’ automatically accepts all strings in {0 1| n > 0}.
=« In addition, if M accepts w, then M’ accepts all other strings.

CS 341: Chapter 5 5-14
Proof that REG 1n is Undecidable

e Suppose that REG 1y is decidable.
o Let R be a TM that decides REG 1.
e Use R to construct TM S to decide Atpy:
S = “On input (M, w), where M is a TM and w is a string:
1. Construct following TM M’ from M and w:
M’ = "On input z:
1. Ifze{0"1"|n>0}, accept.
2. fzg{0"1"|n >0}, run M on input w
and accept iff M accepts w."
2. Run R on input (M’).
3. If R accepts, accept; if R rejects, reject.”

° <M/> € REGty <= (M,w) € A,
so S decides ATy, which is impossible.

CS 341: Chapter 5 5-15
Equivalence of 2 TMs is Undecidable

e Decision problem: Do 2 TMs recognize the same language?

EQmwm = {(My, Ma)| My, M2 are TMs and L(M;) = L(M2) }
C {(My, M) | M1, My are TMs } = QEQ,

where universe 2 py comprises all pairs of TMs.
e For any specific encoded pair (M1, M>) € Q2gq,

w if L(M1) = L(M>), then (M7, M) € EQwm,
n if L(M7) 7= L(M2), then (M7, Mp) & EQtm.

Theorem 5.4
E Q1w is undecidable.

CS 341: Chapter 5 5-16
Proof that EQtn is Undecidable

e Recall

EQ = { (M, M2)| My, M3 are TMs and L(M;) = L(M2) }.

e Reduce E1y to EQT\m as follows:

n Let My = MQ) be a TM with L(M@) = (.
= A TM that decides EQrwm can also decide Eqy by deciding if
(M1, M@) € EQTm.

A (Mq) € Bty <= (Ml,M@> € EQtm

e Since Ery is undecidable (Theorem 5.2), EQ1y must be undecidable.

o We'll see later that EQy is

= not Turing-recognizable

= not co-Turing-recognizable

CS 341: Chapter 5 5-17
Other Undecidable Problems

e Does a TM recognize a finite language?

e Does a TM recognize a context-free language?
e Does a TM recognize a decidable language?

e Does a TM halt on all inputs?

e Does a TM have a state that is never entered on any input string?

Rice’s Theorem.

e Informally: Every non-trivial property P of languages of Turing
machines is undecidable.

e Formally: Let P be a language consisting of TM descriptions such that

1. P contains some, but not all, TM descriptions, and
2. whenever L(M7) = L(M>), we have (M) € P iff (Ms) € P.

Then P is undecidable.

CS 341: Chapter 5 5-18

Proof of Rice’s Theorem: Reduce Aty to P

e Suppose P is decided by TM Rp.

e Let T) be a TM that always rejects, so L(Tp) = 0.

e Without loss of generality, assume (T})) ¢ P. (Otherwise, consider P.)
e Because we assumed P is nontrivial, 3 TM T with (T") € P.

e Now design TM S to decide Aty using Rp's ability to distinguish
between Tj and T'.

S = "On input (M, w), where M isa TM and w a string:
1. Use M and w to construct the following TM My,:
w = "On input z:
1. Simulate M on input w. If it halts and rejects, reject.
2. Simulate T" on input x. If it accepts, accept.”
2. Use TM Rp to determine whether (M) € P.
If YES, accept. If NO, reject.”

CS 341: Chapter 5 5-19
Proof of Rice’s Theorem: Reduce Aty to P (cont.)
e Note that TM M, simulates T" if M accepts w.
e Hence,
s L(My) = L(T) if M accepts w,
s L(My) = 0 if M does not accept w.
e Therefore, (My,) € P iff M accepts w.
e Hence, S decides A1y, which is impossible since Aty is undecidable.
e Thus, P is undecidable.

CS 341: Chapter 5 5-20

Limited Success Thus Far

e Our reductions have been straightforward:

= Transform TM for some language into a similar TM that decides
another language

e As a result, the languages we proved are undecidable are similar:

s A1y, EQtwm, HALTty, etc.

e For languages concerning questions not about TMs,
we have to use a different approach.
= e.g., Hilbert's 10th problem
e Recall interpretation of TM configuration:
1011¢701
= current state is g7
s LHS of tape is 1011, and RHS of tape is 01
= tape head is on RHS O

CS 341: Chapter 5 5-21

Computation Histories

Definition: An accepting computation history for a TM M on a
string w is a sequence of configurations

C1,Co,...,Cy,
for some k > 1 such that the following properties hold:
1. Cq is the start configuration of M on w.
2. Each Cj yields Cj 4 1.

3. C} is an accepting configuration.

Definition: A rejecting computation history for M on w is the
same except last configuration C}, is a rejecting configuration of M.

CS 341: Chapter 5 5-22

Remarks About Computation Histories

e Accepting and rejecting computation histories are finite.

e If M does not halt on w,

= then no accepting or rejecting computation history exists.

e Useful for both

= deterministic TMs (one history)
= nondeterministic TMs (many histories).

o “(M,w) & Atm" is equivalent to
» A accepting computation history C1,...,C}. for M on w"
= “All histories C'1, ..., C}, are non-accepting ones for M on w".

CS 341: Chapter 5 5-23
Context-Free Languages
Decision problem: Does a CFG generate all strings over 37
ALLcre = {(G)| G is CFG with L(G) = X*}
C{{(G)| GisCFG} = QarLC-

Theorem 5.13
AL Lcgg is undecidable.

Proof Idea: (see Sipser for full proof)

e Approach: Reduce Aty to AL Lcpg.
e Construct a CFG G from TM M and input w.

» If M does not accept w, then G generates all strings.
» If M accepts w, then GG generates all strings except the accepting
computation histories for M on w.

e CFG G generates all strings iff TM M does not accept w.

CS 341: Chapter 5 5-24
Mapping Reducibility

e Thus far, we have seen several ways to reduce one problem to another.

e Reductions appear in

= decidability theory
» complexity theory (as we'll see later in Chapter 7).

e Now we want to formalize the notion of reducibility.

CS 341: Chapter 5 5-25
Computable Functions

e Suppose we have 2 languages A and B, where

» A defined over alphabet 31, so A C X7, i.e,, universe 27 = >3
» B defined over alphabet 35, so B C 3%, i.e., universe 25 = 35

e Informally speaking, A is reducible to B if we can use a “black box” for
B to build an algorithm for A.

e Definition: A function
fish o555
is a computable function if some TM M, on every input w € 37,
halts with just f(w) € X5 on its tape.

e All the usual integer computations are computable:

= Addition, multiplication, sorting, etc.

CS 341: Chapter 5 5-26

Computable Functions

One useful class of computable functions transforms one TM into another.

Example:

T = “On input w:
L. If w= (M), where M is some TM,
e Construct (M'), where M’ is a TM such that
s L(M'") = L(M), but
m M’ never tries to move tape head off LHS of tape.”

The function T" accomplishes this by adding several states to the
description of M.

CS 341: Chapter 5 5-27
Mapping Reducibility

Definition: Suppose

e A is defined over alphabet 31, so A C 37, i.e,, universe 27 = 3]
e B3 is defined over alphabet 35, so B C 3%, i.e., universe Q2o = 3%

Then A is mapping reducible to B, written
A<n B
if there is a computable function
fisi 3
such that, for every w € X7,
weA <<= f(w)€EB.

The function f is called a reduction of A to B.
(f is also called a many-one reduction.)

CS 341: Chapter 5 5-28
Language A is Mapping Reducible to B

./ \‘.
f
weA — f(w) € B

YES instance for problem A <= YES instance for problem B

e Consider decision problems of membership for A and B:

» Does instance from €27 belong to A7
= Does instance from €25 belong to B?

e If A <, B and can solve membership problem for B,
then can solve membership problem for A.

CS 341: Chapter 5 5-29
Example: Mapping Reduction Aty <m HALTtm

e Recall that
At = {(M,w) | M is TM that accepts string w } C 4,
HALTty = {(M,w)| M is TM that halts on string w } C Q.
e In this case (but not always), same universes Q24 = Qg = 2, with
Q = {(M,w)| M is TM, w is string }
e We previously proved that HA LTy is undecidable by showing
Atm reduces to HALT 1.
e To show Aty <m HALTTy, need function f : Q4 — Qp, with

w input (M, w) € €24 is instance for acceptance problem for TMs

» output fF({M,w)) = (M’ ,w'y € Qp is instance for halting
problem for TMs

» (M,w) € Aty <= f((M, w)) = (M’,w’) € HALTt\.

CS 341: Chapter 5 5-30

Example: Mapping Reduction Aty <m HALTtm
o Recall 24 = Qg = 2, with s
Q={(M,w)| TM M, string w } o s

CAED

F = "On input (M, w) € 24, where M is TM and w is string:
1. Construct the following TM M-
M’ = "On input z:
(1) Run M on input x.
(2) If M accepts, accept.
(3) If M rejects, enter a loop.”
2. Output (M’ w) € Qg."

Q4 =Q

e TM F' computes reducing fcn f

e Note that (M, w) € Aty < (M',w) € HALT\.

CS 341: Chapter 5 5-31

Decidability obeys <,, Ordering
Theorem 5.22
If A <,, B and B is decidable, then A is decidable.

Proof.
e Let Mp be TM that decides B.

olet f: 3] — X% be reducing fcn
from A to B.

e Consider the following TM:
My = “Oninput w € X7:
1. Compute f(w) € 5.
2. Run Mp on input f(w) and give the same result.”

e Since f is reducing function, w € A <— f(w) € B.

w Ifw € A, then f(w) € B, so Mp and M 4 accept.
w Ifw ¢ A, then f(w) € B, so Mp and M 4 reject.

e Thus, M 4 decides A.

CS 341: Chapter 5 5-32
Undecidability obeys <,, Ordering

Corollary 5.23
If A <., B and A is undecidable, then B is undecidable also.

Proof. Language A undecidable and B decidable contradicts the
previous theorem.

Recall: Complements A =33 — Aand B= X% — B.

Fact: If A <, B, then A <, B.
Proof.

e Let f be reducing fcn of A to B:

weA <— f(w)eB.

e Same fcn f shows A <., B since

weA <— f(w)eBhB.

CS 341: Chapter 5 5-33

Recognizability and <,
Theorem 5.28
If A <m B and B is Turing-recognizable, then A is Turing-recognizable.

Proof. Q = ¥ Qp = 35

e Let f be reducing fcn from A to B.

e Define a new TM as follows:

e Let Mp be TM recognizing B. | T
f
My = "Oninput w € X7:
1. Compute f(w) € 5.
2. Run Mp on input f(w) and give the same result.”

e Since f is a reducing function, w € A <— f(w) € B.

w Ifw e A, then f(w) € B, so Mg and M 4 accept.
w Ifw & A, then f(w) € B, so Mp and M 4 reject or loop.

e Thus, M 4 recognizes A.

CS 341: Chapter 5 5-34

Unrecognizability and <,
Corollary 5.29
If A <., B and A is not Turing-recognizable,
then B is not Turing-recognizable.

Proof. Language A not Turing-recognizable and B Turing-recognizable
contradicts the previous theorem.

Fact: If A <, B and A is not co-Turing-recognizable,
then B is not co- Turing-recognizable.

Proof.
e If A is not co-Turing-recognizable, o = ;[=
then complement A is not Turing-recog. — —,

o A <, Bimplies A <, B (see slide 5-32).
e B is not Turing-recog. (Corollary 5.29).

e Hence, B is not co-Turing-recognizable.

CS 341: Chapter 5 5-35
Etm is not Turing-recognizable
Recall: the emptiness problem for TMs:
Etm={{(M)| M is TM with L(M) =0}
C{(M)|MisTM} = Qp
Proof. Reduce Aty <m Etm, and apply Corollary 5.29.
ey = {(M,w)| TM M, string w } 4 /

Q/F\\.
e Reducing fcn f((M, w)) = (M),
where M/ is following TM:

L
M' = “On input z:

1. lgnore input x, and run M on input w.

Qp

2. If M accepts w, accept; if M rejects w, reject.”

o If M accepts w (i.e., (M, w) € Atwm), then L(M') = ¥,
if M doesn't accept w (i.e., (M, w) € Aty), then L(M') = 0.

e Thus, (M,w) € Aty <= [f((M,w)) = (M) € Etu.
e Cor. 5.29 implies E1y not TM-recog. since Aty also isn't (Cor. 4.23).

CS 341: Chapter 5 5-36

Theorem 5.30: EQtwm is not Turing-recognizable
EQtm = { (M1, M5) | My, My are TMs with L(M1) = L(M>) }
C { (M1, M) | My, M5 are TMs } = Qpq
Proof. Reduce Aty <m EQtwm, and apply Corollary 5.29.

Q4= {(M,w)| . Qp
B Vs sringw}| Q
/d\

A My = “reject on all inputs.”

I
A Mo = “Oninput z: F\

1. Ignore input =, and run M on w.

e Reduction f((M,w)) = (My, M>)

2. If M accepts w, accept; if M rejects w, reject.”
o L(M1) =0.

o If M accepts w (i.e., (M,w) & Arwm), then L(M5) = *.
If M doesn't accept w (i.e., (M,w) € Ary), then L(Ms) = 0.

o Thus, (M, w) € Atm <= f((M,w)) = (M1, M3) € EQrw.

e Aty not TM-recognizable (Cor. 4.23),
so EQtm not TM-recognizable by Corollary 5.29.

CS 341: Chapter 5 5-37

Theorem 5.30: EQtwm is not co-Turing-recognizable
EQtm = { (M1, M5) | My, My are TMs with L(M1) = L(M>) }
C {(M1, M) | My, M5 are TMs } = Qpq
Proof. Reduce Aty <m EQtwm, and apply Fact on slide 5-34.

Q4= {(M,w) | Q
M sringw}| f EQ

T

A M1 = “accept on all inputs.”

f
A Mo = "“On input x: F\

e Reduction f({(M,w)) = (M7, M>)

1. Ignore input x, and run M on w.
2. If M accepts w, accept; if M rejects w, reject.”

o L(Mp) = ¥*.

o If M accepts w (i.e., (M,w) € Arwm), then L(My) = *.
If M doesn't accept w (i.e., (M,w) ¢ Atn), then L(My) = (.

.<M,U)> € Atn <~ f(<M7w>):<MlaM2> € EQtwm-

e Because Aty is not co-Turing-recognizable,
EQTwm is not co-Turing-recognizable by Fact on slide 5-34.

CS 341: Chapter 5
Summary of Chapter 5

e Computable function f : 37 — 3% has TM that maps

= strings in X} (i.e., instances of one problem)

= to strings in X% (i.e., instances of another problem)

e Mapping reduction A <, B:
w € A <= f(w) € B, for some computable function f.

a If | can solve B, then | can solve A.
m If | can't solve A, then | can't solve B.

e Undecidable problems: A1y, HALT 1w, Etm, REG v, EQtwm,
ALLcrg

e Rice's Theorem: any nontrivial property of the language of a TM is
undecidable.

e Fy is not Turing-recognizable.

e FQtwm is neither Turing-recognizable nor co-Turing-recognizable.

5-38

