CS 341: Foundations of CS II Marvin K. Nakayama Computer Science Department New Jersey Institute of Technology Newark, NJ 07102	5-2 Chapter 5 Reducibility 5-2 Contents • Reducing One Problem to Another • Examples of Undecidable Problems (Languages) • Mapping Reducibility • Examples of Non-Turing-Recognizable Problems (Languages)
CS 341: Chapter 5 5-3 Introduction	CS 341: Chapter 5 5-4 Reducibility
 Previously, we saw Church-Turing Thesis Many problems are solvable using TMs One problem (language), A_{TM}, is unsolvable by TMs, where 	 Reduction always involves two problems (languages), A and B. Definition: If A reduces to B, then can use any solution of B to solve A.
 A_{TM} = { ⟨M, w⟩ M is a TM that accepts string w } We now will see many other computationally unsolvable problems. We will do this by using reductions. 	 Remarks: We showed that A_{NFA} is decidable by reducing A_{NFA} to A_{DFA}. Definition of reduction says nothing about solving A or B alone. If A is reducible to B, then A cannot be harder than B. The statement "p ⇒ q" is equivalent to "¬q ⇒ ¬p".
• Example: Finding your way around a city reduces to obtaining a city map.	 Suppose A reduces to B. Then If I can solve B, then I can solve A. Equivalently, if I can't solve A, then I can't solve B. Equivalently, if A is undecidable, then B is undecidable.

<i>CS 341: Chapter 5</i> 5-5	<i>CS 341: Chapter 5</i> 5-6
Reducibility	Halting Problem for TMs is Undecidable
• It required some effort to prove that A_{TM} is not decidable.	• Recall that A_{TM} (acceptance problem for TMs) is undecidable, where
• But now we can build on this result as follows:	$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is TM that accepts string } w \}.$
 To show another language L is undecidable, we typically show A_{TM} reduces to L. If "language L is decidable" implies "A_{TM} is decidable," then L is not decidable. Typical approach to show L is undecidable via reduction from A_{TM} to L Suppose L is decidable. Let R be a TM that decides L. Using R as subroutine, a can construct another TM S that decides A_{TM}. But A_{TM} is not decidable. Conclusion: L is not decidable. 	 Another decision problem: Does TM M halt on input w? HALT_{TM} = { ⟨M, w⟩ M is TM that halts on string w }. In this case (but not others), A_{TM} and HALT_{TM} have same universe Ω = { ⟨M, w⟩ M is TM, w is string }. Given ⟨M, w⟩ ∈ Ω of specific pair of TM M and string w, if M halts on input w, then ⟨M, w⟩ ∈ HALT_{TM}, if M doesn't halt on input w, then ⟨M, w⟩ ∉ HALT_{TM}. How does HALT_{TM} differ from A_{TM}?
<i>CS 341: Chapter 5</i> 5-7	CS 341: Chapter 5 5-8
CS 341: Chapter 5 5-7 Basic Idea of Proof that HALT _{TM} is Undecidable 5-7	
	<i>CS 341: Chapter 5</i> 5-8
Basic Idea of Proof that $HALT_{TM}$ is Undecidable $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts string } w \},$	CS 341: Chapter 55-8Proof that $HALT_{TM}$ is Undecidable $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts string } w \},$ $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on string } w \}.$ • Assume \exists TM R that decides $HALT_{TM}$.
Basic Idea of Proof that $HALT_{TM}$ is Undecidable $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts string } w \},$ $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on string } w \}.$	CS 341: Chapter 55-8Proof that $HALT_{TM}$ is Undecidable $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts string } w \},$ $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on string } w \}.$ • Assume $\exists TM R$ that decides $HALT_{TM}$.• Define TM S to decide A_{TM} using TM R as follows:
Basic Idea of Proof that $HALT_{TM}$ is Undecidable $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts string } w \},$ $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on string } w \}.$ Basic idea of proof by contradiction: reduce A_{TM} to $HALT_{TM}$ • Suppose $\exists TM R$ that decides $HALT_{TM}$. • How could we use R to construct TM to decide A_{TM} ? • Recall universal TM U recognizes A_{TM} : $U = \text{``On input } \langle M, w \rangle \in \Omega$, where M is a TM and w is a string:	CS 341: Chapter 55-8Proof that $HALT_{TM}$ is Undecidable $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts string } w \},$ $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on string } w \}.$ • Assume \exists TM R that decides $HALT_{TM}$.
Basic Idea of Proof that $HALT_{TM}$ is Undecidable $A_{TM} = \{ \langle M, w \rangle M \text{ is a TM and } M \text{ accepts string } w \},$ $HALT_{TM} = \{ \langle M, w \rangle M \text{ is a TM and } M \text{ halts on string } w \}.$ Basic idea of proof by contradiction: reduce A_{TM} to $HALT_{TM}$ • Suppose \exists TM R that decides $HALT_{TM}$. • How could we use R to construct TM to decide A_{TM} ? • Recall universal TM U recognizes A_{TM} :	CS 341: Chapter 55-8Proof that $HALT_{TM}$ is Undecidable $A_{TM} = \{ \langle M, w \rangle M \text{ is a TM and } M \text{ accepts string } w \},$ $HALT_{TM} = \{ \langle M, w \rangle M \text{ is a TM and } M \text{ halts on string } w \}.$ • Assume \exists TM R that decides $HALT_{TM}.$ • Define TM S to decide A_{TM} using TM R as follows: $S = \text{"On input } \langle M, w \rangle \in \Omega$, where M is a TM and w a string:1. Run R on input $\langle M, w \rangle.$ 2. If R rejects, $reject.$ 3. If R accepts, simulate M on input w until it halts.
Basic Idea of Proof that $HALT_{TM}$ is Undecidable $A_{TM} = \{ \langle M, w \rangle M \text{ is a TM and } M \text{ accepts string } w \},$ $HALT_{TM} = \{ \langle M, w \rangle M \text{ is a TM and } M \text{ halts on string } w \}.$ Basic idea of proof by contradiction: reduce A_{TM} to $HALT_{TM}$ • Suppose \exists TM R that decides $HALT_{TM}$. • How could we use R to construct TM to decide A_{TM} ? • Recall universal TM U recognizes A_{TM} : $U = \text{"On input } \langle M, w \rangle \in \Omega$, where M is a TM and w is a string: 1. Simulate M on input w . 2. If M ever enters its accept state, $accept$;	5-8Proof that $HALT_{TM}$ is Undecidable $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts string } w \},$ $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on string } w \}.$ • Assume \exists TM R that decides $HALT_{TM}$.• Define TM S to decide A_{TM} using TM R as follows: $S = \text{"On input } \langle M, w \rangle \in \Omega$, where M is a TM and w a string:1. Run R on input $\langle M, w \rangle$.2. If R rejects, $reject$.3. If R accepts, simulate M on input w until it halts.4. If M accepts, accept; otherwise, $reject$."• TM S always halts and decides A_{TM}

5-9

Emptiness Problem for TMs is Undecidable

• **Decision problem:** Does a TM M recognize the empty language?

$$E_{\mathsf{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$$

$$\subseteq \{ \langle M \rangle \mid M \text{ is a TM} \} \equiv \Omega_E,$$

where universe Ω_E comprises all TMs.

- For a specific encoded TM $\langle M \rangle \in \Omega_E$,
 - if M accepts at least one string, then $\langle M \rangle \not\in E_{\mathsf{TM}},$
 - if M accepts no strings, then $\langle M \rangle \in E_{\mathsf{TM}}$.

Theorem 5.2

 E_{TM} is undecidable.

Proof Idea: Reduce A_{TM} to E_{TM} .

- Suppose E_{TM} is decidable.
- Let R be a TM that decides E_{TM} .

• Use TM R to construct another TM S that decides $A_{\rm TM}.$

• But since A_{TM} is undecidable, E_{TM} must also be.

CS 341: Chapter 5

5-11

Proof: $E_{\mathsf{TM}} = \{ \langle M \rangle \mid M \text{ is TM and } L(M) = \emptyset \}$ is Undecidable

- Reduce A_{TM} to E_{TM} : suppose $\exists \mathsf{TM} \ R$ that decides E_{TM} .
- Define TM S to decide A_{TM} using decider R for E_{TM} as follows:
 - S = "On input $\langle M, w \rangle$, where M is a TM and w is a string:
 - 1. Construct TM M_1 from M and w as follows:

 $M_1 =$ "On input x:

- (1) If $x \neq w$, reject.
- (2) If x = w, run M on input w,
 - and accept iff M accepts."
- 2. Run R on input $\langle M_1 \rangle$.
- 3. If R accepts, reject; if R rejects, accept."
- Note that

 $\langle M_1 \rangle \not\in E_{\mathsf{TM}} \iff L(M_1) \neq \emptyset \iff M \text{ accepts } w$ $\iff \langle M, w \rangle \in A_{\mathsf{TM}}.$

- But then TM S decides A_{TM} , which is undecidable.
- Therefore, TM R cannot exist, so $E_{\rm TM}$ is undecidable.

CS 341: Chapter 5

Constructing Decider S for A_{TM} From Decider R for E_{TM}

 $E_{\mathsf{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$

- Bad Idea: When S receives input $\langle M, w \rangle$, it calls R with input $\langle M \rangle$.
 - If R accepts, then $L(M) = \emptyset$.
 - ▲ In particular, M does not accept w, so S rejects input $\langle M, w \rangle$.
 - If R rejects, then $L(M) \neq \emptyset$, so M accepts at least one string.
 - ▲ But don't know if M accepts w, so TM S can't decide A_{TM} .
- Fix: Create another TM M_1 from TM M and w as follows:

$$M_1 =$$
 "On input x:

- 1. If $x \neq w$, reject.
- 2. If x = w, run M on input w, and accept iff M accepts."
- w is only string M_1 could accept, so one of 2 cases occurs:
- If $\langle M, w \rangle \in A_{\mathsf{TM}}$, then $L(M_1) = \{w\}$, so $\langle M_1 \rangle \not\in E_{\mathsf{TM}}$.
- If $\langle M, w \rangle \notin A_{\mathsf{TM}}$, then $L(M_1) = \emptyset$, so $\langle M_1 \rangle \in E_{\mathsf{TM}}$.
- CS 341: Chapter 5

TM Recognizing Regular Language is Undecidable

• **Decision problem:** Does a TM *M* recognize a regular language?

 $REG_{\mathsf{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language} \}$ $\subset \{ \langle M \rangle \mid M \text{ is a TM} \} \equiv \Omega_{REG},$

where universe Ω_{REG} comprises all TMs.

- For a specific encoded TM $\langle M \rangle \in \Omega_{REG}$,
 - if L(M) is regular, then $\langle M \rangle \in REG_{\mathsf{TM}}$,
 - if L(M) is nonregular, then $\langle M \rangle \notin REG_{\mathsf{TM}}$.

Theorem 5.3

 REG_{TM} is undecidable.

Proof Idea: Reduce A_{TM} to REG_{TM} .

- Assume REG_{TM} is decidable.
- Let R be a TM that decides REG_{TM} .
- Use TM R to construct TM S that decides A_{TM} .
- But how do we do this?

5-12

<i>CS 341: Chapter 5</i> 5-13	<i>CS 341: Chapter 5</i> 5-14
Constructing Decider S for A_{TM} from Decider R for REG_{TM}	Proof that REG_{TM} is Undecidable
$REG_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language } \}.$	• Suppose that REG_{TM} is decidable.
• TM S is given input $\langle M, w \rangle$.	• Let R be a TM that decides REG_{TM} .
 TM S first constructs a TM M' using ⟨M, w⟩ so that L(M') is a regular language if and only if M accepts w. If M does not accept w, then M' recognizes language 	 Use R to construct TM S to decide A_{TM}: S = "On input ⟨M, w⟩, where M is a TM and w is a string: 1. Construct following TM M' from M and w: M' = "On input x:
$\{ 0^n 1^n n \ge 0 \},\$ which is nonregular . If M accepts w , then M' recognizes language Σ^* , which is regular .	1. If $x \in \{0^n 1^n n \ge 0\}$, accept. 2. If $x \notin \{0^n 1^n n \ge 0\}$, run M on input w and accept iff M accepts w ."
• We construct M' as follows:	2 . Run R on input $\langle M' \rangle$.
 M' automatically accepts all strings in { 0ⁿ 1ⁿ n ≥ 0 }. In addition, if M accepts w, then M' accepts all other strings. 	3. If R accepts, $accept$; if R rejects, $reject$." • $\langle M' \rangle \in REG_{TM} \iff \langle M, w \rangle \in A_{TM}$, so S decides A_{TM} , which is impossible.
<i>CS 341: Chapter 5</i> 5-15	<i>CS 341: Chapter 5</i> 5-16
Equivalence of 2 TMs is Undecidable	Proof that EQ_{TM} is Undecidable
• Decision problem: Do 2 TMs recognize the same language?	• Recall
$\begin{split} EQ_{TM} &= \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \\ &\subseteq \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs} \} \equiv \Omega_{EQ}, \\ \end{split}$ where universe Ω_{EQ} comprises all pairs of TMs.	$EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}.$ • Reduce E_{TM} to EQ_{TM} as follows:
• For any specific encoded pair $\langle M_1, M_2 \rangle \in \Omega_{EQ}$,	 Let M₂ = M_∅ be a TM with L(M_∅) = Ø. A TM that decides EQ_{TM} can also decide E_{TM} by deciding if ⟨M₁, M_∅⟩ ∈ EQ_{TM}. ⟨M₁⟩ ∈ E_{TM} ⟺ ⟨M₁, M_∅⟩ ∈ EQ_{TM}
• if $L(M_1) = L(M_2)$, then $\langle M_1, M_2 \rangle \in EQ_{TM}$, • if $L(M_1) \neq L(M_2)$, then $\langle M_1, M_2 \rangle \notin EQ_{TM}$.	
Theorem 5.4	 Since E_{TM} is undecidable (Theorem 5.2), EQ_{TM} must be undecidable. We'll see later that EQ_{TM} is

<i>CS 341: Chapter 5</i> 5-17	CS 341: Chapter 5	5-18
Other Undecidable Problems	Proof of Rice's Theorem: Reduce A_{TM} to $\mathcal P$	
 Does a TM recognize a finite language? 	• Suppose \mathcal{P} is decided by TM $R_{\mathcal{P}}$.	
 Does a TM recognize a context-free language? 	• Let T_{\emptyset} be a TM that always rejects, so $L(T_{\emptyset}) = \emptyset$.	
• Does a TM recognize a decidable language?	$ullet$ Without loss of generality, assume $\langle T_{\emptyset} angle ot\in \mathcal{P}.$ (Otherwise, con	nsider $\overline{\mathcal{P}}$.)
• Does a TM halt on all inputs?	• Because we assumed \mathcal{P} is nontrivial, $\exists TM \ T$ with $\langle T \rangle \in \mathcal{P}$.	
• Does a TM have a state that is never entered on any input string?	 Now design TM S to decide A_{TM} using R_P's ability to distin between T_∅ and T. 	guish
Rice's Theorem.	$S=$ "On input $\langle M,w angle$, where M is a TM and w a string	:
 Informally: Every non-trivial property <i>P</i> of languages of Turing machines is undecidable. 	1. Use M and w to construct the following TM M_w : $M_w =$ "On input x :	
$ullet$ Formally: Let $\mathcal P$ be a language consisting of TM descriptions such that	1. Simulate M on input w . If it halts and rejection M of M of M of W of M	
1. \mathcal{P} contains some, but not all, TM descriptions, and 2. whenever $L(M_1) = L(M_2)$, we have $\langle M_1 \rangle \in \mathcal{P}$ iff $\langle M_2 \rangle \in \mathcal{P}$. Then \mathcal{P} is undecidable.	 Simulate T on input x. If it accepts, accept Use TM R_P to determine whether ⟨M_w⟩ ∈ P. If YES, accept. If NO, reject." 	
<i>CS 341: Chapter 5</i> 5-19	CS 341: Chapter 5	5-20
Proof of Rice's Theorem: Reduce A_{TM} to $\mathcal P$ (cont.)	Limited Success Thus Far	
• Note that TM M_w simulates T if M accepts w.	 Our reductions have been straightforward: 	
 Hence, L(Mw) = L(T) if M accepts w, 	 Transform TM for some language into a similar TM that d another language 	ecides
$ L(M_w) = \emptyset \text{ if } M \text{ does not accept } w. $	 As a result, the languages we proved are undecidable are simi 	lar:
• Therefore, $\langle M_w \rangle \in \mathcal{P}$ iff M accepts w .	• A_{TM} , EQ_{TM} , $HALT_{TM}$, etc.	
• Hence, S decides A_{TM} , which is impossible since A_{TM} is undecidable. • Thus, \mathcal{P} is undecidable.	 For languages concerning questions not about TMs, we have to use a different approach. 	
	■ e.g., Hilbert's 10th problem	
	 Recall interpretation of TM configuration: 	
	$1011q_{7}01$	
	 current state is q₇ LHS of tape is 1011, and RHS of tape is 01 tape head is on RHS 0 	

<i>CS 341: Chapter 5</i> 5-22
Remarks About Computation Histories
 Accepting and rejecting computation histories are finite. If M does not halt on w, then no accepting or rejecting computation history exists. Useful for both deterministic TMs (one history) nondeterministic TMs (many histories). "⟨M, w⟩ ∉ A_{TM}" is equivalent to "∠ accepting computation history C₁,, C_k for M on w" "All histories C₁,, C_k are non-accepting ones for M on w".
<i>CS 341: Chapter 5</i> 5-24
CS 341: Chapter 5 5-24 Mapping Reducibility

CS 341: Chapter 5

5-25

5-27

Computable Functions

- \bullet Suppose we have 2 languages A and B, where
 - A defined over alphabet Σ_1 , so $A \subseteq \Sigma_1^*$, i.e., universe $\Omega_1 = \Sigma_1^*$
 - B defined over alphabet Σ_2 , so $B \subseteq \Sigma_2^*$, i.e., universe $\Omega_2 = \Sigma_2^*$
- Informally speaking, A is reducible to B if we can use a "black box" for B to build an algorithm for A.
- **Definition:** A function

 $f: \Sigma_1^* \to \Sigma_2^*$

is a **computable function** if some TM M, on every input $w \in \Sigma_1^*$, halts with just $f(w) \in \Sigma_2^*$ on its tape.

- All the usual integer computations are computable:
 - Addition, multiplication, sorting, etc.

CS 341: Chapter 5

Definition: Suppose

- A is defined over alphabet Σ_1 , so $A \subseteq \Sigma_1^*$, i.e., universe $\Omega_1 = \Sigma_1^*$
- B is defined over alphabet Σ_2 , so $B \subseteq \Sigma_2^*$, i.e., universe $\Omega_2 = \Sigma_2^*$

Then A is mapping reducible to B, written

 $A \leq_{\mathsf{m}} B$

if there is a computable function

$$f: \Sigma_1^* \to \Sigma_2^*$$

such that, for every $w \in \Sigma_1^*$,

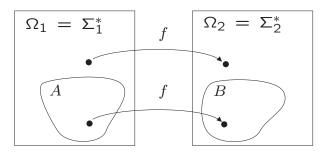
$$w \in A \iff f(w) \in B.$$

The function f is called a **reduction** of A to B. (f is also called a **many-one reduction**.)

Computable Functions

One useful class of computable functions transforms one TM into another.

Example:


CS 341: Chapter 5

$T = \text{``On input } w:$ 1. If $w = \langle M \rangle$, where M is some TM, • Construct $\langle M' \rangle$, where M' is a TM such that • $L(M') = L(M)$, but • M' never tries to move tape head off LHS of tape."	
The function T accomplishes this by adding several states to the description of M .	

CS 341: Chapter 5

5-28

Language A is Mapping Reducible to B

 $w \in A \quad \Longleftrightarrow \quad f(w) \in B$ YES instance for problem $A \quad \Longleftrightarrow \quad$ YES instance for problem B

- Consider decision problems of membership for A and B:
 - Does instance from Ω_1 belong to A?
 - Does instance from Ω_2 belong to B?
- If A ≤_m B and can solve membership problem for B, then can solve membership problem for A.

CS 341: Chapter 5 5-29 CS 341: Chapter 5 5-30 **Example:** Mapping Reduction $A_{TM} \leq_m HALT_{TM}$ **Example:** Mapping Reduction $A_{\mathsf{TM}} \leq_{\mathsf{m}} HALT_{\mathsf{TM}}$ $\Omega_A = \Omega$ • Recall $\Omega_A = \Omega_H = \Omega$, with $\Omega_H = \Omega$ • Recall that $\Omega = \{ \langle M, w \rangle \mid \mathsf{TM} \ M, \text{ string } w \}$ $A_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is TM that accepts string } w \} \subset \Omega_A,$ A_{TM} HALTTM f $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is TM that halts on string } w \} \subseteq \Omega_H.$ • TM F computes reducing fcn f• In this case (but not always), same universes $\Omega_A = \Omega_H = \Omega$, with $\Omega = \{ \langle M, w \rangle \mid M \text{ is TM, } w \text{ is string} \}$ F = "On input $\langle M, w \rangle \in \Omega_A$, where M is TM and w is string: 1. Construct the following TM M': • We previously proved that $HALT_{TM}$ is undecidable by showing M' = "On input x: A_{TM} reduces to $HALT_{\mathsf{TM}}$. (1) Run M on input x. • To show $A_{\mathsf{TM}} \leq_{\mathsf{m}} HALT_{\mathsf{TM}}$, need function $f: \Omega_A \to \Omega_H$, with (2) If M accepts, *accept*. (3) If M rejects, enter a loop." • input $\langle M, w \rangle \in \Omega_A$ is instance for acceptance problem for TMs 2. Output $\langle M', w \rangle \in \Omega_H$." • output $f(\langle M, w \rangle) = \langle M', w' \rangle \in \Omega_H$ is instance for halting problem for TMs • $\langle M, w \rangle \in A_{\mathsf{TM}} \iff f(\langle M, w \rangle) = \langle M', w' \rangle \in HALT_{\mathsf{TM}}.$ • Note that $\langle M, w \rangle \in A_{\mathsf{TM}} \iff \langle M', w \rangle \in HALT_{\mathsf{TM}}$. CS 341: Chapter 5 5-31 CS 341: Chapter 5 5-32 Decidability obeys \leq_m Ordering Undecidability obeys \leq_m Ordering Theorem 5.22 Corollary 5.23 If $A \leq_{\mathsf{m}} B$ and B is decidable, then A is decidable. If $A \leq_{\mathsf{m}} B$ and A is undecidable, then B is undecidable also. Proof. **Proof.** Language A undecidable and B decidable contradicts the $\Omega_1 = \Sigma_1^*$ $\Omega_2 = \Sigma_2^*$ f • Let M_B be TM that decides B. previous theorem. • Let $f: \Sigma_1^* \to \Sigma_2^*$ be reducing for Α f **Recall:** Complements $\overline{A} = \Sigma_1^* - A$ and $\overline{B} = \Sigma_2^* - B$. from A to B. • Consider the following TM: **Fact:** If $A \leq_{\mathsf{m}} B$, then $\overline{A} \leq_{\mathsf{m}} \overline{B}$. $M_A =$ "On input $w \in \Sigma_1^*$: Proof. 1. Compute $f(w) \in \Sigma_2^*$. $\Omega_2 = \Sigma_2^*$ $\Omega_1 = \Sigma_1^*$ • Let f be reducing fcn of A to B: 2. Run M_B on input f(w) and give the same result." $w \in A \iff f(w) \in B.$ • Since f is reducing function, $w \in A \iff f(w) \in B$. f• Same fcn f shows $\overline{A} \leq_{\mathsf{m}} \overline{B}$ since If $w \in A$, then $f(w) \in B$, so M_B and M_A accept. $w \in \overline{A} \iff f(w) \in \overline{B}.$ If $w \notin A$, then $f(w) \notin B$, so M_B and M_A reject. • Thus, M_A decides A.

CS 341: Chapter 5

5-33

Recognizability and \leq_{m}

Theorem 5.28 If $A \leq_m B$ and B is Turing-recognizable, then A is Turing-recognizable. Proof. • Let M_B be TM recognizing B . • Let f be reducing fcn from A to B . • Define a new TM as follows: $M_A = \text{"On input } w \in \Sigma_1^*$: 1. Compute $f(w) \in \Sigma_2^*$. 2. Run M_B on input $f(w)$ and give the same result." • Since f is a reducing function, $w \in A \iff f(w) \in B$. • If $w \in A$, then $f(w) \in B$, so M_B and M_A accept. • If $w \notin A$, then $f(w) \notin B$, so M_B and M_A reject or loop. • Thus, M_A recognizes A .	Corollary 5.29 If $A \leq_m B$ and A is not Turing-recognizable, then B is not Turing-recognizable. Proof. Language A not Turing-recognizable and B Turing-recognizable contradicts the previous theorem. Fact: If $A \leq_m B$ and A is not co-Turing-recognizable, then B is not co-Turing-recognizable. Proof. • If A is not co-Turing-recognizable, then complement \overline{A} is not Turing-recog. • $A \leq_m B$ implies $\overline{A} \leq_m \overline{B}$ (see slide 5-32). • \overline{B} is not Turing-recog. (Corollary 5.29). • Hence, B is not co-Turing-recognizable.
<i>CS 341: Chapter 5</i> 5-35	<i>CS 341: Chapter 5</i> 5-36
E_{TM} is not Turing-recognizable	Theorem 5.30: EQ_{TM} is not Turing-recognizable
Recall: the emptiness problem for TMs:	$EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs with } L(M_1) = L(M_2) \}$
$E_{TM} = \{ \langle M \rangle \mid M \text{ is TM with } L(M) = \emptyset \}$	$\subseteq \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs} \} \equiv \Omega_{EQ}$
$\subseteq \{\langle M angle \mid M ext{ is TM} \} \equiv \Omega_E$	Proof. Reduce $\overline{A_{TM}} \leq_m EQ_{TM}$, and apply Corollary 5.29.
Proof. Reduce $\overline{A_{TM}} \leq_{m} E_{TM}$, and apply Corollary 5.29.	• Reduction $f(\langle M, w \rangle) = \langle M_1, M_2 \rangle$ $ \begin{array}{c} \Omega_A = \langle (M, w) \\ TM M, string w \rangle \end{array} f \qquad \Omega_{EQ} $
• $\Omega_A = \{ \langle M, w \rangle \mid TM \ M, \text{ string } w \}$ • Reducing fcn $f(\langle M, w \rangle) = \langle M' \rangle$,	$ M_1 = "reject \text{ on all inputs."} \qquad \qquad \overbrace{A_{TM}}^{\bullet} f \qquad \overbrace{EQ_{TM}}^{\bullet} $
where M' is following TM:	$ M_2 = "On input x: $
M' = "On input <i>x</i> :	1. Ignore input x , and run M on w .
1. Ignore input x , and run M on input w .	2. If M accepts w, accept; if M rejects w, reject."
2. If M accepts w , $accept$; if M rejects w , $reject$."	• $L(M_1) = \emptyset.$
	• If M accents $u_{1}(i_{0} / M u_{0}) \neq \overline{A_{\tau u}}$ then $L(M_{0}) = \Sigma^{*}$
• If M accepts w (i.e., $\langle M, w \rangle \notin \overline{A_{TM}}$), then $L(M') = \Sigma^*$;	• If M accepts w (i.e., $\langle M, w \rangle \notin \overline{A_{TM}}$), then $L(M_2) = \Sigma^*$. If M doesn't accept w (i.e., $\langle M, w \rangle \in \overline{A_{TM}}$), then $L(M_2) = \emptyset$.
	If M doesn't accept w (i.e., $\langle M, w \rangle \in \overline{A_{TM}}$), then $L(M_2) = \emptyset$.
• If M accepts w (i.e., $\langle M, w \rangle \notin \overline{A_{TM}}$), then $L(M') = \Sigma^*$;	

Unrecognizability and \leq_{m}

CS 341: Chapter 5

5-37

Theorem 5.30: EQ_{TM} is not co-Turing-recognizable

- $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs with } L(M_1) = L(M_2) \}$ $\subseteq \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs} \} \equiv \Omega_{EQ}$
- **Proof.** Reduce $A_{\text{TM}} \leq_{m} EQ_{\text{TM}}$, and apply Fact on slide 5-34.
- Reduction $f(\langle M, w \rangle) = \langle M_1, M_2 \rangle$
 - ▲ M_1 = "accept on all inputs."
- ▲ M_2 = "On input x: 1. Ignore input x, and run M on w.
 - 2. If M accepts w, accept; if M rejects w, reject."
- $L(M_1) = \Sigma^*$.
- If M accepts w (i.e., $\langle M, w \rangle \in A_{\mathsf{TM}}$), then $L(M_2) = \Sigma^*$. If M doesn't accept w (i.e., $\langle M, w \rangle \notin A_{\mathsf{TM}}$), then $L(M_2) = \emptyset$.
- $\langle M, w \rangle \in A_{\mathsf{TM}} \iff f(\langle M, w \rangle) = \langle M_1, M_2 \rangle \in EQ_{\mathsf{TM}}.$
- Because $A_{\rm TM}$ is not co-Turing-recognizable, $EQ_{\rm TM}$ is not co-Turing-recognizable by Fact on slide 5-34.

Summary of Chapter 5

- \bullet Computable function $f: \Sigma_1^* \to \Sigma_2^*$ has TM that maps
 - strings in Σ_1^* (i.e., instances of one problem)
 - to strings in Σ_2^* (i.e., instances of another problem)
- Mapping reduction $A \leq_{m} B$: $w \in A \iff f(w) \in B$, for some computable function f.
 - If I can solve B, then I can solve A.
 - If I can't solve A, then I can't solve B.
- Undecidable problems: $A_{\rm TM}$, $HALT_{\rm TM}$, $E_{\rm TM}$, $REG_{\rm TM}$, $EQ_{\rm TM}$, $ALL_{\rm CFG}$
- Rice's Theorem: any nontrivial property of the language of a TM is undecidable.
- E_{TM} is not Turing-recognizable.
- \bullet EQ_{TM} is neither Turing-recognizable nor co-Turing-recognizable.