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Time Complexity
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Introduction

e Chapters 3-5 dealt with computability theory:

= ‘What is and what is not possible to solve with a computer?”

e For the problems that are computable, this leads to the next question:

= “If we can decide a language A, how easy or hard is it to do so?”

e Complexity theory tries to answer this.
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Counting Resources

e Two ways of measuring “hardness” of problem:

1. Time Complexity:
How many time-steps are required in the computation of a problem?

2. Space Complexity:
How many bits of memory are required for the computation?

e We will only examine time complexity in this course.

e We will use the Turing machine model.

= If we measure time complexity in a crude enough way, then results
for TMs will also hold for all “reasonable” variants of TMs.
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Example

e Consider language
A={0F1*|k>0}.

e Below is a single-tape Turing machine Mq that decides A:
M1 = "On input w, where w € {0, 1}* is a string:
1. Scan across tape and reject if O is found to the right of a 1.
2. Repeat the following if both Os and 1s appear on tape:

s Scan across tape, crossing off single O and single 1.

3. If Os still remain after all 1s crossed out, or vice-versa, reject.
Otherwise, if all Os and 1s crossed out, accept.”

0[0/0/1/1/1]ufuf

e Question: How much time does TM M{ need to decide A?
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How much time does M need?

e Number of steps may depend on several parameters.

e Example: |If input is a graph, this could depend on

= number of nodes
= number of edges
= maximum degree

= all, some, or none of the above

e Definition: Complexity is measured as function of length of input
string.

= Worst case: longest running time on input of given length.
= Average case: average running time on input of given length.

e We will only consider worst-case complexity.
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Running Time
e Let M be a deterministic TM that halts on all inputs.
e We will study the relationship between

= the length of encoding of a problem instance and

= the required time complexity of the solution for such an instance
(worst case).

e Definition: The running time or time complexity of M is a
function f : N' — N defined by the maximization:

f(n) = |n’|1ax ( number of time steps of M on input x )
r|=n
e Terminology

s f(n) is the running time of M.
s« M is an f(n)-time Turing machine.
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Running Time

e The exact running time of most algorithms is quite complex.
e Instead use an approximation for large problems.

e Informally, we want to focus only on “important” parts of running time.

e Examples:

x 613 4+ 2n2 4 20n + 45 has four terms.

= 613 most important when n is large.

= Leading coefficient “6” does not depend on n, so only focus on n3.
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Asymptotic Notation Some big-O examples
e Consider functions f and g, where e Example 1: Show f(n) = O(g(n)) for
1
f.g: N =Rt f(n) = 1502 +7n,  g(n) = n>.
e Definition: We say that » Let ng = 16 and ¢ = 2, so we have V n > noi
_ =15n2 4+ 7n<16n°<n3=2.-n3=c.g(n).
f(n) = 0(g(n)) f(n) n®4+7n <16n° <n 57 c-g(n)
if there are two positive constants ¢ and ng such that = For first <, if 7 < n, then 7n < n2 by multiplying both sides by n.
f(n) <c-g(n) forall n>ng. = For second <, if 16 < n, then 1612 < n3 (mult. by n?).
o We say that: e Example 2: 5n% 4 27n = O(n?).
= "g(n) is an asymptotic upper bound on f(n)." » Take ng =1 and ¢ = 32. (Also ng = 3 and ¢ = 6 works.)
s “f(n) is big-O of g(n)." = But 5n% 4 27n is not O(n3): no values for ¢ and ng work.
e Basic idea: ignore constant factor differences:
s 2n3 4+ 52n2 4+ 829n + 2193 = O(n3).
» 2=0(1) andsin(n) + 3=0(1).
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Polynomials vs Exponentials
e For a polynomial
p(n) = a1n®t + aonf2 4+ ... + adnkd,
where k1 > ko > -+ > kg > 0, then
= p(n) = O(nF1).

a Also, p(n) = O(n") for all r > k1, e.g., 7Tn3 + 5n2 = O(n%).

e Exponential fcns like 2™ always eventually “overpower” polynomials.

a For all constants @ and k&, polynomial f(n) = a-nF 4 .- obeys:
f(n) =0(2").
a For functions in n, we have
n* = o™

for all positive constants k, and b > 1.

Big-O for Logarithms
e Let 109, denote logarithm with base b.
e Recall c = logyn if b =n; eg., 10go8 = 3.
e log,(z¥) = ylogy = because xz = b9 T and
W19 — (ploge Yy = ¥

e Note that n = 2!°927 and log;(2¥) = ylogy x imply
logy n = 10g;,(2'°92™) = (logs n) (logy 2)
= Changing base b changes value by only constant factor.

s So when we say f(n) = O(logn), the base is unimportant.

e Note that logn = O(n).
e In fact, logn = O(n?) for any d > 0.

= Polynomials overpower logarithms,
just like exponentials overpower polynomials.

e Thus, nlogn = O(n?).
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Big-O Properties More Remarks

e O(n?) + 0(n) = 0(n?) and O(n2)O(n) = O(n3)

e Definition:

e Sometimes we have = A bound of n¢ where ¢ > 0 is a constant, is called polynomial.

f(?’L) = 20(71) ( 5) . . .
) = A bound of 2"/ where § > O is a constant, is called exponential.
What does this mean?
= Answer: f(n) has an asymptotic upper bound of 2¢" for some o f(n) = O(f(n)) for all functions f.
constant c. e [log(n)]¥ = O(n) for all constants k.

k _—
e What does f(n) = 20(logn) mean? e n® = O(2") for all constants k.

. .. e Because n = 2!9927 1 is an exponential function of log n.
» Recall the identities: p g

n — olodan e If f(n) and g(m) are polynomials, then g(f(n)) is polynomial in n.
n¢ = 2¢ l0g2 = 20(logan), « Example: If f(n) = n? and g(m) = m3, then
= Thus, 2001997) means an upper bound of n¢ for some constant c. 9(f(n)) = g(n®) = (n*)> =n°.
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Little-o Notation Remarks

Definition: e Big-O notation is about “asymptotically less than or equal to”.

e Let f and g be two functions with f,g : V' — RT. e Little-o is about “asymptotically much smaller than”.

e Then f(n) = o(g(n)) if e Make it clear whether you mean O(g(n)) or o(g(n)).

lim @ —0 e Make it clear which variable the function is in:

e g(n) » O(2Y) can be a polynomial in  or an exponential in y.

Example: |If e Simplify!
e f(n) = 10n2 = Rather than O(8n3 + 2n), instead use O(n3).
e g(n) =2n3 e Try to keep your big-O as “tight” as possible.
— 3 2
then f(n) = o(g(n)) because = Suppose f(n) = 2n> + 8n-.
f(n) 1002 5 a Although f(n) = O(n®), better to write f(n) = O(n3).

g(n)_ on3 :;—>0 as n — oo




7-18

CS 341: Chapter 7 717 CS 341: Chapter 7
Back to Example of TM M; for A = {0%1%| £k >0} Analysis of Stage 1
My = "On input string w € {0, 1}™: 1. Scan across tape and reject if O is found to the right of a 1.
1. Scan across tape and reject if O is found to the right of a 1.
2. Repeat the following if both Os and 1s appear on tape: ‘ 0 ‘ 0 ‘ 0 ‘ 1 ‘ 1 ‘ 1 ‘I_J ‘ I_l‘ T
e Scan across tape, crossing off single O and single 1.
3. If no Os or 1s remain, accept; Analysis:
otherwise, reject.” e Input string w is of length n.
e Scanning requires n steps.
Let's now analyze Mj's run-time complexity. e Repositioning head back to beginning of tape requires n steps.
e We will examine each stage separately. e Total is 2n = O(n) steps.
e Suppose input string w is of length n.
olofol1f[1]1lufu] -
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Analysis of Stage 2

2. Repeat the following if both Os and 1s appear on tape:

e Scan across tape, crossing off single O and single 1.

ofolof1]1]1]ufuf -~

Analysis:
e Each scan requires O(n) steps.

e Because each scan crosses off two symbols,

= at most n/2 scans can occur.

e Total is O(5) O(n) = O(n?) steps.

Analysis of Stage 3 and Overall

3.1f no Os or 1s remain, accept;
otherwise, reject.

y
PIoe[ XXXl -

Analysis:

e Single scan requires O(n) steps.

Total cost for each stage:
e Stage 1: O(n)
e Stage 2: O(n?)
e Stage 3: O(n)

O(n) + O(n?) + O(n) = O(n?)

Overall complexity:
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Time Complexity Class Another TM for A = {0F1F| £k >0}
Definition: For a function ¢t : N' — N/, Mo = “On input string w € {0, 1}*:
TIME(t(n)) = { L | there is a 1-tape TM that decides 1. Scan across tape and reject if O is found to the right of a 1.
language L in time O(t(n)) } 2. Repeat the following if both Os and 1s appear on tape:
2.1 Scan across tape, checking whether total number of Os and 1s is
Remarks: even or odd. If odd, reject.
e TM M decides language A = {Oklk |k >0} 2.2 Scan across tape, crossing off every other O (starting with the
= M has run-time complexity O(n2). leftmost), and every other 1 (starting with the leftmost).
5 3. If no Os or 1s remain, accept;
e Thus, A € TIME(n?). otherwise, reject.”
e Can we do better?
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Why M> Halts

e Stage 2.2: Scan across tape, crossing every other O and 1.

e On each scan in Stage 2.2,

= Total number of Os is decreased by (at least) half
= Same for the 1s

e Example:

» Start with 13 Os.

[ofofolololo]olololo]oo]o]

After first pass, 6 remaining.

(#lo]@lo]@]o][@lo]@[o][@]0]0]

= After second pass, 3 remaining.

|#@|plo|p[0|@[o]@[@]@[0]d]

= After third pass, 1 remaining.

(9]0|p]0|0[0|0[o]0]0]0]0]0]

» After fourth pass, none remaining.

(0] 000|000 00]d]

Why M> Works
e Consider parity of Os and 1s in Stage 2.1.
e Example: Start with 013113

= Initially, odd-odd (13, 13)
loJofofo[ofofofolofofofofof1f1]1]1]1]1]1]1]1]1]1]1]1]

Then, even-even (6, 6)
[@[o]glo[@lo[@[o]glol@[of @l AT1 1 A1 [A[L[X[1[X]1]]]
Then, odd-odd (3, 3)
|9[@]@[o]@[@[glo]@@@lo]@[ X[ X[ X1 X[ X[X[1]X[X[X]1]X]
= Then, odd-odd (1, 1)
1910[0]0|8/0[0[0]0|0|8|0[@[ X XX X[ X[X[X[1]X]X[X][X]]]

@ Result is 1011, which is reverse of binary representation of 13.

e Each pass checks one binary digit.
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M5 = "On input string w € {0, 1}*:

1. Scan across tape and reject if O is found to the right of a 1.
2. Repeat the following if both Os and 1s appear on tape:

2.1 Scan across tape, checking whether total number of Os and 1s is even or odd.
If odd, reject.

2.2 Scan across tape, crossing off every other O (starting with the leftmost), and
every other 1 (starting with the leftmost).

3. If no Os or 1s remain, accept; otherwise, reject.”

Analysis:

e Each stage requires O(n) time.

e Stage 1 and 3 run once each.

e Stage 2.2 eliminates half of Os and 1s: Stage 2 runs O(logs n) times.
e Total for stage 2 is O(logon)O(n) = O(nlogn).

e Grand total: O(n) + O(nlogn) = O(nlogn),
so language A € TIME(n logn).
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2-Tape TM for A = {0F1F| k> 0}
M3 = "On input string w € {0, 1}*:
1. Scan across tape and reject if O is found to the right of a 1.

2. Scan across Os to first 1, copying Os to tape 2.

3. Scan across 1s on tape 1 until the end.
For each 1 on tape 1, cross off a O on tape 2.
If no Os left, reject.

4.1f any Os left, reject; otherwise, accept.”

Before Stage 1 After Stage 2

+ ‘
Tape1 (0]0]0]1]1]1]u]u] --- |o]olof1|1]2]u]u] ---

’
Tape 2 ‘u‘u‘u‘u|u‘u‘u‘u‘ ‘O‘O‘O‘u‘u‘u‘u‘u‘

Can show that running time of M3 is O(n).
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Runtimes of TMs for A = {0F1F| k> 0}

e Runtime depends on computational model:
= 1-tape TM M7: O(n?)
s 1-tape TM M>: O(nlogn)
s 2-tape TM M3: O(n).

e For computability, all reasonable computational models are equivalent
(Church-Turing Thesis).

e For complexity, choice of computational model affects time
complexity.
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k-Tape TM can be Simulated on 1-Tape TM
with Polynomial Overhead

Theorem 7.8
e Let t(n) be a function where t(n) > n.

e Then any ¢(n)-time multi-tape TM has an equivalent O(t2(n))-time
single-tape TM.

Tape 1 [0[1[1]u] -
3-tape TM Tape2 [0]0[u] ---

Tape 3 [1]0[0[1]u] -

Equivalent

+
l-tape TM | Tape ‘#‘O‘1‘i‘#‘6‘0‘#‘1‘6‘0‘1‘#‘u‘
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Review Thm 3.13: Simulating k-Tape TM M on 1-Tape TM S
On input w = w1 - - - wy, the 1-tape TM S does the following:

e First S prepares initial string on single tape:

#url'wQ"'wn# U | #F | u | #F o u
e For each step of M, TM S scans tape twice

1. Scans its tape from
w first # (which marks left end of tape) to
s (k+ 1)st # (which marks right end of tape)
to read symbols under “virtual” heads
2. Rescans to write new symbols and move heads
= If S tries to move virtual head to the right onto #, then
Ao M is trying to move head onto unused blank cell.

A So S has to write blank on tape and shift rest of tape right one
cell.
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Complexity of Simulation

e For each step of k-tape TM M, 1-tape TM S performs two scans
= Length of active portion of S's tape determines how long S takes to
perform each scan.

» In r steps, TM M can read/write in < k X r different cells on its k
tapes.

s As M has t(n) runtime, at any point during M's execution,
total #£ active cells on all of M's tapes < k x t(n) = O(t(n)).

= Thus, each of S’s scans requires O(t(n)) time.
e Overall runtime of S

= Initial tape arrangement: O(n) steps.

s S simulates each of M's t(n) steps using O(t(n)) steps.
a Thus, total of t(n) x O(t(n)) = O(t2(n)) steps.

» Grand total: O(n) 4+ O(t2(n)) = O(t2(n)) steps.
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Running Time of Nondeterministic TMs

e What about nondeterministic TMs (NTMs)?
e Informally, NTM makes “lucky guesses” during computation.
e In terms of computability, no difference between TMs and NTMs.

e For time-complexity, nondeterminism seems to make big difference.

Definition:
e Let NV be NTM that is a decider (no looping).
e Running time of NTM N is function f : N — N, where
f(n) = ‘n’|1ax ( height of tree of configs for NV on input = )

r=n
= the maximum number of steps that NTM N uses
= on any branch of the computation

= on any input x of size n.
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Deterministic vs. Nondeterministic TM Runtime

Nondeterministic

¥

o8 e

3y
OO Oween

° %
O

Deterministic

f(n)

O=<O<O<~0O~0O~0O<0O

accept/reject reject
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Simulating NTM N on 1-Tape DTM D
Requires Exponential Overhead

Theorem 7.11

e Let t(n) be a function with t(n) > n.

e Any t(n)-time nondeterministic TM has an equivalent 20(t(n))_time
deterministic 1-tape TM.

Proof ldea:

e Suppose N is NTM decider running in t(n) time.

e On each input w, NTM N's computation is a tree of configurations.

e Simulate N on 3-tape DTM D using BFS of N's computation tree:
= D tries all possible branches.

» If D finds any accepting configuration, D accepts.
= If all branches reject, D rejects.
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Complexity of Simulating NTM N on 1-Tape DTM D

e Analyze NTM N's computation tree on input w with |w| = n

= Root is starting configuration.
= Each node has < b children
Ao b = max number of legal choices given by N's transition fcn §.
s Each branch has length < ¢(n).
» Total number of leaves < pt(n),
= Total number of nodes < 2 x (max number of leaves) = O(bt(")),
= Time to travel from root to any node is O(t(n)).

e DTM'’s runtime < time to visit all nodes:
o™y x O(t(n)) = 20
e Simulating NTM by DTM requires 3 tapes by Theorem 3.16.

e By Theorem 3.13, simulating 3-tape DTM on 1-tape DTM requires
(20((n)))2 — 52x0(t(n)) = ROH(N)) greps,
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Summary of Simulation Results

e Simulating k-tape DTM on 1-tape DTM

= increases runtime from t(n) to O(t2(n))

= i.e., polynomial increase in runtime.

e Simulating NTM on 1-tape DTM

= increases runtime from t(n) to 20(t(n))

= i.e., exponential increase in runtime.
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Polynomial Good, Exponential Bad

100 steps/second

f(n)| 10 20 30 40 | 50 60

n |.00001|.00002 .00003|.00004 .00005 |.00006
seconds | seconds | seconds | seconds seconds | seconds
n? | .0001 | .0004 | .0009 | .0016 | .0025 | .0036
seconds | seconds | seconds | seconds | seconds | seconds
n3 | .001 | .008 | .027 | .064 | .125 | .216
seconds | seconds | seconds | seconds seconds | seconds
n° | .1 32 | 243 | 17 | 52 13
seconds | seconds | seconds | minutes minutes | minutes
27 | 001 | 1.05 | 17.9 | 12.7 | 357 | 366
seconds | seconds | minutes | days years | centuries
3" | .059 58 6.5 | 3855 |2 x 108 10!3
seconds | minutes | years |centuries| centuries |centuries
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Strong Church-Turing Thesis

e In general, every “reasonable” variant of DTM (k-tape, r-heads, etc.)
can be simulated by a single-tape DTM with only polynomial
time/space overhead.

= Any one of these models can simulate another with only polynomial
increase in running time or space required.

= All “reasonable” models of computation are polynomially equivalent.

» NTM is “unreasonable” variant: it can do O(b%) work on step s.

e If any reasonable version of a DTM can solve a problem in polynomial
time, then any other reasonable type of DTM can also.

e If we ask if a particular problem is solvable in linear time (i.e., O(n)),
answer depends on computational model used.

e If we ask if a particular problem A is solvable in polynomial time,
answer is independent of reasonable computational model used.

CS 341: Chapter 7 7-38
The Class P

Because of polynomial equivalence of DTM models,

e group languages solvable in O(n?), O(nlogn), O(n), etc., together
in the polynomial-time class.

Definition: The class of languages that can be decided by a single-tape
DTM in polynomial time is denoted by P, where

P = |J TIME(n").
k>0

Remarks:

o If we ask if a particular problem A is solvable in polynomial time
(i.e., is A € P?),

= answer is independent of deterministic computational model used.

e Class P roughly corresponds to tractable (i.e., realistically solvable)
problems.
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Encoding of Problems

e Recall: TM running time defined as fcn of length of encoding (z) of
input x.
e But for given problem, many ways to encode input = as (z).

= Should use “good” encoding scheme.

e For integers
= binary is good
= unary is bad (exponentially worse)

= Example: Suppose input to TM is the number 18 in decimal.
a if encoding in binary, (18) = 10010
a if encoding in unary, (18) =111111111111111111

e For graphs
u list of nodes and edges (good)

= adjacency matrix (good)
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Example of Problem in P: PATH

e Decision problem: Given directed graph G with nodes s and ¢,
does GG have a path from s to t?

T

R)—

e Universe 2 = { (G, s,t) | G is directed graph with nodes s,¢ } of
instances (for a particular encoding scheme).

e Language of decision problem comprises YES instances:

PATH = { (G, s,t) | G is directed graph with path from s to ¢t } C .
e For graph G above, (G, 1,5) € PATH, but (G,2,1) &€ PATH.
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PATH € P
Theorem 7.14
PATH € P.
Brute-force algorithm:
e Input is instance (G, s,t) € Q
= G is directed graph with nodes s and ¢.
e Let m be number of nodes in G.
» < m? edges.
= m (or m?) roughly measures size of instance (G, s, t).
e Any path from s to t need not repeat nodes.
e Examine each potential path in G of length < m.

» Check if the path goes from s to t.

What is complexity of this algorithm?
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Complexity of Brute-Force Algorithm for PATH

Brute-force algorithm:
e Input is (G, s,t) € €2, where G is directed graph with nodes s and ¢.
e Any path from s to t need not repeat nodes.
e Examine each potential path in G of length < m (= # nodes in G).
» Check if the path goes from s to t.
Complexity analysis:

e There are roughly m' potential paths of length < m.

= For each potential path length K = 2,3,... ,m,
check all k! permutations of k distinct nodes from (7]?) possibilities.
s kl=kx(k—1)x (k—2)x---x1, (?)zw%k)!

k
= Stirling’s approximation: k! ~ (%) 27k.
e This is exponential in the number m of nodes.

e So brute-force algorithm's runtime is exponential in size of input.
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A Better Algorithm Shows PATH € P
On input (G, s,t) € 2, where GG is directed graph with nodes s and t:

1. Place mark on node s.
2. Repeat until no additional nodes marked:

e Scan all edges of G.

e If edge (a, b) found from marked node a to unmarked node b,
then mark b.

3. If node t is marked, accept; otherwise, reject.

Graph G (G,1,5) € PATH

(G,5,3) € PATH

(G,2,1) ¢ PATH
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Complexity of Better Algorithm for PATH

On input (G, s,t) € €2, where G is a directed graph with nodes s and ¢:
1. Place mark on node s.
2. Repeat until no additional nodes marked:
e Scan all edges of G.
o If edge (a,b) found from marked node a to unmarked node b, then mark b.

3. If node t is marked, accept; otherwise, reject.
Complexity of algorithm: (depends on how (G, s, t) is encoded)
e Suppose G encoded as (list of nodes, list of edges).
e Suppose input graph G has m nodes, so < m? edges.
e Stage 1 runs only once, running in O(m) time
e Stage 2 runs at most m times
= Each time (except last), it marks new nodes.
= Each time requires scanning edges, which runs in O(m?2) steps.
e Stage 3 runs only once, running in O(m) time
e Overall complexity: O(m) + O(m)O(m2) + O(m) = O(m3),
so PATH € P.
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Another Problem in P: RELPRIME

e Definition: Two integers x,y are relatively prime if 1 is largest
integer that divides both; greatest common divisor GCD(x,y) = 1.

e Examples:

= 10 and 21 are relatively prime.
= 10 and 25 are not.

e Decision problem: Given integers x and y, are x, y relatively prime?

» Universe Q = { (z,y) | x,y integers } of problem instances.
= Language of decision problem:

RELPRIME = { (x,y) | = and y are relatively prime } C 2.
» So (10,21) € RELPRIME and (10, 25) ¢ RELPRIME.

Theorem 7.15
RELPRIME € P.
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Bad Algorithm for RELPRIME

RELPRIME = { (z,y) | = and y are relatively prime }.

Bad Idea: Test all possible divisors (i.e., 2 to min(z,y)).
Complexity of algorithm depends on how integers are encoded:
e If 2,y encoded in unary (bad), then

» length of (x) is x; length of (y) is y.

s testing min(x, y) values is polynomial in length of input (z,y).
e If x,y encoded in binary (good), then

» length of (x) is log x; length of (y) is logy.

= testing min(x, y) values is exponential in length of input (z, y)
because n is an exponential function of logn (i.e., n = 20927),

e This algorithm is pseudo-polynomial.

= Polynomial running time with bad encoding.
= Exponential running time with good encoding.
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A Better Algorithm for RELPRIME

Euclidean Algorithm E:
E = "“On input (z,y), where z,y are natural numbers encoded in binary:
1. Repeat until y = 0

e Assign x < =z mod y.
e Exchange x and y.

2. Output z."

Algorithm R below solves RELPRIME, using E as a subroutine:
R = "“On input (z,y), where x,y are natural numbers encoded in binary:
1. Run E on (z,y).

2. If output of E'is 1, accept;
otherwise, reject.”
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Complexity of Euclidean Algorithm
Euclidean Algorithm FE:

E = "On input (z,y), where x,y are natural numbers encoded in binary:
1. Repeat until y = 0

e Assign z <— = mod y.

e Exchange x and y.

2. Output z."

Complexity of E:

o After first step of Stage 1, < y because of mod.

e Values then swapped, so x > y.

e Can show each subsequent execution of Stage 1 cuts x by at least half.
e # times Stage 1 executed < min(logs x, 1095 ¥).

e Thus, total running time of E (and R) is polynomial in [(x, y)|, so
RELPRIME € P.
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CFLs are in P
Theorem 7.16

Every context-free language is in P.

Remarks:

e Will show that each CFL € TIME(n3)
= 1 is length of input string w € >*.
= In contrast, each regular language € TIME(n). Why?
e Theorem 4.9 showed that every CFL is decidable, which we now review.
e Convert CFG into Chomsky normal form:
= Each rule has one of the following forms:
A — BC,

A — x, S —e

S is start variable;
x is a terminal.

A, B,C, S are variables;
B, C are not start variable;

where
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Recall Previous Algorithm to Decide CFL

Lemma
If G is in Chomsky normal form and string w € L(G) has length n > 0O,
then w has a derivation with 2n — 1 steps.

Theorem 4.9
Every CFL is a decidable language.

Proof.

e Assume L is a CFL generated by CFG GG in Chomsky normal form.

e Theorem 4.7: 3 TM S that decides
Acre = { (G,w) | G is a CFG that generates w }.

e Following TM M decides CFL L C *:
Mg = "On input w € Z*:
1.Run TM S on input (G, w).
2.If S accepts, accept; if S rejects, reject.”
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Previous Algorithm is Exponential

e Recall that to determine if (G, w) € Acrg, TM S tries all derivations
with k = 2n — 1 steps, where n = |w| > O.
= But number of derivations taking k steps can be exponential in k.

= So we need to use a different algorithm.

e Use dynamic programming (DP)

= Powerful, general technique.

= Basic idea: accumulate information about smaller subproblems to
solve larger subproblems.

= Store subproblem solutions in a table as they are generated.

= Look up smaller subproblem solutions as needed when solving larger
subproblems.

» DP for CFGs: Cocke-Younger-Kasami (CYK) algorithm.
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Dynamic Programming
e Fix CFG G in Chomsky normal form.
e Input to DP algorithm is string w = wqwsy - - - wy, with |w| =n

e In our case of DP, subproblems are to determine which variables in G
can generate each substring of w.

e Create an n X n table.
» Entry (4,7): row ¢, column j

1 23 n
1 Complete string

Substrings of length 3
Substrings of length 2
n Substrings of length 1
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Dynamic Programming Table
1 23 n
1 Complete string
2 .
3
Substrings of length 3
Substrings of length 2
n Substrings of length 1
MWW e e W

e For 7 < j, (4, 7)th entry contains those variables that can generate
substring w; w; 41 -+ - w;

e For i > 7, (z,7)th entry is unused.

e DP starts by filling in all entries for substrings of length 1,
then all entries for length 2,
then all entries for length 3, etc.

e Idea: Use shorter lengths to determine how to construct longer lengths.
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Filling in Dynamic Programming Table
e Suppose s =uv, B Zu, CZwv, and I rule A — BC.

« Then A % s because A = BC & wv = s.

e Suppose that algorithm has determined which variables generate each
substring of length < k.

e To determine if variable A can generate substring of length k + 1:
= split substring into 2 non-empty pieces in all possible (k) ways.

= For each split, algorithm examines rules A — BC'
a Each piece is shorter than current substring,
so table tells how to generate each piece.
s Check if B generates first piece.
s Check if C generates second piece.
A If both possible, then add A to table.
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Example: CYK Algorithm

Does the following CFG in Chomsky Normal Form generate baaba ?

S - XY |YZ X - YX|a
Y — ZZ|b Z — XY |a
1 2 3 4 5

1

2 |

3

4

5 |

string b a a b a

e Build table ¢ so that for 7 < j, entry ¢(4, j) contains variables that can
generate substring starting in position ¢ and ending in position j

e Fill in one diagonal at a time.
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Ex. (cont.): CYK for Substrings of Length 1
Chomsky CFG: S —- XY |YZ X - YX|a
Y — ZZ|b Z — XY |a
1 2 3 4 5
1 Y
2
3
4
5 | |
string b a a b a

e (1, 1): substring b starts in position 1 and ends in position 1.
» CFGhasrule Y — b, so put Y in t(1,1).
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Ex. (cont.): CYK for Substrings of Length 1 Ex. (cont.): CYK for Substrings of Length 2
Chomsky CFG: S - XY |YZ X =YX |a Chomsky CFG: S - XY |YZ X - YX|a
Y — ZZ|b Z = XY |a Y — ZZ|b Z — XY |a
1 2 3 4 5 1 2 3 4 5
1 Y 1 Y S, X
2 X,Z 2 X, Z
3 X,Z 3 | X, Z
4 Y 4 Y
5 | | X,Z 5 | | X, Z
string b a a b a string b a a b a
e ((2,2): substring a starts in position 2 and ends in position 2. e t(1,2): substring ba starts in position 1 and ends in position 2.
s CFG hasrules X — a and Z — a, so put X, Z in t(2,2). » split ba =ba:
* . *
e Similarly fill in other #(7,17). Y = bbyt(1,1); X, Z = a by t(2,2).
= If rule RHS € £(1,1) 0 (2,2) = {Y X, Y Z}, then LHS £ ba:
X =YX 3% ba, S=YZZ%ba
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Ex. (cont.): CYK for Substrings of Length 2 Ex. (cont.): CYK for Substrings of Length 2
Chomsky CFG: S —- XY |YZ X - YX|a Chomsky CFG: S - XY |YZ X - YX|a
Y — ZZ|b Z — XY |a Y — ZZ|b 7 = XY |a
1 2 3 4 5 1 2 3 4 5
1 Y S, X 1 Y S, X
2 X,z Y 2 X, Z Y
3 X, Z 3 X, Z S, Z
4 Y 4 Y S X
5 | | X, 7 5 | | X, 7
string b a a b a string b a a b a

e ((2,3): substring aa starts in position 2 and ends in position 3.

» splitaa =aa:

X,Z % abyt(2,2);
w If rule RHS € 1(2,2) 0 t(3,3) = {XX,XZ,ZX,ZZ}, then

LHS & aa:

Y = 727 % aa

X,Z % abyt(3,3).

e ((3,4): substring ab starts in position 3 and ends in position 4.
s splitab=oab: X,Z=abyt(3,3); Y = bbyt(4,4).
= If rule RHS € £(3,3) 0 t(4,4) = {XY, ZY}, then LHS £ ab:
S = XY & ab, 7= XY % ab

e ((4,5): similarly handle substring ba by adding LHS of rule to ¢(4,5)
if RHS € t(4,4) o t(5,5).
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Ex. (cont.): CYK for Substrings of Length 3

Chomsky CFG: S - XY |YZ X - YX|a
Y — ZZ|b Z — XY |a
1 2 3 4 5
1 Y S, X —
2 X, Z Y
3 X, Z S, Z
4 Y S, X
5 X, Z
string b a a b a

e t(1,3): substring baa starts in position 1 and ends in position 3.

e For each rule, add LHS to (1, 3) if
RHS € t(1,1)0¢(2,3) U t(1,2)0t(3,3).
a split baa =baa: Y =bbyt(1,1); Y = aabyt(2,3);
so if rule RHS € ¢(1,1) 0 £(2,3) = {YY}, then LHS = baa.
w split baa = baa: S, X = babyt(1,2); X,Z = abyt(3,3);
if rule RHS € #(1,2) 0 #(3,3) = {SX,SZ, XX, XZ}, then LHS = baa.
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Ex. (cont.): CYK for Substrings of Length 3

Chomsky CFG: S - XY |YZ X - YX|a
Y — ZZ|b Z = XY |a
1 2 3 4 5
1 Y S, X —
2 X, Z Y Y
3 X, Z S, Z Y
4 Y S, X
5 X,Z
string b a a b a

e 1(2,4): substring aab starts in position 2 and ends in position 4.
e Add LHS of rule to ¢(2,4) if RHS € t(2,2) 0t(3,4) U t(2,3)0t(4,4).

2 splitaab=aab: X,Z = abyt(2,2); S,Z= abbyt(3,4);
so if rule RHS € (2,2) 0 t(3,4) = {XS,XZ,ZS, ZZ}, then LHS = aab:

Y = Z7Z % aab

» splitaab =aab: Y = aabyt(2,3); Y = bbyt(4,4),
so if rule RHS € ¢(2,3) o t(4,4) = {Y'Y}, then LHS = aab.
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Ex. (cont.): CYK for Substrings of Length 4
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Ex. (cont.): CYK for Substrings of Length 4
Chomsky CFG: S —» XY |YZ X > YX|a

Y - ZZ|b Z — XY |a
2 3 4 5
1 S, X — —
2 X,z Y Y
3 X, Z S, Z Y
4 Y S, X
5 X, Z
string b a a b a

e t(1,4): substring baab starts in position 1 and ends in position 4.
e For each rule, add LHS to #(1,4) if
RHS € Ud_; t(1,k) ot(k+ 1,4).
e splitbaab: Y =bbyt(1,1); Y = aabbyt(2,4);
so if rule RHS € ¢(1,1) o t(2,4) = {Y'Y}, then LHS = baab.

w splitbaab: S, X = babyt(1,2); S,Z= abbyt(3,4);
so if rule RHS € ¢(1,2) 0 #(3,4) = {SS,SZ, XS, XZ}, then LHS = baab.

a split baa b : Nothing = baa as t(1,3) = 0; Y = b by t(4,4).

Chomsky CFG: S = XY |YZ X > YX|a
Y — ZZ|b Z = XY |a
1 2 3 4 5
1 Y S, X — —
2 X, Z Y Y S, X, 7 |
3 X, Z S, Z Y
4 Y S, X
5 X, Z
string b a a b a

e 1(2,5): substring aaba starts in position 2 and ends in position 5.
s split a aba: X,Z % abyt(2,2); Y = aba by t(3,5);
so if rule RHS € ¢(2,2) 0 t(3,5) = {XY, ZY}, then LHS = aaba:
S = XY = aaba, Z= XY = aaba
= split aa ba: Y = aa by t(2,3); S, X = ba by t(4,5);
so if rule RHS € 1(2,3) 0 t(4,5) = {V'S,Y X}, then LHS = aaba:
X =YX S aaba
s split aab a: Y = aab by t(2,4); X,Z % abyt(5,5);
so if rule RHS € ¢(2,4) 0 t(5,5) = {Y' X,Y Z}, then LHS = aaba:
X =YX >3 aaba
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Ex. (cont.): CYK for Substrings of Length 5

Does the following CFG in Chomsky Normal Form generate baaba ?

S - XY |YZ X - YX|a
Y - ZZ|b Z — XY |a
1 2 3 4 5
1 ‘ Y ‘ S, X — — S, X, Z
2 X, Z Y Y S, X, Z
3 X, Z S, Z Y
4 Y S, X
5 X, Z
string b a a b a

e t(1,5): substring baaba starts in position 1 and ends in position 5.
® For each rule, add LHS to ¢(1,5) if
RHS € U3_, t(1,k) ot(k+1,5).

e Answer is YES iff start variable S € ¢(1,5).
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Overall CYK Algorithm to show every CFL € P

D = "On input string w = wq wyp -+ wp € ™
1. Forw =¢,if S — eis a rule, accept; else reject.
2. Fori=1 ton,
3. For each variable A,
4 Test whether A — b is a rule, where b = w;.
5 If so, put A in table(i,i).
6. For 4 = 2 to n,

7. Forc=1ton—¢+1,

8

9

0

1

[w = & case]
[examine each substring of length 1]

[¢ is length of substring]

[ is start position of substring]
[7 is end position of substring]
[k is split position]

let j=i+4+¢—1,
Fork=itoj—1,
For each rule A — BC,
If table(i, k) contains B and table(k + 1, j) contains C,
put A in table(i,j).
12. If S'isin table(1,n), accept; else, reject.”

10.
11.
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Complexity of CYK Algorithm

e Each stage runs in polynomial time.

e Examine stages 2-5:

2. Fori=1ton, [examine each substring of length 1]

3. For each variable A,
4. Test whether A — b is a rule, where b = w;.
5. If so, put A in table(i,i).

e Analysis:

= Stage 2 runs n times

= Each time stage 2 runs, stage 3 runs v times, where
A v is number of variables in G
A v is independent of n.

= Thus, stages 4 and 5 run at most nv times,
which is O(n) because v is independent of n.
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Complexity (cont)

6. For / = 2 to n,
7. Fori=1ton—¢+1,

[¢ is length of substring]
[i is start position of substring]

8. let j =i+ ¢ —1, [7 is end position of substring]
9. Fork=1itoj— 1, [k is split position]
10. For each rule A — BC,
11. If table(i, k) contains B and table(k + 1, 7) contains C,

put A in table(i, 7).
12. If S'isin table(1,n), accept. Otherwise, reject.
Analysis:
e Stage 6 runs at most n times
e Each time stage 6 runs, stage 7 runs at most n times
e Each time stage 7 runs, stage 9 runs at most n times
e Each time stage 9 runs, stage 10 runs r times (r = # rules = constant)
e Thus, stage 8 runs O(n?) times, and stage 11 runs O(n3) times
Grand total: O(n3)
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Hamiltonian Path

N S o

e Definition: A Hamiltonian path in a directed graph G visits each
node exactly once,eg., 1 3 —+5—-4—-52 56 -7 — 8.

e Decision problem: Given a directed graph G with nodes s and ¢,
does GG have a Hamiltonian path from s to t?

e Universe 2 = { (G, s, t) | directed graph G with nodes s,t }, and
language is
HAMPATH = { (G, s,t) | G is a directed graph with a
Hamiltonian path from s to ¢t } C .

e If G is above graph, (G, 1,8) € HAMPATH, (G, 2,8) &€ HAMPATH.

CS 341: Chapter 7 7-70

Hamiltonian Path

HAMPATH = { (G, s,t) | G is a directed graph with a

Hamiltonian path from s to ¢ }

e Question: How hard is it to decide HAMPATH?

e Suppose graph G has m nodes.

e Easy to come up with (exponential) brute-force algorithm
s Generate each of the (m — 2)! potential paths.

» Check if any of these is Hamiltonian.

e Currently unknown if HAMPATH is solvable in polynomial time.
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Hamiltonian Path

e But HAMPATH has feature known as polynomial verifiability.
e A claimed Hamiltonian path can be verified in polynomial time.

» Consider (G, s,t) € HAMPATH, where graph G has m nodes.
= Then (# edges in G) < m(m — 1) = O(m?).
Suppose G encoded as (list of nodes, list of edges).

Suppose given list p1,po, ..., pm of nodes that is claimed to be
Hamiltonian path in G from s to ¢.

Can verify claim by checking

1. if each node in G appears exactly once in claimed path,
which takes O(m?2) time,
2. if each pair (p;, pj41) is edge in G, which takes O(m3) time.
= So verification takes time O(m3), which is polynomial in m.

e Thus, verifying a given path is Hamiltonian may be easier than
determining its existence.
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Composite Numbers

Definition: A natural number is composite if it is the product of two
integers greater than one

e a composite number is not prime.
e Decision problem: Given natural number x, is x composite?
e Universe 2 = { (z) | natural number z }, and language is

COMPOSITES = { (z) | x = pq, for integers p,qg > 1} C Q.

Remarks:

e Can easily verify that a number is composite.

= If someone claims a number x is composite and provides a divisor p,
just need to verify that x is divisible by p.

e In 2002, Agrawal, Kayal and Sexena proved that PRIMES € P.
s But COMPOSITES = PRIMES, so COMPOSITES € P.
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Verifiability
e Some problems may not be polynomially verifiable.
» Consider HAMPATH, which is complement of HAMPATH.
= No known way to verify (G, s, t) € HAMPATH in polynomial time.

e Definition: Verifier for language A is (deterministic) algorithm V/,
where
A ={w]| V accepts (w, c) for some string c }

e String ¢ used to verify string w € A

= cis called a certificate, or proof, of membership in A.
» Certificate is only for YES instance, not for NO instance.
e We measure verifier runtime only in terms of length of w.

e A polynomial-time verifier runs in (deterministic) time that is
polynomial in |w|.

e Language is polynomially verifiable if it has polynomial-time verifier.
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Examples of Verifiers and Certificates

e For HAMPATH, a certificate for
(G, s,t)y € HAMPATH

is simply the Hamiltonian path from s to ¢.

= Can verify in time polynomial in |{G, s, t)| if path is Hamiltonian.

e For COMPOSITES, a certificate for
() € COMPOSITES

is simply one of its divisors.

= Can verify in time polynomial in |(z)| that the given divisor actually
divides x

e Remark: Certificate c is only for YES instance, not for NO instance.
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Class NP

Definition: NP is class of languages with polynomial-time verifiers.

Remarks:

e Class NP contains many problems of practical interest
« HAMPATH
= Travelling salesman
= All of P

e The term NP comes from nondeterministic polynomial time.

= Can define NP in terms of nondeterministic polynomial-time TMs.

e Recall: a nondeterministic TM (NTM) makes “lucky guesses” in
computation.
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NTM Ny for HAMPATH
N1 = "On input (G, s,t) € €, for directed graph G with nodes s, t:
1. Write list of m numbers p1, po, ..., pm, where m is # of nodes in G.
Each number in list selected nondeterministically between 1 and m.
2. Check for repetitions in list. If any found, reject.
3. Check whether p; = s and p;, = t. If either fails, reject.

4.For i =1 to m — 1, check whether (p;, p;41) is an edge of G.
If any is not, reject. Otherwise, accept.”

Complexity of N; (when G encoded as (list of nodes, list of edges)):

e Stage 1 takes nondeterministic polynomial time: O(m).
e Stages 2 and 3 are simple deterministic poly-time checks: O(m?2).
e Stage 4 runs in deterministic polynomial time: O(m3).

e Overall: O(m3) nondeterministic running time.
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Equivalent Definition of NP

Theorem 7.20
A language is in NP if and only if it is decided by some polynomial-time
nondeterministic TM.

Proof ldea:

e Recall language in NP has (deterministic) poly-time verifier.

e Given a poly-time verifier, build NTM that on input w,
guesses the certificate ¢ and then runs verifier on input (w, ¢).

s NTM runs in nondeterministic polynomial time.

e Given a poly-time NTM, build verifier with input (w, ¢), where
certificate ¢ tells NTM on input w which is accepting branch.

= Verifier runs in deterministic polynomial time.
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Proof: “A € NP” = “A Decided by Poly-time NTM”

e Let V' be polynomial-time verifier for A.
= Assume V is DTM with n* runtime, where n is length of input w.
e Using V' as subroutine, construct NTM N as follows:

N = "“On input w of length n:
1. Nondeterministically select string ¢ of length at most n*.
2. Run V on input (w, ¢).
3. If V accepts, accept;
otherwise, reject.”

¢ NTM N runs in nondeterministic polynomial time.

 Verifier V runs in time n¥, so certificate ¢ must have length < nk:

otherwise, V' can't even read entire certificate.
= Stage 1 of NTM N takes O(n*) nondeterministic time.
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Proof: “A Decided by Poly-time NTM” = “A € NP”

e Assume A decided by polynomial-time NTM N.
e Use N to construct polynomial-time verifier V' as follows:

V' = “On input (w, c¢), where w and c are strings:
1. Simulate N on input w, treating each symbol of ¢ as
a description of each step’s nondeterministic choice.
2. If this branch of N's computation accepts, accept;
otherwise, reject.”

e V runs in deterministic polynomial time.

= NTM N originally runs in nondeterministic polynomial time.

= Certificate c tells NTM N how to compute, eliminating
nondeterminism in N's computation.
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NTIME(t(n)) and NP

Definition:

NTIME(t(n)) = { L | L is a language decided
by an O(t(n))-time NTM }

Corollary 7.22

NP = [J NTIME(n").
k>0
Remark:

e NP is insensitive to choice of “reasonable” nondeterministic
computational model.

= This is because all such models are polynomially equivalent.
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Example: CLIQUE

e Definition: A clique in a graph is a subgraph in which every two
nodes are connected by an edge, i.e., clique is complete subgraph.

e Definition: A k-clique is a clique of size k.

e Decision problem: Given graph G and integer k,
does G have k-clique?

» Universe 2 = { (G, k) | G is undirected graph, k integer }
= Language of decision problem

CLIQUE = { (G, k) | G is undirected graph with k-clique } C <.
» For graph G above, (G, 5) € CLIQUE, but (G, 6) ¢ CLIQUE.
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CLIQUE € NP

Theorem 7.24
CLIQUE & NP.

Proof.

e The clique is the certificate c.
e Here is a verifier for CLIQUE:
V = "On input ((G, k), c):
1. Test whether ¢ is a set of k different nodes in G.
2. Test whether GG contains all edges connecting nodes in c.
3. If both tests pass, accept; otherwise, reject.”

e If graph G (encoded as (list of nodes, list of edges)) has m nodes, then

= Stage 1 takes O(k)O(m) = O(km) time.
= Stage 2 takes O(k2)O(m?2) = O(k2m?) time.
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Example: SUBSET-SUM

e Decision problem: Given

= collection S of numbers z1,...,
= target number ¢

does some subcollection of S add up to 7
e Universe 2 = {(S,t) | collection S = {x1,.
e Language
SUBSET-SUM = {(S,t) | S={x1,...,x} and 3

{yi,.- -y} CHz1,. .. 2}
with Zleyizt} cQ

.., XL}, target t }.

Example:
e ({4,11,16,21,27}, 32) € SUBSET-SUM as 11 4 21 = 32.
e ({4,11,16,21,27}, 17) ¢ SUBSET-SUM.

Remark: Collections are multisets: repetitions allowed.
If number x appears r times in S, then sum can include < 7 copies of x.

CS 341: Chapter 7 7-84
SUBSET-SUM € NP

Theorem 7.25
SUBSET-SUM € NP.

Proof.

e The subset is the certificate c.
e Here is a verifier V' for SUBSET-SUM:
V = "On input ((S,t),c):
1. Test whether ¢ is a collection of numbers that sum to ¢.
2. Test whether every number in ¢ belongs to S.

3. If both tests pass, accept;
otherwise, reject.”

e When |S| =k,
s |c| <k, so V takes O(k?) time.
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Class coNP

e The complements CLIQUE and SUBSET-SUM are not obviously

members of NP.

s CLIQUE = { (G, k) | undirected graph G does not have k-clique }

= Not clear how to define certificates so that we can verify in
polynomial time.

e |t seems harder to verify that something does not exist.
Definition: The class coNP consists of languages whose complements
belong to NP.

e Language A € coNP iff A € NP.

Remark: Currently not known if coNP is different from NP.
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P vs. NP Question

e Language in P has polynomial-time decider.
e Language in NP has polynomial-time verifier (or poly-time NTM).
e P C NP because each poly-time DTM is also poly-time NTM.

NP
@ or

e Answering question whether P = NP or not is one of the great
unsolved mysteries in computer science and mathematics.

= Most computer scientists believe P = NP; e.g., jigsaw puzzle.

» Clay Math Institute (www.claymath.org) has $1,000,000 prize to
anyone who can prove either P = NP or P = NP.
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Remarks on P vs. NP Question
o If P = NP, then

= languages in P are tractable (i.e., solvable in polynomial time)

= languages in NP — P are intractable (i.e., polynomial-time solution
doesn't exist).

NP
@ or

e If any NP language A & P, then P % NP.
= Nobody has been able to (dis)prove 3 language € NP — P.
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NP-Complete

Informally, the class NP-Complete comprise languages that are

e “hardest” languages in NP
e “least likely” to be in P

e If any NP-Complete language A € P, then P = NP,

= If P %= NP, then every NP-Complete language A ¢ P.

e Because NP-Complete C NP,

» if any NP-Complete language A & P, then P = NP.

We will give a formal definition of NP-Complete later.
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Satisfiability Problem

e A Boolean variable is a variable that can take on only the values
TRUE (1) and FALSE (0).

e Boolean operations

= AND: A
s OR: Vv
» NOT: = or overbar (z = —x)
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Satisfiability Problem

e A Boolean formula (or function) is an expression involving Boolean
variables and operations, e.g.,
p1=(@Ay)V(zA7Z)
e Definition: A formula is satisfiable if some assignment of Os and 1s
to the variables makes the formula evaluate to 1.
» Example: ¢4 above is satisfiable by (z,v,2) = (0,1, 0).
This assignment satisfies ¢1.

» Example: The following formula is not satisfiable:

e Examples P2 =@ VY A(zAZ)A(yV )
e Decision problem SAT: Given Boolean fcn ¢, is ¢ satisfiable?
OAl =0 » Universe 2 = { (¢) | ¢ is a Boolean fcn }
ovl—=1 = Language of satisfiability problem:
0=1 SAT = {(¢) | ¢ is a satisfiable Boolean function } C Q2
so (1) € SAT and (¢o) & SAT.
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More Definitions Related to Satisfiability
e A literal is a variable or negated variable: x or =
e A clause is several literals joined by ORs (V): (z1 VZ3V Z7)
= Clause is TRUE iff at least one of its literals is TRUE.

e A Boolean function is in conjunctive normal form, called a
cnf-formula, if it comprises several clauses connected with ANDs (A):

(z1 VI VI3V wg) A (23 V75V 26) A (T3 V T6)
e 3cnf-formula has all clauses with 3 literals:
(z1 VI VE3) A(23VT5VI6) A(23VT6VTg) A(T2V 21V T5)
e Decision problem 3SAT: Given a 3cnf-formula ¢, is ¢ satisfiable?

» Universe Q2 = { (¢) | ¢ is 3cnf-formula }
= Language of decision problem:

3SAT = {(¢) | ¢ is a satisfiable 3cnf-function } C <.
n (@) € 3SAT iff each clause in ¢ has at least one literal assigned 1.

Polynomial-Time Computable Functions

Definition: A polynomial-time computable function is
fiX] =5
if 3 Turing machine that

e starts with input w € X7,
e halts with only f(w) € X% on the tape, and

e has runtime that is polynomial in |w| for w € 7.
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Polynomial-Time Mapping Reducible: A <p B
Consider
e language A defined over alphabet 3_7; i.e., universe 27 = >7.
e language B defined over alphabet > »; i.e., universe 2o = 3°%.

Definition: A is polynomial-time mapping reducible to B, written
A<p B
if there is a polynomial-time computable function
fiX] =5
such that, for every string w € X7,
weEA <— f(w) € B.
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Polynomial-Time Mapping Reducible: A <p B

./ﬁ\.
f
we A — f(w) eB

YES instance for problem A — YES instance for problem B

e converts questions about membership in A to membership in B

e conversion is done efficiently (i.e., in polynomial time).
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Polynomial-Time Mapping Reducible

Ql = Zi f Q2 = ZE
Theorem 7.31 —
If A<p Band B € P, then A € P. ;

e B e P = 3TM M that is polynomial-time decider for B.
e A <p B = 3 function f that reduces A to B in polynomial time.
e Define TM N that decides A C €27 as follows:
N = “On input w € 21,
1. Compute f(w) € 2.
2. Run M on input f(w) and output whatever M outputs.”
e Analysis of Time Complexity of TM N:
= Each stage runs once.
= Stage 1 is polynomial because f is polynomial-time function.
= Stage 2 is polynomial because M is polynomial-time decider for B.
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3SAT <p CLIQUE

Theorem 7.32
3SAT is polynomial-time mapping reducible to CLIQUE.

Proof Idea: Convert instance ¢ of 3SAT problem with & clauses into
instance (G, k) of clique problem: (¢) € 3SAT iff (G, k) € CLIQUE.

e Recall
3SAT = {(¢) | 3cnf-fcn ¢ is satisfiable }
C {(#)] 3enffen 6} = 923,
CLIQUE = { (G, k) | undirected graph G has k-clique }
C { (G, k) | undirected graph G, integer k } = Q.
e Need poly-time reducing function f : Q23 — Q¢
23 f Qe
./ \‘

N
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3SAT is Mapping Reducible to CLIQUE

Proof Idea: Map instance (¢) € €23 of 3SAT problem with k clauses
into instance (G, k) € Q¢ of clique problem:

(¢) € 3SAT iff (G,k) € CLIQUE
e Suppose ¢ is a 3cnf-function with k clauses, e.g.,
¢ = (z1 Vo Va3)A(23VT5VIe) A(23VZeVIa) A(22VT1VITS)
e Convert ¢ into a graph G as follows:

= Each literal in ¢ corresponds to a node in G.
» Nodes in G are organized into k triples t1,to, ..., L.
= Triple ¢; corresponds to the ith clause in ¢.

Add edges between each pair of nodes, except

A within same triple
A between contradictory literals, e.g., 1 and T7

CS 341: Chapter 7 7-98
3SAT is Mapping Reducible to CLIQUE

Example: 3cnf-function with & = 3 clauses and m = 2 variables:

¢p=(x1VrrVa) N(@1TVT2VT2) A(TTV 22V T2)

Corresponding Graph:

Clause 3

Clause 1
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3SAT is Mapping Reducible to CLIQUE
e 3cnf-formula with & = 3 clauses and m = 2 variables
¢ = (r1VayrVa)AN(@1VT2VT2)A(TTVI2VT)

is satisfiable by assignment x1{ = 0, o = 1.

e Resulting graph has k-clique based on true literal from each clause:

Clause 2
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3SAT is Mapping Reducible to CLIQUE
Need to show 3cnf-fcn ¢ with k clauses is satisfiable iff G has a k-clique.
e Key Idea: (¢) € 3SAT iff each clause in ¢ has > 1 true literal.
e Recall: G has node triples corresponding to clauses in ¢.
e Add edges between each pair of nodes, except

= within same triple
= between contradictory literals, e.g., 1 and =7

e k-clique in G

= must have 1 node from each triple
= cannot include contradictory literals

o If (¢) € 35AT, then choose node corresponding to satisfied literal in
each clause to get k-clique in G.

o If (G, k) € CLIQUE, then literals corresponding to k-clique satisfy ¢.

Conclusion: (¢) € 3SAT iff (G, k) € CLIQUE, so
3SAT <n CLIQUE.
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Reducing 3SAT to CLIQUE Takes Polynomial Time

Claim: The mapping ¢ — (G, k) is polynomial-time computable.

Proof.

e Size of given 3cnf-function ¢

s k clauses

m m variables.

e Constructing graph G
= GG has 3k nodes

= Adding edges entails considering each pair of nodes in G-
3k\ _ 3k(3k—-1)
( 2 ) N 2
= Time to construct GG is polynomial in size of 3cnf-function ¢.

= O(k?)
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NP-Complete
Definition: Language B is NP-Complete if
1. B € NP, and
2. B is NP-Hard: For every language A € NP, we have A <p B.

NP

Remarks:

e NP-Complete problems are the most difficult problems in NP.

e Definition: Language B is NP-Hard if B satisfies part 2 of
NP-Complete.
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NP-Complete and P vs. NP Question

Theorem 7.35
If there is an NP-Complete language B and B € P, then P = NP.

Proof.

NP
7]

/

e Consider any language A € NP.

e As A € NP, defn of NP-completeness
implies A <p B.

e Recall Theorem 7.31: If A <p B and B € P, then A € P.

e Because B € P, it follows that also A € P by Theorem 7.31.
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Identifying New NP-Complete Problems from Known Ones

Theorem 7.36
If B is NP-Complete and B <p C' for C' € NP, then C is NP-Complete.

NP o

Ay

.
\As

e
1=
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Identifying New NP-Complete Problems from Known Ones

Recall Theorem 7.36:
If B is NP-Complete and B <p C' for C' € NP, then C is NP-Complete.

Proof.
e Assume that C' € NP.

e Must show that every A € NP satisfies A <p C.
e Because B is NP-Complete,

= every language in NP is polynomial-time reducible to B.
s Thus, A <p B when A € NP.

e By assumption, B is polynomial-time reducible to C.
= Hence, B <p C.
e But polynomial-time reductions compose.

s So A<pBand B<pCimply A<pC.
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Cook-Levin Theorem
e Once we have one NP-Complete problem,
can identify others by using polynomial-time reduction (Theorem 7.36).
e But identifying the first NP-Complete problem requires some effort.

e Recall satisfiability problem:
SAT = {(¢) | ¢ is a satisfiable Boolean function }

Theorem 7.37
SAT is NP-Complete.

Proof ldea:

e SAT € NP because a polynomial-time NTM can guess assignment to
formula ¢ and accept if assignment satisfies ¢.

e Show that SAT is NP-Hard: A <p SAT for every language A € NP.
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Proof Qutline of Cook-Levin Theorem

o let A C 37 be alanguage in NP.

e Need to show that A <p SAT.

e For every w € 3%, we want a (CNF) formula ¢ such that
» w e Aiff (¢p) € SAT
= polynomial-time reduction that constructs ¢ from w.

e Let IV be poly-time NTM that decides A in time at most n*
for input w with |w| = n.

e Basic approach:
w€E A <= NTM N accepts input w
<= 1 accepting computation history of N on w

<= d Boolean function ¢ and variables x1,...,xm
with ¢(z1,...,2xm) = TRUE
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Proof Outline of Cook-Levin Theorem

Idea: “Satisfying assignments of ¢"
<> “accepting computation history of NTM N on w"

Step 1: Describe computations of NTM N on w by Boolean variables.

e Any computation history of N = (Q, >, 1,6, 90,94, qRr) on w with
|w| = n has < n¥ configurations since assumed N runs in time n*.

e Each configuration is an element of C(”k), where C = QU T U {#}
(mark left and right ends with #, where # & ).

e Computation described by n¥ x nF “tableau”

= Each row of tableau represents one configuration.
= Each cell in tableau contains one element of C.

e Represent contents of cell (¢,5) by |C| Boolean variables

{z;;s|se€C}

s Z; ; . = 1 means “cell (2,7) contains s (variable is “on”
1,7,8 )
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k

Tableau is an n* x n* table of configurations

# | 90 |w1 w2‘ ‘wn‘ \_1‘ ‘u # | start configuration

H*
H*

second configuration

2 x 3 window

I
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Proof Outline of Cook-Levin Theorem

Step 2: Express conditions for an accepting sequence of configurations of
NTM N on w by Boolean formulas:

peell = “for each cell (i, ), exactly one s € C with z; ; , = 1",

¢start = “first row of tableau is the starting configuration of N on w",
¢accept = 'last row of tableau is an accepting configuration of N on w",
dmove = “every 2 x 3 window is consistent with N's transition fcn".

For example,
beell = /\ .
1<i,j<n
— —
for each cell (¢, 7), > 1 symbol used

(V zijo NCN @ijsVEiji)) |-
seC s,teC
sFt

not > 2 symbols used

Step 3: Show that each of the above formulas can be

# # | nPth configuration
e expressed by a formula of size O((n*)2) = O(n?k)
nk e constructed from w in time polynomial in n = |w|.
CS 341: Chapter 7 7-111 CS 341: Chapter 7 7-112

Proof Qutline of Cook-Levin Theorem

Step 4: Show that N has an accepting computation history on w iff

@ = Pcell N\ Gstart N Paccept A\ Pmove

has a satisfying assignment of the x; ; ; variables.

Thus, we constructed ¢ using a polynomial-time reduction from A to SAT:

A <p SAT

Because construction holds for every A € NP,
SAT is then NP-Complete.

3SAT is NP-Complete

Recall

3SAT = {(¢) | ¢ is a satisfiable 3cnf-function }

Corollary 7.42
3SAT is NP-Complete.

Proof ldea:
Can modify proof that SAT is NP-Complete (Theorem 7.37) so that
resulting Boolean function is a 3cnf-function.
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Proving NP-Completeness

e Tedious to prove a language C' is NP-Complete using definition:

1.C € NP, and
2. C'is NP-Hard: For every language A € NP, we have A <p C.

NP
—

e Typically prove a language C' is NP-Complete by applying Thm 7.36

e Recall Theorem 7.36:
If B is NP-Complete and B <p C for C' € NP,
then C' is NP-Complete.

1. Prove that language C' € NP.
2. Reduce a known NP-Complete problem B to C.
= At this point, have shown that SAT and 3SAT are NP-Complete.

3. Show that reduction takes polynomial time.
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CLIQUE is NP-Complete

CLIQUE = { (G, k) | G is an undirected graph with a k-clique }

Corollary 7.43
CLIQUE is NP-Complete.

Proof.

e Theorem 7.24: CLIQUE & NP.

e Corollary 7.42: 3SAT is NP-Complete.

e Theorem 7.32: 3SAT <p CLIQUE.

e Thus, Theorem 7.36 implies CLIQUE is NP-Complete.
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Integer Linear Programming

Definition: An integer linear program (ILP) is

e set of variables y1,vo, ..., yn, which must take integer values.
e set of m linear inequalities:

a11y1 + ai2y2 + -+ + aipyn < by

az1y1 + azpy2 + -+ + azpyn < b2

bm

IN

am1¥1 + am2y2 + - + amnyn
where the a;; and b; are given constants.

e [n matrix notation, Ay < b, with matrix A and vectors y, b:

ail a1z --* aip Y1 b1
a a eea b
A= |21 022 | 2n ylz p=| 22

am1l Am2 *° Amn Yn bm
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Integer Linear Programming

Example: Can transform > and = relations into < relations:
5y1 —2y2+y3 <7

Y1 > 2 —

Yy2+2y3 =8 <+—

becomes ILP

—y1 < =2
yo+2y3<8 & y»+2y3>8

5y1 — 2y + 1lyz < 7

—1y; + 0y + 0yz < -2

Oyp + 1y +2y3 < 8

Oy1 —1lyp — 2y3 < -8

SO

5-2 1 y 7
1 0 0 ! -2
0—1-2 y3 -8
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ILP is NP-Complete

e Decision problem: Given matrix A and vector b,
is there an integer vector y such that Ay < b?

ILP = {(A,b) | matrix A and vector b satisfy Ay <b
with y an integer vector }
C {(A,b) | matrix A, vector b} = Qg
e Example: The instance (A, b) € €27, where

12 3
S
satisfies Ay < bfory = (1,1) ", so (A,b) € ILP.
e Example: The instance (C,d) € Qf, where

20 3
o=(20) +=(3)
requires 2y1 < 3 & —2y1 < —3, which means 2y = 3, so only

non-integer solutions y = (3/2, y2) | for any yo; thus, (C,d) & ILP.
e Theorem: /LP is NP-Complete.
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ILP € NP

Proof.

e The certificate c is an integer vector satisfying Ac < b.

e Here is a verifier for ILP:
V = “On input ((A,b),c):
1. Test whether c is a vector of all integers.
2. Test whether Ac < b.

3. If both tests pass, accept; otherwise, reject.”

e If Ay < b has m inequalities and n variables, then

» Stage 1 takes O(n) time
= Stage 2 takes O(mn) time
= So verifier V' runs in O(mmn), which is polynomial in size of instance.

Now prove ILP is NP-Hard by showing 3SAT <p ILP.
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3SAT <, ILP [ ;[
— | T

e Reducing fen f 1 Q23 — Qg . -

« (¢) € 3SAT iff £(($)) = (A,b) € ILP —f\

e Consider 3cnf-formula with m = 4 variables and k£ = 3 clauses:
¢ = (1 Vo VTZ) AN(TT VT2V z4) A (T2 VTV T3)
e Define integer linear program with
= 2m = 8 variables y1, 7,92, Y5, Y3, Y5, Y4, Y4
A y; corresponds to x;
o Yy, corresponds to T;
= 3 sets of inequalities for each pair (y;,y;), which must be integers:

0<y1<1, 0<yi<1l, wyi1+y1=1
0<yr<1, 0<ys<1, yp+yr=1
0<y3<1l, 0<y5<1, wyz+ys=1
0<wya<1l, 0<ys<1l, yatys=1

a Exactly one of y; and ¢/ is 1, and other is O.
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3SAT <, ILP

e Recall 3enf-formula with m = 4 variables and k = 3 clauses:

¢ = (x1 Voo VE3) A(TL VT2V 24) AN (T2 VT4V T3)

= ¢ satisfiable iff each clause evaluates to 1.

A clause evaluates to 1 iff at least one literal in the clause equals 1.

For each clause (z; V ; V xy), create inequality y; + y(; +yp, > 1.

For our example, ILP has k = 3 inequalities of this type:

y1+ys+y3>1
vit+uhtuys>1
yo+ys+ys>1

a All true for binary variables iff 3cnf-function is satisfiable.
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3SAT <, ILP

e Given 3cnf-formula:
¢ = (1 VaoVE3) AN(@L VT2V a4)A(T2V T4V T3)

e Constructed ILP:

0<y1<1, 0<yi<1, y1+yi=1
0<yr<1, 0<yr<1l, yotyr=1
0<y3<1l, 0<y3<1l, ys+y3=1
0<ys<1, O0<ya<1l, wyatys=1
y1+yo+ys>1
Vi yh+us>1
yo+ys+ys>1
e Note that:

¢ satisfiable <= constructed ILP has solution
(with values of variables € {0, 1})
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Reducing 3SAT to ILP Takes Polynomial Time

e Given 3cnf-formula ¢ with

= m variables: x1,zo,...,Tm

s k clauses

e Constructed ILP has

» 2m (integer) variables: y1,v}, ¥2, Y5, .-\ Ym, Yy,
= 6m + k inequalities:
a 3 sets of inequalities for each pair y;, y/:
0<y; <1, 0<y<1l, y+y=1

so total of 6m inequalities of this type (convert = into < & >)

a For each clause in ¢, ILP has corresponding inequality, e.g.,
(x1VaavEs) «— y1+y2+uz>1,
so total of k inequalities of this type.

= Thus, size of ILP is polynomial in m and k.
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Many Other NP-Complete Problems

e HAMPATH, SUBSET-SUM, ...

e Travelling Salesman Problem (TSP): Given a graph G with weighted
edges and a threshold value d, is there a tour that visits each node
once and has total length at most d?

e Long-Path Problem: Given a graph G with weighted edges, two nodes
s and t in G, and a threshold value d, is there path (with no cycles)
from s to t with length at least d?

e Scheduling Final Exams: |s there a way to schedule final exams in a
d-day period so no student is scheduled to take 2 exams at same time?

e Minesweeper, Sudoku, Tetris

e See Garey and Johnson (1979), Computers and Intractability: A Guide
to the Theory of NP-Completeness, for many reductions.
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NP-Hard Optimization Problems

e Decision problems have YES/NO answers.
e Many decision problems have corresponding optimization version.

e Optimization version of NP-Complete problems are NP-Hard.

‘ Problem ‘ Decision Version ‘ Optimization Version ‘
CLIQUE Does a graph G have Find largest clique
a clique of size k 7
ILP Does 3 integer vector y Find integer vector y to
such that Ay <b? max d'y st. Ay <b
TSP Does a graph GG have tour Find min length tour
of length < d7?
Scheduling | Given set of tasks and constraints,| Find min time schedule
can we finish all tasks in time d ?
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Why are NP-Complete and NP-Hard Important?

e Suppose you are faced with a problem and you can’'t come up with an
efficient algorithm for it.

e If you can prove the problem is NP-Complete or NP-Hard,
then there is no known efficient algorithm to solve it.

= No known polynomial-time algorithms for NP-Complete and
NP-Hard problems.

e How to deal with an NP-Complete or NP-Hard problem?

= Approximation algorithm
= Probabilistic algorithm
= Special cases

a Heuristic
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Summary of Chapter 7
e Time complexity: In terms of size n of input w,
how many time steps are required by TM to solve problem?
e Big-O notation: f(n) = O(g(n))
w f(n) <c-g(n) forall n > ng.
g(n) is an asymptotic upper bound on f(n).
Polynomials an® 4+ aj,_1nf~1 4 ... = O(nk).
Polynomial = O(n®) for constant ¢ > 0

Exponential = 0(2"6) for constant § > 0O

= Exponentials are asymptotically much bigger than any polynomial
e t(n)-time k-tape TM has equivalent O(t2(n))-time 1-tape TM.
e t(n)-time NTM has equivalent 20(t(n))_time 1-tape DTM.

e Strong Church-Turing Thesis: all reasonable variants of DTM are
polynomial-time equivalent.
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e Class P comprises problems that can be solved in polynomial time

» P includes PATH, RELPRIME, CFLs (using dynamic programming)

e Class NP: problems that can be verified in deterministic polynomial
time (equivalently, solved in nondeterministic polynomial time).

s NP includes all of P and HAMPATH, CLIQUE, SUBSET-SUM,
3SAT, ILP

e P vs. NP problem:

= Know P C NP: poly-time DTM is also poly-time NTM.
= Unknown if P = NP or P = NP.
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e Polynomial-time mapping reducible: A <p B if 3 polynomial-time
computable function f such that

weA <— f(w)eB.

e Defn: language B is NP-Complete if B € NP and A <p B for all
A e NP.
= If any NP-Complete language B is in P, then P = NP.
= If any NP language B is not in P, then P = NP.

» If B is NP-Complete and B <p C for C € NP,
then C' is NP-Complete.

s Cook-Levin Theorem: SAT is NP-Complete.

3SAT, CLIQUE, ILP, SUBSET-SUM, HAMPATH, etc. are all
NP-Complete




