<i>CS 341: Chapter 7</i> 7-2
Chapter 7 Time Complexity Contents
 Time and space as resources Big O/little o notation, asymptotics Time complexity Polynomial time (P) Nondeterministic polynomial time (NP) NP-completeness
CS 341: Chapter 7 7-4
Counting Resources
• Two ways of measuring "hardness" of problem:
 Time Complexity: How many time-steps are required in the computation of a problem? Space Complexity: How many bits of memory are required for the computation?

<i>CS 341: Chapter 7</i> 7-5	<i>CS 341: Chapter 7</i> 7-6
Example	How much time does M_1 need?
• Consider language $A = \{ 0^k 1^k \mid k \ge 0 \}.$	• Number of steps may depend on several parameters.
 Below is a single-tape Turing machine M₁ that decides A: M₁ = "On input w, where w ∈ {0,1}* is a string: 1. Scan across tape and reject if 0 is found to the right of a 1. 2. Repeat the following if both Os and 1s appear on tape: Scan across tape, crossing off single 0 and single 1. 3. If Os still remain after all 1s crossed out, or vice-versa, reject. Otherwise, if all Os and 1s crossed out, accept." Question: How much time does TM M₁ need to decide A? 	 number of nodes number of edges maximum degree all, some, or none of the above Definition: Complexity is measured as function of length of input string. Worst case: longest running time on input of given length. Average case: average running time on input of given length. We will only consider worst-case complexity.
<i>CS 341: Chapter 7</i> 7-7	<i>CS 341: Chapter 7</i> 7-8
Running Time	Running Time
 Let M be a deterministic TM that halts on all inputs. We will study the relationship between 	 The exact running time of most algorithms is quite complex. Instead use an approximation for large problems
 the length of encoding of a problem instance and the required time complexity of the solution for such an instance (worst case). 	 Informally, we want to focus only on "important" parts of running time. Examples:
 Definition: The running time or time complexity of M is a function f : N → N defined by the maximization: f(n) = max (number of time steps of M on input x) Terminology 	 6n³ + 2n² + 20n + 45 has four terms. 6n³ most important when n is large. Leading coefficient "6" does not depend on n, so only focus on n³.
 f(n) is the running time of M. M is an f(n)-time Turing machine. 	

Asymptotic Notation

• Consider functions f and g, where

$$f,g:\mathcal{N}\to\mathcal{R}^+$$

• **Definition:** We say that

f(n) = O(g(n))

if there are two positive constants c and n_0 such that

 $f(n) \leq c \cdot g(n)$ for all $n \geq n_0$.

- We say that:
 - "g(n) is an asymptotic upper bound on f(n)."
 - "f(n) is big-O of g(n)."

CS 341: Chapter 7

7-11

Polynomials vs Exponentials

• For a polynomial

$$p(n) = a_1 n^{k_1} + a_2 n^{k_2} + \dots + a_d n^{k_d},$$

where $k_1 > k_2 > \cdots > k_d \ge 0$, then

- $\bullet p(n) = O(n^{k_1}).$
- Also, $p(n) = O(n^r)$ for all $r \ge k_1$, e.g., $7n^3 + 5n^2 = O(n^4)$.
- Exponential fcns like 2^n always eventually "overpower" polynomials.
 - For all constants a and k, polynomial $f(n) = a \cdot n^k + \cdots$ obeys: $f(n) = O(2^n).$
 - \blacksquare For functions in n, we have

$$n^k = O(b^n)$$

for all positive constants k, and b > 1.

CS 341: Chapter 7

- Some big-O examples • Example 1: Show f(n) = O(q(n)) for $f(n) = 15n^2 + 7n, \qquad g(n) = \frac{1}{2}n^3.$ • Let $n_0 = 16$ and c = 2, so we have $\forall n > n_0$: $f(n) = 15n^2 + 7n \le 16n^2 \le n^3 = 2 \cdot \frac{1}{2}n^3 = c \cdot g(n).$ For first \leq , if $7 \leq n$, then $7n \leq n^2$ by multiplying both sides by n. • For second <, if 16 < n, then $16n^2 < n^3$ (mult. by n^2). • Example 2: $5n^4 + 27n = O(n^4)$. Take $n_0 = 1$ and c = 32. (Also $n_0 = 3$ and c = 6 works.) • But $5n^4 + 27n$ is not $O(n^3)$: no values for c and n_0 work. • Basic idea: ignore constant factor differences: $-2n^3 + 52n^2 + 829n + 2193 = O(n^3).$ • 2 = O(1) and sin(n) + 3 = O(1). CS 341: Chapter 7 7-12 **Big-O for Logarithms** • Let \log_b denote logarithm with base b. • Recall $c = \log_b n$ if $b^c = n$; e.g., $\log_2 8 = 3$. • $\log_b(x^y) = y \log_b x$ because $x = b^{\log_b x}$ and $b^{y \log_b x} = (b^{\log_b x})^y = x^y$ • Note that $n = 2^{\log_2 n}$ and $\log_h(x^y) = y \log_h x$ imply $\log_{h} n = \log_{h}(2^{\log_{2} n}) = (\log_{2} n)(\log_{h} 2)$ • Changing base *b* changes value by only constant factor. • So when we say $f(n) = O(\log n)$, the base is unimportant. • Note that $\log n = O(n)$. • In fact, $\log n = O(n^d)$ for any d > 0. Polynomials overpower logarithms, just like exponentials overpower polynomials.
 - Thus, $n \log n = O(n^2)$.

7-13

CS 341: Chapter 7

7-14

More Remarks Big-O Properties • $O(n^2) + O(n) = O(n^2)$ and $O(n^2)O(n) = O(n^3)$ • Definition: Sometimes we have • A bound of n^c , where c > 0 is a constant, is called **polynomial**. $f(n) = 2^{O(n)}$ • A bound of $2^{(n^{\delta})}$, where $\delta > 0$ is a constant, is called **exponential**. What does this mean? • f(n) = O(f(n)) for all functions f. • Answer: f(n) has an asymptotic upper bound of 2^{cn} for some constant c. • $[\log(n)]^k = O(n)$ for all constants k. • $n^k = O(2^n)$ for all constants k. • What does $f(n) = 2^{O(\log n)}$ mean? • Because $n = 2^{\log_2 n}$, n is an exponential function of log n. Recall the identities: • If f(n) and q(m) are polynomials, then q(f(n)) is polynomial in n. $n = 2^{\log_2 n},$ $n^c = 2^{c \log_2 n} = 2^{O(\log_2 n)}.$ • **Example:** If $f(n) = n^2$ and $q(m) = m^3$, then $a(f(n)) = a(n^2) = (n^2)^3 = n^6$. • Thus, $2^{O(\log n)}$ means an upper bound of n^c for some constant c. CS 341: Chapter 7 7-15 CS 341: Chapter 7 7-16 Little-o Notation **Remarks** • Big-O notation is about "asymptotically less than or equal to". **Definition:** • Let f and g be two functions with $f, g : \mathcal{N} \to \mathcal{R}^+$. • Little-o is about "asymptotically much smaller than". • Then f(n) = o(q(n)) if • Make it clear whether you mean O(q(n)) or o(q(n)). • Make it clear which variable the function is in: $\lim_{n \to \infty} \frac{f(n)}{q(n)} = 0.$ • $O(x^y)$ can be a polynomial in x or an exponential in y. Simplify! **Example:** If • Rather than $O(8n^3 + 2n)$, instead use $O(n^3)$. • $f(n) = 10n^2$ • Try to keep your big-O as "tight" as possible. • $q(n) = 2n^3$ • Suppose $f(n) = 2n^3 + 8n^2$. then f(n) = o(q(n)) because • Although $f(n) = O(n^5)$, better to write $f(n) = O(n^3)$. $\frac{f(n)}{q(n)} = \frac{10n^2}{2n^3} = \frac{5}{n} \to 0 \quad \text{as} \quad n \to \infty$

CS 341: Chapter 7	7-17	CS 341: Chapter 7	7-18
Back to Example of TM M_1 for $A = \{ 0^k 1^k \mid k \ge 0 \}$		Analysis of Stage 1	
 M₁ = "On input string w ∈ {0, 1}*: 1. Scan across tape and reject if 0 is found to the right of a 1. 2. Repeat the following if both Os and 1s appear on tape: Scan across tape, crossing off single 0 and single 1. 3. If no Os or 1s remain, accept; otherwise, reject." Let's now analyze M ₁ 's run-time complexity. We will examine each stage separately. Suppose input string w is of length n. 		 1. Scan across tape and reject if 0 is found to the right of a 1. 0 0 0 1 1 1 Analysis: Input string w is of length n. Scanning requires n steps. Repositioning head back to beginning of tape requires n steps. Total is 2n = O(n) steps. 	
CS 341: Chapter 7 Analysis of Stage 2 2. Repeat the following if both Os and 1s appear on tape: • Scan across tape, crossing off single 0 and single 1. • O O O I I I I U U Analysis:	7-19	CS 341: Chapter 7 Analysis of Stage 3 and Overall 3. If no 0s or 1s remain, accept; otherwise, reject. Ø Ø Ø I I I I I I I I ··· Analysis: • Single scan requires O(n) steps.	7-20
 Each scan requires O(n) steps. Because each scan crosses off two symbols, at most n/2 scans can occur. Total is O(ⁿ/₂) O(n) = O(n²) steps. 		Total cost for each stage: • Stage 1: $O(n)$ • Stage 2: $O(n^2)$ • Stage 3: $O(n)$ Overall complexity: $O(n) + O(n^2) + O(n) = O(n^2)$	

CS 341: Chapter 7	7-21	CS 341: Chapter 7	7-22
Time Complexit	zy Class	Another TM for $A = \{ 0^k 1^k \}$	$\mid k \geq 0 \}$
Definition: For a function $t : \mathcal{N} \to \mathcal{N}$, $TIME(t(n)) = \{L \mid \text{there is a 1} \\ \text{language } I \}$ Remarks: • TM M_1 decides language $A = \{0^k 1^k \\ M_1 \text{ has run-time complexity } O(n^2) \}$ • Thus, $A \in TIME(n^2)$. • Can we do better?	L-tape TM that decides L in time $O(t(n))$ } $ k \ge 0$ }	 M₂ = "On input string w ∈ {0,1}*: 1. Scan across tape and reject if 0 is found to th 2. Repeat the following if both 0s and 1s appear 2.1 Scan across tape, checking whether total even or odd. If odd, reject. 2.2 Scan across tape, crossing off every other leftmost), and every other 1 (starting with 3. If no 0s or 1s remain, accept; otherwise, reject." 	he right of a 1. ^r on tape: number of Os and 1s is O (starting with the the leftmost).
CS 341: Chapter 7 Why M ₂ Ha	7-23	CS 341: Chapter 7 Why M ₂ Works	7-24
 Stage 2.2: Scan across tape, crossing e On each scan in Stage 2.2, Total number of Os is decreased by (Same for the 1s Example: Start with 13 Os. After first pass, 6 remaining. After second pass, 3 remaining. After third pass, 1 remaining. After fourth pass, none remaining. 	very other O and 1. (at least) half	 Consider parity of Os and 1s in Stage 2.1. Example: Start with 0¹³ 1¹³ Initially, odd-odd (13, 13) 000000000000000000000000000000000000	$\frac{1}{1} \frac{1}{1} \frac{1}$

Review Thm 3.13: Simulating k-Tape TM M on 1-Tape TM S

7-29

CS 341: Chapter 7

7-30

Complexity of Simulation

CS	341:	Chapter	7
----	------	---------	---

7-33

7-35

Simulating NTM N on 1-Tape DTM D Requires Exponential Overhead

Theorem 7.11

- Let t(n) be a function with $t(n) \ge n$.
- Any t(n)-time nondeterministic TM has an equivalent $2^{O(t(n))}$ -time deterministic 1-tape TM.

Proof Idea:

- Suppose N is NTM decider running in t(n) time.
- \bullet On each input w, NTM N 's computation is a tree of configurations.
- \bullet Simulate N on 3-tape DTM D using BFS of N 's computation tree:
 - \bullet D tries all possible branches.
 - \blacksquare If D finds any accepting configuration, D accepts.
 - \blacksquare If all branches reject, D rejects.

CS 341: Chapter 7

Summary of Simulation Results

- Simulating k-tape DTM on 1-tape DTM
 - increases runtime from t(n) to $O(t^2(n))$
 - i.e., **polynomial** increase in runtime.
- Simulating NTM on 1-tape DTM
 - increases runtime from t(n) to $2^{O(t(n))}$
 - i.e., **exponential** increase in runtime.

CS 341: Chapter 7

Complexity of Simulating NTM ${\it N}$ on 1-Tape DTM ${\it D}$

- Analyze NTM N's computation tree on input w with |w|=n
 - Root is starting configuration.
 - Each node has $\leq b$ children
 - $b = \max$ number of legal choices given by N's transition fcn δ .
 - Each branch has length $\leq t(n)$.
 - Total number of leaves $\leq b^{t(n)}$.
 - Total number of nodes $\leq 2 \times (\text{max number of leaves}) = O(b^{t(n)})$.
 - Time to travel from root to any node is O(t(n)).
- DTM's runtime \leq time to visit all nodes:

$$O(b^{t(n)}) \times O(t(n)) = 2^{O(t(n))}$$

- Simulating NTM by DTM requires 3 tapes by Theorem 3.16.
- By Theorem 3.13, simulating 3-tape DTM on 1-tape DTM requires $(2^{O(t(n))})^2 = 2^{2 \times O(t(n))} = 2^{O(t(n))} \text{ steps.}$

CS 341: Chapter 7

Polynomial Good, Exponential Bad

 $10^6 \text{ steps/second}$

	n					
f(n)	10	20	30	40	50	60
n	.00001	.00002	.00003	.00004	.00005	.00006
	seconds	seconds	seconds	seconds	seconds	seconds
n^2	.0001	.0004	.0009	.0016	.0025	.0036
	seconds	seconds	seconds	seconds	seconds	seconds
n^3	.001	.008	.027	.064	.125	.216
	seconds	seconds	seconds	seconds	seconds	seconds
n^5	.1	3.2	24.3	1.7	5.2	13
	seconds	seconds	seconds	minutes	minutes	minutes
2^n	.001	1.05	17.9	12.7	35.7	366
	seconds	seconds	minutes	days	years	centuries
3^n	.059	58	6.5	3855	2×10^8	10 ¹³
	seconds	minutes	years	centuries	centuries	centuries

Strong Church-Turing Thesis

- In general, every "reasonable" variant of DTM (*k*-tape, *r*-heads, etc.) can be simulated by a single-tape DTM with only **polynomial time/space overhead**.
 - Any one of these models can simulate another with only polynomial increase in running time or space required.
 - All "reasonable" models of computation are polynomially equivalent.
 - NTM is "unreasonable" variant: it can do $O(b^s)$ work on step s.
- If any reasonable version of a DTM can solve a problem in polynomial time, then any other reasonable type of DTM can also.
- If we ask if a particular problem is solvable in **linear time** (i.e., O(n)), answer **depends** on computational model used.
- If we ask if a particular problem A is solvable in **polynomial time**, answer is **independent** of reasonable computational model used.

CS 341: Chapter 7

7-39

7-37

Encoding of Problems

- \bullet Recall: TM running time defined as fcn of length of encoding $\langle x \rangle$ of input x.
- But for given problem, many ways to encode input x as $\langle x \rangle$.
 - Should use "good" encoding scheme.
- For integers
 - binary is good
 - unary is bad (exponentially worse)
 - **Example:** Suppose input to TM is the number 18 in decimal.
 - \blacktriangle if encoding in binary, $\langle 18 \rangle = 10010$
 - \blacktriangle if encoding in unary, $\langle 18 \rangle = 11111111111111111111$
- \bullet For graphs
 - list of nodes and edges (good)
 - adjacency matrix (good)

The Class ${\rm P}$

Because of polynomial equivalence of DTM models,

• group languages solvable in $O(n^2)$, $O(n \log n)$, O(n), etc., together in the **polynomial-time class**.

Definition: The class of languages that can be decided by a single-tape DTM in polynomial time is denoted by P, where

$$\mathbf{P} = \bigcup_{k \ge 0} \mathsf{TIME}(n^k)$$

Remarks:

- If we ask if a particular problem A is solvable in polynomial time (i.e., is $A \in P$?),
 - answer is independent of deterministic computational model used.
- Class P roughly corresponds to *tractable* (i.e., realistically solvable) problems.
- CS 341: Chapter 7

Example of Problem in P: PATH

• **Decision problem**: Given directed graph G with nodes s and t, does G have a path from s to t?

- Universe $\Omega = \{ \langle G, s, t \rangle \mid G \text{ is directed graph with nodes } s, t \}$ of instances (for a particular encoding scheme).
- Language of decision problem comprises YES instances:

 $PATH = \{ \langle G, s, t \rangle \, | \, G \text{ is directed graph with path from } s \text{ to } t \, \} \subseteq \Omega.$

• For graph G above, $\langle G, 1, 5 \rangle \in PATH$, but $\langle G, 2, 1 \rangle \notin PATH$.

<i>CS 341: Chapter 7</i> 7-41	<i>CS 341: Chapter 7</i> 7-42	
$PATH\in\mathbf{P}$	Complexity of Brute-Force Algorithm for PATH	
Theorem 7.14 $PATH \in P$. Brute-force algorithm:	 Brute-force algorithm: Input is ⟨G, s, t⟩ ∈ Ω, where G is directed graph with nodes s and t. Any path from s to t need not repeat nodes. Examine each potential path in G of length ≤ m (= # nodes in G). 	
• Input is instance $\langle G, s, t angle \in \Omega$	• Check if the path goes from s to t .	
• G is directed graph with nodes s and t.	Complexity analysis:	
• Let m be number of nodes in G .	• There are roughly m^m potential paths of length $\leq m$.	
 ≤ m² edges. m (or m²) roughly measures size of instance ⟨G, s, t⟩. Any path from s to t need not repeat nodes. 	 For each potential path length k = 2, 3,, m, check all k! permutations of k distinct nodes from (^m_k) possibilities. k! = k × (k - 1) × (k - 2) × ··· × 1, (^m_k) = m!/(k!(m-k)!) 	
• Examine each potential path in G of length $\leq m$.	• Stirling's approximation: $k! \sim \left(\frac{k}{\epsilon}\right)^k \sqrt{2\pi k}$.	
Check if the path goes from s to t.	• This is exponential in the number m of nodes.	
What is complexity of this algorithm?	• So brute-force algorithm's runtime is exponential in size of input.	
<i>CS 341: Chapter 7</i> 7-43	<i>CS 341: Chapter 7</i> 7-44	
A Better Algorithm Shows $PATH \in \mathbf{P}$	Complexity of Better Algorithm for PATH	
 On input (G, s, t) ∈ Ω, where G is directed graph with nodes s and t: 1. Place mark on node s. 2. Repeat until no additional nodes marked: Scan all edges of G 	 On input (G, s, t) ∈ Ω, where G is a directed graph with nodes s and t: 1. Place mark on node s. 2. Repeat until no additional nodes marked: Scan all edges of G. If edge (a, b) found from marked node a to unmarked node b, then mark b. 3. If node t is marked, accept; otherwise, reject. 	
 If edge (a, b) found from marked node a to unmarked node b, then mark b. 	 Complexity of algorithm: (depends on how (G, s, t) is encoded) Suppose G encoded as (list of nodes, list of edges). 	
3. If node t is marked, accept; otherwise, reject.	 Suppose input graph G has m nodes, so ≤ m² edges. Stage 1 runs only once, running in O(m) time 	
Graph G $(G, 1, 5) \in PATH$ $(G, 5, 3) \in PATH$ $(G, 2, 1) \notin PATH$	 Stage 2 runs at most m times Each time (except last), it marks new nodes. Each time requires scanning edges, which runs in O(m²) steps. Stage 3 runs only once, running in O(m) time Overall complexity: O(m) + O(m)O(m²) + O(m) = O(m³), so PATH ∈ P. 	

Another Problem in P: RELPRIME

• **Definition:** Two integers x, y are **relatively prime** if 1 is largest integer that divides both; greatest common divisor GCD(x, y) = 1.

• Examples:

- 10 and 21 are relatively prime.
- \blacksquare 10 and 25 are not.
- **Decision problem**: Given integers x and y, are x, y relatively prime?
 - Universe $\Omega = \{ \langle x, y \rangle \mid x, y \text{ integers } \}$ of problem instances.
 - Language of decision problem:

 $\textit{RELPRIME} = \{ \langle x, y \rangle \mid x \text{ and } y \text{ are relatively prime} \} \subseteq \Omega$

• So $(10, 21) \in RELPRIME$ and $(10, 25) \notin RELPRIME$.

Theorem 7.15 $RELPRIME \in P.$

CS 341: Chapter 7

A Better Algorithm for RELPRIME

Euclidean Algorithm *E*:

- E = "On input $\langle x, y \rangle$, where x, y are natural numbers encoded in binary:
- 1. Repeat until y = 0
 - Assign $x \leftarrow x \mod y$.
 - Exchange x and y.
- 2. Output x."

Algorithm R below solves *RELPRIME*, using E as a subroutine:

R= "On input $\langle x,y\rangle,$ where x,y are natural numbers encoded in binary:

- 1. Run E on $\langle x, y \rangle$.
- 2. If output of *E* is 1, *accept*; otherwise, *reject*."

CS 341: Chapter 7

7-45

Bad Algorithm for RELPRIME

argest	$RELPRIME = \{ \langle x, y \rangle \mid x \text{ and } y \text{ are relatively prime} \}.$
= 1.	Bad Idea: Test all possible divisors (i.e., 2 to $min(x, y)$).
	Complexity of algorithm depends on how integers are encoded:
	• If x, y encoded in unary (bad), then
, primo?	length of $\langle x angle$ is x ; length of $\langle y angle$ is y .
/ prime:	• testing min (x, y) values is polynomial in length of input $\langle x, y \rangle$.
es.	• If x, y encoded in binary (good), then
_ Ω.	 length of ⟨x⟩ is log x; length of ⟨y⟩ is log y. testing min(x, y) values is exponential in length of input ⟨x, y⟩ because n is an exponential function of log n (i.e., n = 2^{log₂n}).
	 This algorithm is pseudo-polynomial.
	 Polynomial running time with bad encoding.
	 Exponential running time with good encoding.
7-47	<i>CS 341: Chapter 7</i> 7-48
	Complexity of Euclidean Algorithm
	Euclidean Algorithm E:
	$E =$ "On input $\langle x, y \rangle$, where x, y are natural numbers encoded in binary:
n binary:	1. Repeat until $y = 0$
	• Assign $x \leftarrow x \mod y$.
	• Exchange x and y .
	Complexity of E:
	ullet After first step of Stage 1, $x < y$ because of mod.
1.1	ullet Values then swapped, so $x>y.$
n binary:	ullet Can show each subsequent execution of Stage 1 cuts x by at least half.
	• # times Stage 1 executed $\leq \min(\log_2 x, \log_2 y)$.
	• Thus, total running time of E (and R) is polynomial in $ \langle x, y \rangle $, so RELPRIME $\in \mathbb{P}$.

<i>CS 341: Chapter 7</i> 7-49	<i>CS 341: Chapter 7</i> 7-50
CFLs are in P	Recall Previous Algorithm to Decide CFL
Theorem 7.16 Every context-free language is in P.	Lemma If G is in Chomsky normal form and string $w \in L(G)$ has length $n > 0$, then w has a derivation with $2n - 1$ steps.
 Remarks: Will show that each CFL ∈ TIME(n³) n is length of input string w ∈ Σ*. 	Theorem 4.9 Every CFL is a decidable language. Proof.
• Theorem 4.9 showed that every CFL is decidable, which we now review. • Convert CFG into Chomsky normal form : • Each rule has one of the following forms: $A \rightarrow BC$, $A \rightarrow x$, $S \rightarrow \varepsilon$ where A, B, C, S are variables; S is start variable; B, C are not start variable; x is a terminal.	 Assume L is a CFL generated by CFG G in Chomsky normal form. Theorem 4.7: ∃ TM S that decides A_{CFG} = { ⟨G, w⟩ G is a CFG that generates w }. Following TM M_G decides CFL L ⊆ Σ*: M_G = "On input w ∈ Σ*: 1. Run TM S on input ⟨G, w⟩. 2. If S accepts, accept; if S rejects, reject."
<i>CS 341: Chapter 7</i> 7-51	CS 341: Chapter 7 7-52
Previous Algorithm is Exponential	Dynamic Programming
 Recall that to determine if ⟨G, w⟩ ∈ A_{CFG}, TM S tries all derivations with k = 2n - 1 steps, where n = w > 0. But number of derivations taking k steps can be exponential in k. So we need to use a different algorithm. 	 Fix CFG G in Chomsky normal form. Input to DP algorithm is string w = w₁w₂ ··· wn with w = n In our case of DP, subproblems are to determine which variables in G can generate each substring of w.
• Use dynamic programming (DP)	 Create an n × n table. Entry (i, j): row i, column j
 Powerful, general technique. Basic idea: accumulate information about <i>smaller subproblems</i> to solve <i>larger subproblems</i>. Store subproblem solutions in a <i>table</i> as they are generated. 	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Substrings of length 3

Substrings of length 2

Substrings of length 1

п

 $W_1 W_2 W_3 \cdots W_n$

- Look up smaller subproblem solutions as needed when solving larger subproblems.
- DP for CFGs: **Cocke-Younger-Kasami (CYK)** algorithm.

CS 341: Chapter 7 CS 341: Chapter 7 7-53 7-54 **Dynamic Programming Table** Filling in Dynamic Programming Table 1 2 3 п • Suppose s = uv, $B \stackrel{*}{\Rightarrow} u$, $C \stackrel{*}{\Rightarrow} v$, and \exists rule $A \rightarrow BC$. Complete string 2 • Then $A \stackrel{*}{\Rightarrow} s$ because $A \Rightarrow BC \stackrel{*}{\Rightarrow} uv = s$. 3 • Suppose that algorithm has determined which variables generate each Substrings of length 3 substring of length < k. Substrings of length 2 Substrings of length 1 • To determine if variable A can generate substring of length k + 1: $W_1 W_2 W_3 = = W_1$ • split substring into 2 non-empty pieces in all possible (k) ways. • For i < j, (i, j)th entry contains those variables that can generate substring $w_i w_{i+1} \cdots w_i$ • For each split, algorithm examines rules $A \rightarrow BC$ • For i > j, (i, j)th entry is unused. ▲ Each piece is shorter than current substring, so table tells how to generate each piece. • DP starts by filling in all entries for substrings of length 1, \blacktriangle Check if *B* generates first piece. then all entries for length 2, ▲ Check if C generates second piece. then all entries for length 3, etc. \blacktriangle If both possible, then add A to table. • Idea: Use shorter lengths to determine how to construct longer lengths. CS 341: Chapter 7 CS 341: Chapter 7 7-55 7-56 **Example: CYK Algorithm** Ex. (cont.): CYK for Substrings of Length 1 Chomsky CFG: $S \rightarrow XY \mid YZ$ Does the following CFG in Chomsky Normal Form generate baaba? $X \rightarrow YX \mid a$ $Y \rightarrow ZZ \mid b$ $Z \rightarrow XY \mid a$ $S \rightarrow XY \mid YZ$ $X \rightarrow YX \mid a$ $Y \rightarrow ZZ \mid b$ $Z \rightarrow XY \mid a$ 2 5 3 4 1 \overline{Y} 1 2 5 1 3 4 2 1 3 2 4 3 5 4 string b b aaa5 string baab a• t(1, 1): substring b starts in position 1 and ends in position 1. • CFG has rule $Y \rightarrow b$, so put Y in t(1, 1). • Build table t so that for i < j, entry t(i, j) contains variables that can generate substring starting in position i and ending in position j

• Fill in one diagonal at a time.

7-61

■ split baab: Nothing $\stackrel{*}{\Rightarrow} baa$ as $t(1,3) = \emptyset$; $Y \stackrel{*}{\Rightarrow} b$ by t(4,4).

7-62

7-64

so if rule RHS $\in t(2,4) \circ t(5,5) = \{YX, YZ\}$, then LHS $\stackrel{*}{\Rightarrow} aaba$:

 $X \Rightarrow YX \stackrel{*}{\Rightarrow} aab a$

Ex. (cont.): CYK for Substrings of Length 5

7-65

CS 341: Chapter 7

Overall CYK Algorithm to show every $\text{CFL} \in \mathbf{P}$

Does the following CFG in Chomsky Normal Form generate baaba? $\begin{array}{c} S \rightarrow XY \mid YZ & X \rightarrow YX \mid a \\ Y \rightarrow ZZ \mid b & Z \rightarrow XY \mid a \end{array}$ $\begin{array}{c} 1 & 2 & 3 & 4 & 5 \\ 1 & Y & S, X & - & - & S, X, Z \\ 2 & X, Z & Y & Y & S, X, Z \\ 3 & & X, Z & S, Z & Y \\ 4 & & & Y & S, X \\ 5 & & & & & & X, Z \end{array}$ et (1, 5): substring baaba starts in position 1 and ends in position 5. • For each rule, add LHS to t(1, 5) if	$D = \text{"On input string } w = w_1 w_2 \cdots w_n \in \Sigma^*:$ 1. For $w = \varepsilon$, if $S \to \varepsilon$ is a rule, $accept$; else $reject$. $[w = \varepsilon \text{ case}]$ 2. For $i = 1$ to n , $[examine each substring of length 1]$ 3. For each variable A , 4. Test whether $A \to b$ is a rule, where $b = w_i$. 5. If so, put A in $table(i, i)$. 6. For $\ell = 2$ to n , $[\ell \text{ is length of substring}]$ 7. For $i = 1$ to $n - \ell + 1$, $[i \text{ is start position of substring}]$ 8. Let $j = i + \ell - 1$, $[j \text{ is end position of substring}]$ 9. For $k = i$ to $j - 1$, $[k \text{ is split position}]$ 10. For each rule $A \to BC$, 11. If $table(i, k)$ contains B and $table(k + 1, j)$ contains C , put A in $table(i, j)$. 12. If S is in $table(1, n)$, $accept$; else, $reject$."
• Answer is YES iff start variable $S \in t(1, 5)$.	CS 241. Chapter 7
Complexity of CVK Algorithm	Complexity (court)
Complexity of CTR Algorithm	
 Each stage runs in polynomial time. Examine stages 2–5: 2. For i = 1 to n, [examine each substring of length 1] 3. For each variable A, 4. Test whether A → b is a rule, where b = w_i. 5. If so, put A in table(i, i). 	7. For $i = 1$ to $n - \ell + 1$, [<i>i</i> is start position of substring] 8. Let $j = i + \ell - 1$, [<i>j</i> is end position of substring] 9. For $k = i$ to $j - 1$, [<i>k</i> is split position] 10. For each rule $A \rightarrow BC$, 11. If $table(i, k)$ contains <i>B</i> and $table(k + 1, j)$ contains <i>C</i> , put <i>A</i> in $table(i, j)$. 12. If <i>S</i> is in $table(1, n)$, accept. Otherwise, reject.
 Analysis: Stage 2 runs n times Each time stage 2 runs, stage 3 runs n times, where 	 Analysis: Stage 6 runs at most n times

<i>CS 341: Chapter 7</i> 7-69	<i>CS 341: Chapter 7</i> 7-70
Hamiltonian Path	Hamiltonian Path
	 HAMPATH = { (G, s, t) G is a directed graph with a Hamiltonian path from s to t } Question: How hard is it to decide HAMPATH?
 Definition: A Hamiltonian path in a directed graph G visits each node exactly once, e.g., 1 → 3 → 5 → 4 → 2 → 6 → 7 → 8. Decision problem: Given a directed graph G with nodes s and t, does G have a Hamiltonian path from s to t? Universe Ω = { ⟨G, s, t⟩ directed graph G with nodes s, t }, and language is HAMPATH = { ⟨G, s, t⟩ G is a directed graph with a Hamiltonian path from s to t } ⊆ Ω. If G is above graph, ⟨G, 1, 8⟩ ∈ HAMPATH, ⟨G, 2, 8⟩ ∉ HAMPATH.	 Suppose graph G has m nodes. Easy to come up with (exponential) brute-force algorithm Generate each of the (m - 2)! potential paths. Check if any of these is Hamiltonian. Currently unknown if HAMPATH is solvable in polynomial time.
<i>CS 341: Chapter 7</i> 7-71	<i>CS 341: Chapter 7</i> 7-72
Hamiltonian Path	Composite Numbers
 But HAMPATH has feature known as polynomial verifiability. A claimed Hamiltonian path can be verified in polynomial time. 	Definition: A natural number is composite if it is the product of two integers greater than one
• Consider $\langle G, s, t \rangle \in HAMPATH$, where graph G has m nodes.	• a composite number is not prime.
 Then (# edges in G) ≤ m(m - 1) = O(m²). Suppose G encoded as (list of nodes, list of edges). Suppose given list p₁, p₂,, p_m of nodes that is claimed to be Hamiltonian path in G from s to t. Can verify claim by checking if each node in G appears exactly once in claimed path 	 Decision problem: Given natural number x, is x composite? Universe Ω = { ⟨x⟩ natural number x }, and language is COMPOSITES = { ⟨x⟩ x = pq, for integers p, q > 1 } ⊆ Ω. Remarks:
which takes $O(m^2)$ time,	 Can easily verify that a number is composite.
 2. if each pair (p_i, p_{i+1}) is edge in G, which takes O(m³) time. ■ So verification takes time O(m³), which is polynomial in m. 	 If someone claims a number x is composite and provides a divisor p, just need to verify that x is divisible by p.
 Thus, verifying a given path is Hamiltonian may be easier than determining its existence. 	 In 2002, Agrawal, Kayal and Sexena proved that PRIMES ∈ P. But COMPOSITES = PRIMES, so COMPOSITES ∈ P.

<i>CS 341: Chapter 7</i> 7-73	<i>CS 341: Chapter 7</i> 7-74
Verifiability	Examples of Verifiers and Certificates
 Some problems may not be polynomially verifiable. 	• For <i>HAMPATH</i> , a certificate for
 Consider HAMPATH, which is complement of HAMPATH. 	$\langle G, s, t angle \in {\it HAMPATH}$
■ No known way to verify $\langle G, s, t \rangle \in \overline{HAMPATH}$ in polynomial time.	is simply the Hamiltonian path from s to t .
• Definition: Verifier for language A is (deterministic) algorithm V, where	• Can verify in time polynomial in $ \langle G,s,t angle $ if path is Hamiltonian.
$A = \{ w \mid V \text{ accepts } \langle w, c \rangle \text{ for some string } c \}$	• For <i>COMPOSITES</i> , a certificate for
• String c used to verify string $w \in A$	$\langle x angle \in \textit{COMPOSITES}$
 c is called a certificate, or proof, of membership in A. Certificate is only for YES instance not for NO instance 	is simply one of its divisors.
 We measure verifier runtime only in terms of length of w. A polynomial-time verifier runs in (deterministic) time that is polynomial in w . 	• Can verify in time polynomial in $ \langle x \rangle $ that the given divisor actually divides x
• Language is polynomially verifiable if it has polynomial-time verifier.	• Remark: Certificate <i>c</i> is only for YES instance, not for NO instance.
<i>CS 341: Chapter 7</i> 7-75	<i>CS 341: Chapter 7</i> 7-76
Class NP	NTM N_1 for HAMPATH
Definition: NP is class of languages with polynomial-time verifiers.	N_1 = "On input $\langle G, s, t \rangle \in \Omega$, for directed graph G with nodes s, t:
 Remarks: Class NP contains many problems of practical interest <i>HAMPATH</i> Travelling salesman All of P 	 Write list of m numbers p₁, p₂,, p_m, where m is # of nodes in G. Each number in list selected nondeterministically between 1 and m. Check for repetitions in list. If any found, reject. Check whether p₁ = s and p_m = t. If either fails, reject. For i = 1 to m - 1, check whether (p_i, p_{i+1}) is an edge of G. If any is not, reject. Otherwise, accept."
 The term NP comes from nondeterministic polynomial time. Can define NP in terms of nondeterministic polynomial-time TMs. Recall: a nondeterministic TM (NTM) makes "lucky guesses" in computation. 	 Complexity of N₁ (when G encoded as (list of nodes, list of edges)): Stage 1 takes nondeterministic polynomial time: O(m). Stages 2 and 3 are simple deterministic poly-time checks: O(m²). Stage 4 runs in deterministic polynomial time: O(m³).

CS 341: Chapter 7 7-77	<i>CS 341: Chapter 7</i> 7-78	
Equivalent Definition of NP	Proof: " $A \in NP$ " \Rightarrow "A Decided by Poly-time NTM"	
Theorem 7.20 A language is in NP if and only if it is decided by some polynomial-time nondeterministic TM.	 Let V be polynomial-time verifier for A. Assume V is DTM with n^k runtime, where n is length of input w. Using V as subroutine, construct NTM N as follows: 	
 Proof Idea: Recall language in NP has (deterministic) poly-time verifier. Given a poly-time verifier, build NTM that on input w, guesses the certificate c and then runs verifier on input ⟨w, c⟩. NTM runs in nondeterministic polynomial time 	 N = "On input w of length n: 1. Nondeterministically select string c of length at most n^k. 2. Run V on input (w, c). 3. If V accepts, accept; otherwise, reject." 	
 Given a poly-time NTM, build verifier with input ⟨w, c⟩, where certificate c tells NTM on input w which is accepting branch. ■ Verifier runs in deterministic polynomial time. 	 ■ Verifier V runs in time n^k, so certificate c must have length ≤ n^k; otherwise, V can't even read entire certificate. ■ Stage 1 of NTM N takes O(n^k) nondeterministic time. 	
CS 341: Chapter 7 7-79 Proof: "A Decided by Poly-time NTM " \Rightarrow " $A \in NP$ "	CS 341: Chapter 7 7-80 $\mathbf{NTIME}(t(n))$ and \mathbf{NP}	
 Assume A decided by polynomial-time NTM N. Use N to construct polynomial-time verifier V as follows: V = "On input ⟨w, c⟩, where w and c are strings: Simulate N on input w, treating each symbol of c as a description of each step's nondeterministic choice. If this branch of N's computation accepts, accept; otherwise, reject." V runs in deterministic polynomial time. 	Definition:NTIME $(t(n)) = \{L \mid L \text{ is a language decided}$ by an $O(t(n))$ -time NTM $\}$ Corollary 7.22NP = $\bigcup_{k \ge 0} NTIME(n^k).$	
 NTM N originally runs in nondeterministic polynomial time. Certificate c tells NTM N how to compute, eliminating nondeterminism in N's computation. 	 Remark: NP is insensitive to choice of "reasonable" nondeterministic computational model. This is because all such models are polynomially equivalent. 	

CS	341:	Chapter	7
----	------	---------	---

Example:

Remark: Collections are multisets: repetitions allowed.

If number x appears r times in S, then sum can include < r copies of x.

7-81

Example: CLIQUE

 $\textbf{CLIQUE} \in \mathbf{NP}$

Theorem 7.24 $CLIQUE \in NP.$ Proof. • The clique is the certificate c. • **Definition:** A **clique** in a graph is a subgraph in which every two • Here is a verifier for *CLIQUE*: nodes are connected by an edge, i.e., clique is **complete subgraph**. V = "On input $\langle \langle G, k \rangle, c \rangle$: • **Definition:** A *k*-clique is a clique of size *k*. 1. Test whether c is a set of k different nodes in G. • **Decision problem**: Given graph G and integer k, 2. Test whether G contains all edges connecting nodes in c. does G have k-clique? 3. If both tests pass, *accept*; otherwise, *reject*." • Universe $\Omega = \{ \langle G, k \rangle \mid G \text{ is undirected graph, } k \text{ integer } \}$ • If graph G (encoded as (list of nodes, list of edges)) has m nodes, then Language of decision problem • Stage 1 takes O(k)O(m) = O(km) time. $CLIQUE = \{ \langle G, k \rangle \mid G \text{ is undirected graph with } k \text{-clique} \} \subseteq \Omega.$ • Stage 2 takes $O(k^2)O(m^2) = O(k^2m^2)$ time. • For graph G above, $\langle G, 5 \rangle \in CLIQUE$, but $\langle G, 6 \rangle \notin CLIQUE$. 7-83 CS 341: Chapter 7 7-84 **Example: SUBSET-SUM** SUBSET-SUM $\in NP$ • Decision problem: Given Theorem 7.25 *SUBSET-SUM* ∈ NP. • collection S of numbers x_1, \ldots, x_k ■ target number *t* Proof. does some subcollection of S add up to t? • The subset is the certificate c. • Universe $\Omega = \{ \langle S, t \rangle \mid \text{collection } S = \{x_1, \dots, x_k\}, \text{ target } t \}.$ • Here is a verifier V for SUBSET-SUM: Language V = "On input $\langle \langle S, t \rangle, c \rangle$: SUBSET-SUM = { $\langle S, t \rangle \mid S = \{x_1, \dots, x_k\}$ and \exists 1. Test whether c is a collection of numbers that sum to t. $\{y_1,\ldots,y_\ell\}\subseteq\{x_1,\ldots,x_k\}$ 2. Test whether every number in c belongs to S. with $\sum_{i=1}^{\ell} y_i = t \} \subset \Omega$ 3. If both tests pass, *accept*; otherwise, reject." • $\langle \{4, 11, 16, 21, 27\}, 32 \rangle \in SUBSET-SUM$ as 11 + 21 = 32. • When |S| = k. • $\langle \{4, 11, 16, 21, 27\}, 17 \rangle \notin SUBSET-SUM$. • |c| < k, so V takes $O(k^2)$ time.

7-85

Class coNP

- The complements *CLIQUE* and *SUBSET-SUM* are not obviously members of NP.
 - $\overline{CLIQUE} = \{ \langle G, k \rangle \mid \text{undirected graph } G \text{ does } \mathbf{not} \text{ have } k \text{-clique } \}$
 - Not clear how to define certificates so that we can verify in polynomial time.
- It seems harder to verify that something does not exist.

Definition: The class coNP consists of languages whose complements belong to $\mathrm{NP}.$

• Language $A \in \text{coNP}$ iff $\overline{A} \in \text{NP}$.

Remark: Currently not known if coNP is different from NP.

CS 341: Chapter 7

7-87

Remarks on $\mathrm P$ vs. $\mathrm N\mathrm P$ Question

- If $P \neq NP$, then
 - languages in P are **tractable** (i.e., solvable in polynomial time)
 - languages in NP P are **intractable** (i.e., polynomial-time solution doesn't exist).

- If any NP language $A \notin P$, then $P \neq NP$.
 - Nobody has been able to (dis)prove \exists language $\in NP P$.

CS 341: Chapter 7

${\rm P}$ vs. ${\rm NP}$ Question

- Language in P has polynomial-time **decider**.
- \bullet Language in ${\rm NP}$ has polynomial-time verifier (or poly-time NTM).
- $P \subseteq NP$ because each poly-time DTM is also poly-time NTM.

- Answering question whether P = NP or not is one of the great unsolved mysteries in computer science and mathematics.
 - Most computer scientists believe $P \neq NP$; e.g., jigsaw puzzle.
 - Clay Math Institute (www.claymath.org) has \$1,000,000 prize to anyone who can prove either P = NP or P ≠ NP.

CS 341: Chapter 7

NP-Complete

Informally, the class NP-Complete comprise languages that are

- \bullet "hardest" languages in ${\rm NP}$
- \bullet "least likely" to be in ${\rm P}$
- If any NP-Complete language $A \in P$, then P = NP.
 - If $P \neq NP$, then every NP-Complete language $A \notin P$.
- Because NP-Complete \subseteq NP,
 - if any NP-Complete language $A \notin P$, then $P \neq NP$.

We will give a formal definition of $\operatorname{NP-Complete}$ later.

<i>CS 341: Chapter 7</i> 7-89	<i>CS 341: Chapter 7</i> 7-90	
Satisfiability Problem	Satisfiability Problem	
• A Boolean variable is a variable that can take on only the values	• A Boolean formula (or function) is an expression involving Boolean variables and operations, e.g.,	
TRUE (I) and FALSE (U).	$\phi_1 = (\overline{x} \land y) \lor (x \land \overline{z})$	
Boolean operations	• Definition: A formula is satisfiable if some assignment of 0s and 1s	
AND: A	to the variables makes the formula evaluate to 1. - Example: ϕ_1 above is satisfiable by $(x, y, z) = (0, 1, 0)$	
• OR: \lor	This assignment satisfies ϕ_1 .	
• NOT: \neg or overbar ($x = \neg x$)	Example: The following formula is not satisfiable:	
• Examples	$\phi_2 = (\overline{x} \lor y) \land (z \land \overline{z}) \land (y \lor x)$	
	• Decision problem SAT: Given Boolean fcn ϕ , is ϕ satisfiable?	
$0 \wedge 1 = 0$	• Universe $\Omega = \{ \langle \phi \rangle \mid \phi \text{ is a Boolean fcn } \}$	
$0 \vee 1 = 1$	Language of satisfiability problem:	
$\overline{0} = 1$	$SAI = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean function } \} \subseteq \Omega$	
	so $\langle \phi_1 \rangle \in SAI$ and $\langle \phi_2 \rangle \not\in SAI$.	
<i>CS 341: Chapter 7</i> 7-91	<i>CS 341: Chapter 7</i> 7-92	
More Definitions Related to Satisfiability	Polynomial-Time Computable Functions	
• A literal is a variable or negated variable: x or \overline{x}		
• A clause is several literals joined by ORs (\lor): $(x_1 \lor \overline{x_3} \lor \overline{x_7})$	Definition: A polynomial-time computable function is	
 Clause is TRUE iff at least one of its literals is TRUE. 	$f: \Sigma_1^* \to \Sigma_2^*$	
• A Boolean function is in conjunctive normal form , called a	if ∃ Turing machine that	
cnt-formula , if it comprises several clauses connected with ANDs (\land):	$ullet$ starts with input $w\in \Sigma_1^*$,	
$(x_1 \lor x_2 \lor x_3 \lor x_4) \land (x_3 \lor x_5 \lor x_6) \land (x_3 \lor x_6)$	• balts with only $f(w) \in \Sigma^*$ on the tane and	
• 3cnf-formula has all clauses with 3 literals:	• naits with only $f(w) \in \mathbb{Z}_2$ on the tape, and	
$(x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (x_3 \vee \overline{x_5} \vee x_6) \wedge (x_3 \vee \overline{x_6} \vee x_4) \wedge (x_2 \vee x_1 \vee x_5)$	$ullet$ has runtime that is polynomial in $ w $ for $w\in \Sigma_1^st.$	
• Decision problem 3SAT: Given a 3cnf-formula ϕ , is ϕ satisfiable?		
• Universe $\Omega = \{ \langle \phi \rangle \mid \phi \text{ is 3cnf-formula} \}$		
Language of decision problem: $2SAT = \left\{ \left(d \right) \mid d \text{ is a particular logar function} \right\} \subset O$		
$3341 = 3(0) + 0$ is a satisfiance sent-function by $\sqrt{2}$		
$(4) \in 2CAT : if and all over in (1) and (1$		

7-93

Polynomial-Time Mapping Reducible: $A \leq_{P} B$

Consider

CS 341: Chapter 7

Proof.

Theorem 7.31

- language A defined over alphabet Σ_1 ; i.e., universe $\Omega_1 = \Sigma_1^*$.
- language B defined over alphabet Σ_2 ; i.e., universe $\Omega_2 = \Sigma_2^*$.

Definition: A is polynomial-time mapping reducible to B, written

 $A \leq_{\mathsf{P}} B$

if there is a polynomial-time computable function

 $f: \Sigma_1^* \to \Sigma_2^*$

such that, for every string $w \in \Sigma_1^*$,

If $A \leq_{\mathsf{P}} B$ and $B \in \mathsf{P}$, then $A \in \mathsf{P}$.

N = "On input $w \in \Omega_1$,

Each stage runs once.

• Define TM N that decides $A \subseteq \Omega_1$ as follows:

• Analysis of Time Complexity of TM N:

1. Compute $f(w) \in \Omega_2$.

$$w \in A \iff f(w) \in B.$$

 $\Omega_1 = \Sigma_1^*$

• Stage 2 is polynomial because M is polynomial-time decider for B.

3SAT is Mapping Reducible to CLIQUE

Proof Idea: Map instance $\langle \phi \rangle \in \Omega_3$ of *3SAT* problem with k clauses into instance $\langle G, k \rangle \in \Omega_C$ of clique problem:

 $\langle \phi \rangle \in 3SAT$ iff $\langle G, k \rangle \in CLIQUE$

 \bullet Suppose ϕ is a 3cnf-function with k clauses, e.g.,

$$\phi = (x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (x_3 \lor \overline{x_5} \lor x_6) \land (x_3 \lor \overline{x_6} \lor x_4) \land (x_2 \lor x_1 \lor x_5)$$

- Convert ϕ into a graph G as follows:
 - Each literal in ϕ corresponds to a node in G.
 - Nodes in G are organized into k triples t_1, t_2, \ldots, t_k .
 - Triple t_i corresponds to the *i*th clause in ϕ .
 - Add edges between each pair of nodes, except
 - \blacktriangle within same triple
 - \blacktriangle between contradictory literals, e.g., x_1 and $\overline{x_1}$

CS 341: Chapter 7

7-99

7-97

3SAT is Mapping Reducible to CLIQUE

• 3cnf-formula with k = 3 clauses and m = 2 variables

$$\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$$

is satisfiable by assignment $x_1 = 0$, $x_2 = 1$.

• Resulting graph has k-clique based on true literal from each clause:

3SAT is Mapping Reducible to CLIQUE

Example: 3cnf-function with k = 3 clauses and m = 2 variables:

$$\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$$

Corresponding Graph:

CS 341: Chapter 7

7-100

3SAT is Mapping Reducible to CLIQUE

Need to show 3cnf-fcn ϕ with k clauses is satisfiable iff G has a k-clique.

- Key Idea: $\langle \phi \rangle \in 3SAT$ iff each clause in ϕ has ≥ 1 true literal.
- \bullet Recall: G has node triples corresponding to clauses in $\phi.$
- Add edges between each pair of nodes, except
 - within same triple
 - \blacksquare between contradictory literals, e.g., x_1 and $\overline{x_1}$
- k-clique in G
 - must have 1 node from each triple
 - cannot include contradictory literals
- If $\langle \phi \rangle \in 3SAT$, then choose node corresponding to satisfied literal in each clause to get k-clique in G.
- If $\langle G, k \rangle \in CLIQUE$, then literals corresponding to k-clique satisfy ϕ .

 $\begin{array}{ll} \textbf{Conclusion:} & \langle \phi \rangle \in \textit{3SAT} \text{ iff } \langle G, k \rangle \in \textit{CLIQUE}, \text{ so} \\ & \textit{3SAT} \leq_{\mathrm{m}} \textit{CLIQUE}. \end{array}$

Reducing 3SAT to CLIQUE Takes Polynomial Time

Claim: The mapping $\phi \rightarrow \langle G, k \rangle$ is polynomial-time computable.

Proof.

- \bullet Size of given 3cnf-function ϕ
 - k clauses
 - *m* variables.
- \bullet Constructing graph G
 - $\blacksquare G$ has $\Im k$ nodes
 - \blacksquare Adding edges entails considering each pair of nodes in G:

$$\binom{3k}{2} = \frac{3k(3k-1)}{2} = O(k^2)$$

 \blacksquare Time to construct G is polynomial in size of 3cnf-function $\phi.$

CS 341: Chapter 7

7-103

7-101

NP-Complete and $\mathbf P$ vs. $\mathbf NP$ Question

Theorem 7.35

If there is an NP-Complete language B and $B \in P$, then P = NP.

Proof.

- Consider any language $A \in NP$.
- As $A \in NP$, defn of NP-completeness implies $A \leq_P B$.

- Recall Theorem 7.31: If $A \leq_{\mathsf{P}} B$ and $B \in \mathsf{P}$, then $A \in \mathsf{P}$.
- Because $B \in P$, it follows that also $A \in P$ by Theorem 7.31.

NP-Complete

Definition: Language *B* is **NP-Complete** if

1. $B \in \mathrm{NP}$, and

2. *B* is **NP-Hard**: For every language $A \in NP$, we have $A \leq_P B$.

Remarks:

- \bullet NP-Complete problems are the most difficult problems in $\mathrm{NP}.$
- **Definition:** Language *B* is **NP-Hard** if *B* satisfies part 2 of NP-Complete.

CS 341: Chapter 7

7-104

Identifying New $\operatorname{NP-Complete}$ Problems from Known Ones

Theorem 7.36

If B is NP-Complete and $B \leq_{\mathsf{P}} C$ for $C \in \mathsf{NP}$, then C is NP-Complete.

CS 341: Chapter 7 7-105 CS 341: Chapter 7 7-106 Identifying New NP-Complete Problems from Known Ones Cook-Levin Theorem • Once we have one NP-Complete problem, Recall Theorem 7.36: If B is NP-Complete and $B \leq_{\mathsf{P}} C$ for $C \in \mathsf{NP}$, then C is NP-Complete. can identify others by using polynomial-time reduction (Theorem 7.36). • But identifying the first NP-Complete problem requires some effort. Proof. • Recall satisfiability problem: • Assume that $C \in NP$. $SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean function } \}$ • Must show that every $A \in NP$ satisfies $A \leq_{P} C$. • Because *B* is NP-Complete, Theorem 7.37 • every language in NP is polynomial-time reducible to B. SAT is NP-Complete. • Thus, $A \leq_{\mathsf{P}} B$ when $A \in \mathsf{NP}$. • By assumption, B is polynomial-time reducible to C. **Proof Idea:** • Hence, $B \leq_{\mathsf{P}} C$. • $SAT \in NP$ because a polynomial-time NTM can guess assignment to formula ϕ and *accept* if assignment satisfies ϕ . • But polynomial-time reductions compose. • Show that SAT is NP-Hard: $A \leq_{\mathsf{P}} SAT$ for every language $A \in \mathsf{NP}$. • So $A \leq_{\mathsf{P}} B$ and $B \leq_{\mathsf{P}} C$ imply $A \leq_{\mathsf{P}} C$. CS 341: Chapter 7 7-107 CS 341: Chapter 7 7-108 **Proof Outline of Cook-Levin Theorem Proof Outline of Cook-Levin Theorem Idea:** "Satisfying assignments of ϕ " • Let $A \subseteq \Sigma_1^*$ be a language in NP. \leftrightarrow "accepting computation history of NTM N on w" • Need to show that $A \leq_{\mathsf{P}} SAT$. **Step 1:** Describe computations of NTM N on w by Boolean variables. • For every $w \in \Sigma_1^*$, we want a (CNF) formula ϕ such that • Any computation history of $N = (Q, \Sigma, \Gamma, \delta, q_0, q_A, q_B)$ on w with • $w \in A$ iff $\langle \phi \rangle \in SAT$ |w| = n has $< n^k$ configurations since assumed N runs in time n^k . • polynomial-time reduction that constructs ϕ from w. • Each configuration is an element of $C^{(n^k)}$, where $C = Q \cup \Gamma \cup \{\#\}$ • Let N be poly-time NTM that decides A in time at most n^k (mark left and right ends with #, where $\# \notin \Gamma$). for input w with |w| = n. • Computation described by $n^k \times n^k$ "tableau" • Basic approach: Each row of tableau represents one configuration. $w \in A \iff \mathsf{NTM} \ N$ accepts input w• Each cell in tableau contains one element of C. $\iff \exists$ accepting computation history of N on w• Represent contents of cell (i, j) by |C| Boolean variables $\iff \exists$ Boolean function ϕ and variables x_1, \ldots, x_m $\{x_{i,j,s} \mid s \in C\}$ with $\phi(x_1,\ldots,x_m) = \mathsf{TRUE}$ • $x_{i,j,s} = 1$ means "cell (i, j) contains s" (variable is "on")

 n^k

Tableau is an $n^k \times n^k$ table of configurations

CS 341: Chapter 7

7-109

Proof Outline of Cook-Levin Theorem

Step 2: Express conditions for an accepting sequence of configurations of NTM N on w by Boolean formulas:

 $\phi_{\text{cell}} =$ "for each cell (i, j), exactly one $s \in C$ with $x_{i,j,s} = 1$ ", $\phi_{\rm start}$ = "first row of tableau is the starting configuration of N on w ", $\phi_{\text{accept}} =$ "last row of tableau is an accepting configuration of N on w", $\phi_{\text{move}} =$ "every 2 × 3 window is consistent with N's transition fcn". For example,

$$\phi_{\mathsf{cell}} = \bigwedge_{\substack{1 \le i, j \le n^k \\ \text{for each cell } (i, j), \\ }} \left[\underbrace{(\bigvee_{s \in C} x_{i, j, s})}_{1 \text{ symbol used}} \land (\bigwedge_{s, t \in C} (\overline{x_{i, j, s}} \lor \overline{x_{i, j, t}})) \right].$$

Step 3: Show that each of the above formulas can be

• expressed by a formula of size $O((n^k)^2) = O(n^{2k})$

• constructed from w in time polynomial in n = |w|.

CS 341: Chapter 7

7-112

3SAT is NP-Complete

Recall

 $3SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable 3cnf-function} \}$

Corollary 7.42 3SAT is NP-Complete.

Proof Idea:

Can modify proof that SAT is NP-Complete (Theorem 7.37) so that resulting Boolean function is a 3cnf-function.

7-113

 \bullet Tedious to prove a language C is $\operatorname{NP-Complete}$ using definition:

1. $C \in NP$, and

2. C is NP-Hard: For every language $A \in NP$, we have $A \leq_{\mathsf{P}} C$.

Recall Theorem 7.36:
If B is NP-Complete and B ≤_P C for C ∈ NP, then C is NP-Complete.

- \bullet Typically prove a language C is $\operatorname{NP-Complete}$ by applying Thm 7.36
 - 1. Prove that language $C \in NP$.
 - 2. Reduce a known NP-Complete problem B to C.
 - At this point, have shown that SAT and 3SAT are NP-Complete.
 - 3. Show that reduction takes polynomial time.

CS 341: Chapter 7

7-116

$\label{eq:clique} \textbf{CLIQUE is NP-} Complete$

 $\textit{CLIQUE} = \{ \langle G, k \rangle \mid G \text{ is an undirected graph with a } k\text{-clique} \}$

Corollary 7.43 CLIQUE is NP-Complete.

Proof.

- Theorem 7.24: $CLIQUE \in NP$.
- Corollary 7.42: *3SAT* is NP-Complete.
- Theorem 7.32: $3SAT \leq_{P} CLIQUE$.
- Thus, Theorem 7.36 implies *CLIQUE* is NP-Complete.

CS 341: Chapter 7

7-115

Integer Linear Programming

Example: Can transform \geq and = relations into \leq relations:

$$5y_1 - 2y_2 + y_3 \le 7$$

$$y_1 \ge 2 \quad \longleftrightarrow \quad -y_1 \le -2$$

$$y_2 + 2y_3 = 8 \quad \longleftrightarrow \quad y_2 + 2y_3 \le 8 \quad \& \quad y_2 + 2y_3 \ge 8$$

becomes ILP

CS 341: Chapter 7

$$5y_1 - 2y_2 + 1y_3 \le 7$$

$$-1y_1 + 0y_2 + 0y_3 \le -2$$

$$0y_1 + 1y_2 + 2y_3 \le 8$$

$$0y_1 - 1y_2 - 2y_3 \le -8$$

so

 $A = \begin{pmatrix} 5 & -2 & 1 \\ -1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & -1 & -2 \end{pmatrix}, \quad y = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}, \quad b = \begin{pmatrix} 7 \\ -2 \\ 8 \\ -8 \end{pmatrix}.$

Integer Linear Programming

Definition: An integer linear program (ILP) is

- set of variables y_1, y_2, \ldots, y_n , which **must take integer values.**
- \bullet set of m linear inequalities:

where the a_{ij} and b_i are given constants.

• In matrix notation, $Ay \leq b$, with matrix A and vectors y, b:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}, \quad y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \quad b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}.$$

7-117

$\mathsf{ILP} \in \mathbf{NP}$

Proof.

CS 341: Chapter 7

- The certificate c is an integer vector satisfying Ac < b.
- Here is a verifier for *ILP*:
 - V = "On input $\langle \langle \mathbf{A}, \mathbf{b} \rangle, \mathbf{c} \rangle$:
 - 1. Test whether c is a vector of all integers.
 - 2. Test whether Ac < b.
 - 3. If both tests pass, *accept*; otherwise, *reject*."
- If $Ay \leq b$ has m inequalities and n variables, then
 - Stage 1 takes O(n) time
 - Stage 2 takes O(mn) time
 - So verifier V runs in O(mn), which is polynomial in size of instance.

Now prove *ILP* is NP-Hard by showing $3SAT <_{P} ILP$.

CS 341: Chapter 7

3SAT ≤_m ILP

• Recall 3cnf-formula with m = 4 variables and k = 3 clauses:

 $\phi = (x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2} \lor x_4) \land (\overline{x_2} \lor \overline{x_4} \lor \overline{x_3})$

- ϕ satisfiable iff each clause evaluates to 1.
- A clause evaluates to 1 iff at least one literal in the clause equals 1.
- For each clause $(x_i \vee \overline{x_j} \vee x_\ell)$, create inequality $y_i + y'_i + y_\ell \ge 1$.
- For our example, ILP has k = 3 inequalities of this type:

 $y_1 + y_2 + y'_3 > 1$ $u_1' + u_2' + u_A > 1$ $y'_{2} + y'_{4} + y'_{3} > 1$

▲ All true for binary variables iff 3cnf-function is satisfiable.

, 7-119 $3SAT <_m ILP$ Ω_3 Ω_I 3SAT (ILP

ILP is NP-Complete

• **Decision problem:** Given matrix A and vector b, is there an **integer** vector y such that Ay < b?

 $ILP = \{ \langle A, b \rangle \mid \text{matrix } A \text{ and vector } b \text{ satisfy } Ay < b \}$ with y an integer vector $\}$

$$\subseteq \{ \langle A, b \rangle \mid \text{matrix } A, \text{ vector } b \} \equiv \Omega$$

• **Example:** The instance $\langle A, b \rangle \in \Omega_I$, where

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}, \quad b = \begin{pmatrix} 3 \\ 7 \end{pmatrix},$$

satisfies Ay < b for $y = (1, 1)^{\top}$, so $\langle A, b \rangle \in ILP$.

• **Example:** The instance $\langle C, d \rangle \in \Omega_I$, where

$$C = \begin{pmatrix} 2 & 0 \\ -2 & 0 \end{pmatrix}, \quad d = \begin{pmatrix} 3 \\ -3 \end{pmatrix}$$

requires $2y_1 \leq 3 \& -2y_1 \leq -3$, which means $2y_1 = 3$, so only non-integer solutions $y = (3/2, y_2)^{\top}$ for any y_2 ; thus, $\langle C, d \rangle \notin ILP$.

• **Theorem:** *ILP* is NP-Complete.

CS 341: Chapter 7

- Reducing fcn $f: \Omega_3 \to \Omega_I$
 - $\langle \phi \rangle \in 3SAT$ iff $f(\langle \phi \rangle) = \langle A, b \rangle \in ILP$
- Consider 3cnf-formula with m = 4 variables and k = 3 clauses:

```
\phi = (x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2} \lor x_4) \land (\overline{x_2} \lor \overline{x_4} \lor \overline{x_3})
```

- Define integer linear program with
 - 2m = 8 variables $y_1, y'_1, y_2, y'_2, y_3, y'_3, y_4, y'_4$
 - y_i corresponds to x_i
 - y'_i corresponds to $\overline{x_i}$
 - 3 sets of inequalities for each pair (y_i, y'_i) , which must be integers:

$0\leq y_1\leq 1,$	$0\leq y_{1}^{\prime }\leq 1,$	$y_1 + y_1' = 1$
$0\leq y_2\leq 1,$	$0\leq y_{2}^{\prime }\leq 1,$	$y_2 + y'_2 = 1$
$0\leq y_{3}\leq 1,$	$0\leq y_{3}^{\prime }\leq 1,$	$y_3 + y'_3 = 1$
$0 \leq y_4 \leq 1$,	$0 \le y'_4 \le 1,$	$y_4 + y'_4 = 1$

• Exactly one of y_i and y'_i is 1, and other is 0.

<i>CS 341: Chapter 7</i> 7-121	CS 341: Chapter 7	7-122
$3SAT \leq_m ILP$	Reducing 3SAT to ILP Takes Polynor	mial Time
• Given 3cnf-formula:	$ullet$ Given 3cnf-formula ϕ with	
$\phi = (x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2} \lor x_4) \land (\overline{x_2} \lor \overline{x_4} \lor \overline{x_3})$	• m variables: x_1, x_2, \ldots, x_m	
Constructed ILP:	■ k clauses	
$\begin{array}{ll} 0 \leq y_1 \leq 1, & 0 \leq y_1' \leq 1, & y_1 + y_1' = 1\\ 0 \leq y_2 \leq 1, & 0 \leq y_2' \leq 1, & y_2 + y_2' = 1\\ 0 \leq y_3 \leq 1, & 0 \leq y_3' \leq 1, & y_3 + y_3' = 1\\ 0 \leq y_4 \leq 1, & 0 \leq y_4' \leq 1, & y_4 + y_4' = 1\\ & y_1 + y_2 + y_3' \geq 1\\ & y_1' + y_2' + y_4 \geq 1\\ & y_2' + y_4' + y_3' \geq 1 \end{array}$ • Note that:	 Constructed ILP has 2m (integer) variables: y₁, y'₁, y₂, y'₂,, y_m 6m + k inequalities: 3 sets of inequalities for each pair y_i, y'_i: 0 ≤ y_i ≤ 1, 0 ≤ y'_i ≤ 1, y so total of 6m inequalities of this type (convex For each clause in φ, ILP has corresponding in (x₁ ∨ x₂ ∨ x₃) ↔ y₁ + y₂ 	y_i, y'_m $y'_i + y'_i = 1,$ $ert = into \le \& \ge)$ nequality, e.g., $y_i + y'_3 \ge 1,$
ϕ satisfiable \iff constructed ILP has solution (with values of variables $\in \{0,1\}$)	so total of k inequalities of this type. ■ Thus, size of ILP is polynomial in m and k.	
<i>CS 341: Chapter 7</i> 7-123	CS 341: Chapter 7	7-124
Many Other NP-Complete Problems	NP-Hard Optimization Proble	ems
• HAMPATH, SUBSET-SUM,	\bullet Decision problems have YES/NO answers.	
• <i>Travelling Salesman Problem</i> (TSP): Given a graph G with weighted edges and a threshold value d, is there a tour that visits each node once and has total length at most d?	 Many decision problems have corresponding optim Optimization version of NP-Complete problems are 	n ization version. e NP-Hard.
• Long-Path Problem: Given a graph G with weighted edges, two nodes	Problem Decision Version Opt	timization Version
s and t in G , and a threshold value d , is there path (with no cycles) from s to t with length at least d ?	CLIQUEDoes a graph G haveFia clique of size k ?	nd largest clique
• Scheduling Final Exams: Is there a way to schedule final exams in a <i>d</i> -day period so no student is scheduled to take 2 exams at same time?	ILPDoes \exists integer vector y Findsuch that $Ay \leq b$?maxTSPDoes a graph G have tourFind	integer vector y to $d^{\top}y$ s.t. $Ay \leq b$ ind min length tour
• Minesweeper, Sudoku, Tetris	of length $\leq d$?	
 See Garey and Johnson (1979), Computers and Intractability: A Guide to the Theory of NP-Completeness, for many reductions. 	SchedulingGiven set of tasks and constraints, can we finish all tasks in time d ?Find	min time schedule

<i>CS 341: Chapter 7</i> 7-125	<i>CS 341: Chapter 7</i> 7-126	
Why are NP-Complete and NP-Hard Important?	Summary of Chapter 7	
• Suppose you are faced with a problem and you can't come up with an efficient algorithm for it.	 Time complexity: In terms of size n of input w, how many time steps are required by TM to solve problem? Big-O notation: f(n) = O(g(n)) 	
 If you can prove the problem is NP-Complete or NP-Hard, then there is no known efficient algorithm to solve it. No known polynomial-time algorithms for NP-Complete and NP-Hard problems. How to deal with an NP-Complete or NP-Hard problem? Approximation algorithm Probabilistic algorithm Special cases Heuristic 	 f(n) ≤ c ⋅ g(n) for all n ≥ n₀. g(n) is an asymptotic upper bound on f(n). Polynomials a_kn^k + a_{k-1}n^{k-1} + ··· = O(n^k). Polynomial = O(n^c) for constant c ≥ 0 Exponential = O(2^{n^δ}) for constant δ > 0 Exponentials are asymptotically much bigger than any polynomial t(n)-time k-tape TM has equivalent O(t²(n))-time 1-tape TM. t(n)-time NTM has equivalent 2^{O(t(n))}-time 1-tape DTM. Strong Church-Turing Thesis: all reasonable variants of DTM are polynomial-time equivalent. 	
<i>CS 341: Chapter 7</i> 7-127	CS 341: Chapter 7 7-128	
 Class P comprises problems that can be solved in polynomial time P includes PATH, RELPRIME, CFLs (using dynamic programming) Class NP: problems that can be verified in deterministic polynomial time (equivalently, solved in nondeterministic polynomial time). NP includes all of P and HAMPATH, CLIQUE, SUBSET-SUM, 3SAT, ILP P vs. NP problem: Know P ⊆ NP: poly-time DTM is also poly-time NTM. Unknown if P = NP or P ≠ NP. 	 Polynomial-time mapping reducible: A ≤_P B if ∃ polynomial-time computable function f such that w ∈ A ⇐⇒ f(w) ∈ B. Defn: language B is NP-Complete if B ∈ NP and A ≤_P B for all A ∈ NP. If any NP-Complete language B is in P, then P = NP. If any NP language B is not in P, then P ≠ NP. If B is NP-Complete and B ≤_P C for C ∈ NP, then C is NP-Complete. Cook-Levin Theorem: SAT is NP-Complete. <i>3SAT</i>, CLIQUE, ILP, SUBSET-SUM, HAMPATH, etc. are all NP-Complete 	