
CS 341: Foundations of CS II

Marvin K. Nakayama
Computer Science Department

New Jersey Institute of Technology
Newark, NJ 07102

CS 341: Chapter 7 7-2

Chapter 7
Time Complexity

Contents

• Time and space as resources

• Big O/little o notation, asymptotics

• Time complexity

• Polynomial time (P)

• Nondeterministic polynomial time (NP)

• NP-completeness

CS 341: Chapter 7 7-3

Introduction

• Chapters 3–5 dealt with computability theory:

“What is and what is not possible to solve with a computer?”

• For the problems that are computable, this leads to the next question:

“If we can decide a language A, how easy or hard is it to do so?”

• Complexity theory tries to answer this.

CS 341: Chapter 7 7-4

Counting Resources

• Two ways of measuring “hardness” of problem:

1. Time Complexity:
How many time-steps are required in the computation of a problem?

2. Space Complexity:
How many bits of memory are required for the computation?

•We will only examine time complexity in this course.

•We will use the Turing machine model.

If we measure time complexity in a crude enough way, then results
for TMs will also hold for all “reasonable” variants of TMs.

CS 341: Chapter 7 7-5

Example

• Consider language
A = {0k1k | k ≥ 0 }.

• Below is a single-tape Turing machine M1 that decides A:

M1 = “On input w, where w ∈ {0,1}∗ is a string:

1. Scan across tape and reject if 0 is found to the right of a 1.

2. Repeat the following if both 0s and 1s appear on tape:

Scan across tape, crossing off single 0 and single 1.

3. If 0s still remain after all 1s crossed out, or vice-versa, reject.
Otherwise, if all 0s and 1s crossed out, accept .”

0 0 0 1 1 1 �� �� . . .

•Question: How much time does TM M1 need to decide A?

CS 341: Chapter 7 7-6

How much time does M1 need?

• Number of steps may depend on several parameters.

• Example: If input is a graph, this could depend on

number of nodes

number of edges

maximum degree

all, some, or none of the above

•Definition: Complexity is measured as function of length of input
string.

Worst case: longest running time on input of given length.

Average case: average running time on input of given length.

•We will only consider worst-case complexity.

CS 341: Chapter 7 7-7

Running Time

• Let M be a deterministic TM that halts on all inputs.

•We will study the relationship between

the length of encoding of a problem instance and

the required time complexity of the solution for such an instance
(worst case).

•Definition: The running time or time complexity of M is a
function f : N → N defined by the maximization:

f(n) = max
|x|=n

(number of time steps of M on input x)

• Terminology

f(n) is the running time of M .

M is an f(n)-time Turing machine.

CS 341: Chapter 7 7-8

Running Time

• The exact running time of most algorithms is quite complex.

• Instead use an approximation for large problems.

• Informally, we want to focus only on “important” parts of running time.

• Examples:

6n3 + 2n2 + 20n+45 has four terms.

6n3 most important when n is large.

Leading coefficient “6” does not depend on n, so only focus on n3.

CS 341: Chapter 7 7-9

Asymptotic Notation

• Consider functions f and g, where

f, g : N → R+

•Definition: We say that

f(n) = O(g(n))

if there are two positive constants c and n0 such that

f(n) ≤ c · g(n) for all n ≥ n0.

•We say that:

“g(n) is an asymptotic upper bound on f(n).”

“f(n) is big-O of g(n).”

CS 341: Chapter 7 7-10

Some big-O examples

• Example 1: Show f(n) = O(g(n)) for

f(n) = 15n2 + 7n, g(n) =
1

2
n3.

Let n0 = 16 and c = 2, so we have ∀ n ≥ n0:

f(n) = 15n2 + 7n ≤ 16n2 ≤ n3 = 2 · 1
2
n3 = c · g(n).

For first ≤, if 7 ≤ n, then 7n ≤ n2 by multiplying both sides by n.

For second ≤, if 16 ≤ n, then 16n2 ≤ n3 (mult. by n2).

• Example 2: 5n4 + 27n = O(n4).

Take n0 = 1 and c = 32. (Also n0 = 3 and c = 6 works.)

But 5n4 + 27n is not O(n3): no values for c and n0 work.

• Basic idea: ignore constant factor differences:

2n3 + 52n2 + 829n+2193 = O(n3).

2 = O(1) and sin(n) + 3 = O(1).

CS 341: Chapter 7 7-11

Polynomials vs Exponentials

• For a polynomial

p(n) = a1n
k1 + a2n

k2 + · · ·+ adn
kd,

where k1 > k2 > · · · > kd ≥ 0, then

p(n) = O(nk1).

Also, p(n) = O(nr) for all r ≥ k1, e.g., 7n
3 + 5n2 = O(n4).

• Exponential fcns like 2n always eventually “overpower” polynomials.

For all constants a and k, polynomial f(n) = a · nk + · · · obeys:

f(n) = O(2n).

For functions in n, we have

nk = O(bn)

for all positive constants k, and b > 1.

CS 341: Chapter 7 7-12

Big-O for Logarithms

• Let logb denote logarithm with base b.

• Recall c = logb n if bc = n; e.g., log2 8 = 3.

• logb(x
y) = y logb x because x = blogb x and

by logb x = (blogb x)y = xy

• Note that n = 2log2 n and logb(x
y) = y logb x imply

logb n = logb(2
log2 n) = (log2 n)(logb 2)

Changing base b changes value by only constant factor.

So when we say f(n) = O(logn), the base is unimportant.

• Note that logn = O(n).

• In fact, logn = O(nd) for any d > 0.

Polynomials overpower logarithms,
just like exponentials overpower polynomials.

• Thus, n logn = O(n2).

CS 341: Chapter 7 7-13

Big-O Properties

• O(n2) +O(n) = O(n2) and O(n2)O(n) = O(n3)

• Sometimes we have
f(n) = 2O(n).

What does this mean?

Answer: f(n) has an asymptotic upper bound of 2cn for some
constant c.

•What does f(n) = 2O(logn) mean?

Recall the identities:

n = 2log2 n,

nc = 2c log2 n = 2O(log2 n).

Thus, 2O(logn) means an upper bound of nc for some constant c.

CS 341: Chapter 7 7-14

More Remarks

•Definition:

A bound of nc, where c > 0 is a constant, is called polynomial.

A bound of 2(n
δ), where δ > 0 is a constant, is called exponential.

• f(n) = O(f(n)) for all functions f .

• [log(n)]k = O(n) for all constants k.

• nk = O(2n) for all constants k.

• Because n = 2log2 n, n is an exponential function of logn.

• If f(n) and g(m) are polynomials, then g(f(n)) is polynomial in n.

Example: If f(n) = n2 and g(m) = m3, then

g(f(n)) = g(n2) = (n2)3 = n6.

CS 341: Chapter 7 7-15

Little-o Notation

Definition:

• Let f and g be two functions with f, g : N → R+.

• Then f(n) = o(g(n)) if

lim
n→∞

f(n)

g(n)
= 0.

Example: If

• f(n) = 10n2

• g(n) = 2n3

then f(n) = o(g(n)) because

f(n)

g(n)
=

10n2

2n3
=

5

n
→ 0 as n → ∞

CS 341: Chapter 7 7-16

Remarks

• Big-O notation is about “asymptotically less than or equal to”.

• Little-o is about “asymptotically much smaller than”.

•Make it clear whether you mean O(g(n)) or o(g(n)).

•Make it clear which variable the function is in:

O(xy) can be a polynomial in x or an exponential in y.

• Simplify!

Rather than O(8n3 + 2n), instead use O(n3).

• Try to keep your big-O as “tight” as possible.

Suppose f(n) = 2n3 + 8n2.

Although f(n) = O(n5), better to write f(n) = O(n3).

CS 341: Chapter 7 7-17

Back to Example of TM M1 for A = {0k1k | k ≥ 0 }

M1 = “On input string w ∈ {0,1}∗:
1. Scan across tape and reject if 0 is found to the right of a 1.

2. Repeat the following if both 0s and 1s appear on tape:

• Scan across tape, crossing off single 0 and single 1.

3. If no 0s or 1s remain, accept ;
otherwise, reject.”

Let’s now analyze M1’s run-time complexity.

•We will examine each stage separately.

• Suppose input string w is of length n.

0 0 0 1 1 1 �� �� . . .

CS 341: Chapter 7 7-18

Analysis of Stage 1

1. Scan across tape and reject if 0 is found to the right of a 1.

0 0 0 1 1 1 �� �� . . .

Analysis:

• Input string w is of length n.

• Scanning requires n steps.

• Repositioning head back to beginning of tape requires n steps.

• Total is 2n = O(n) steps.

CS 341: Chapter 7 7-19

Analysis of Stage 2

2. Repeat the following if both 0s and 1s appear on tape:

• Scan across tape, crossing off single 0 and single 1.

0 0 0 1 1 1 �� �� . . .

Analysis:

• Each scan requires O(n) steps.

• Because each scan crosses off two symbols,

at most n/2 scans can occur.

• Total is O(n2)O(n) = O(n2) steps.

CS 341: Chapter 7 7-20

Analysis of Stage 3 and Overall

3. If no 0s or 1s remain, accept ;
otherwise, reject.

	0 	0 	0 	1 	1 	1 �� �� . . .

Analysis:

• Single scan requires O(n) steps.

Total cost for each stage:

• Stage 1: O(n)

• Stage 2: O(n2)

• Stage 3: O(n)

Overall complexity: O(n) +O(n2) +O(n) = O(n2)

CS 341: Chapter 7 7-21

Time Complexity Class

Definition: For a function t : N → N ,

TIME(t(n)) = {L | there is a 1-tape TM that decides

language L in time O(t(n)) }

Remarks:

• TM M1 decides language A = {0k1k | k ≥ 0 }
M1 has run-time complexity O(n2).

• Thus, A ∈ TIME(n2).

• Can we do better?

CS 341: Chapter 7 7-22

Another TM for A = {0k1k | k ≥ 0 }

M2 = “On input string w ∈ {0,1}∗:
1. Scan across tape and reject if 0 is found to the right of a 1.

2. Repeat the following if both 0s and 1s appear on tape:

2.1 Scan across tape, checking whether total number of 0s and 1s is
even or odd. If odd, reject.

2.2 Scan across tape, crossing off every other 0 (starting with the
leftmost), and every other 1 (starting with the leftmost).

3. If no 0s or 1s remain, accept ;
otherwise, reject.”

CS 341: Chapter 7 7-23

Why M2 Halts

• Stage 2.2: Scan across tape, crossing every other 0 and 1.

• On each scan in Stage 2.2,

Total number of 0s is decreased by (at least) half

Same for the 1s

• Example:

Start with 13 0s.

After first pass, 6 remaining.

After second pass, 3 remaining.

After third pass, 1 remaining.

After fourth pass, none remaining.

0 0 0 0 0 0 0 0 0 0 0 0 0

	0 0 	0 0 	0 0 	0 0 	0 0 	0 0 	0

	0 	0 	0 0 	0 	0 	0 0 	0 	0 	0 0 	0

	0 	0 	0 	0 	0 	0 	0 0 	0 	0 	0 	0 	0

	0 	0 	0 	0 	0 	0 	0 	0 	0 	0 	0 	0 	0

CS 341: Chapter 7 7-24

Why M2 Works

• Consider parity of 0s and 1s in Stage 2.1.

• Example: Start with 013 113

Initially, odd-odd (13, 13)

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

Then, even-even (6, 6)

	0 0 	0 0 	0 0 	0 0 	0 0 	0 0 	0 	1 1 	1 1 	1 1 	1 1 	1 1 	1 1 	1

Then, odd-odd (3, 3)

	0 	0 	0 0 	0 	0 	0 0 	0 	0 	0 0 	0 	1 	1 	1 1 	1 	1 	1 1 	1 	1 	1 1 	1

Then, odd-odd (1, 1)

	0 	0 	0 	0 	0 	0 	0 0 	0 	0 	0 	0 	0 	1 	1 	1 	1 	1 	1 	1 1 	1 	1 	1 	1 	1

• Result is 1011, which is reverse of binary representation of 13.

• Each pass checks one binary digit.

CS 341: Chapter 7 7-25

M2 = “On input string w ∈ {0,1}∗:
1. Scan across tape and reject if 0 is found to the right of a 1.

2. Repeat the following if both 0s and 1s appear on tape:

2.1 Scan across tape, checking whether total number of 0s and 1s is even or odd.
If odd, reject.

2.2 Scan across tape, crossing off every other 0 (starting with the leftmost), and
every other 1 (starting with the leftmost).

3. If no 0s or 1s remain, accept ; otherwise, reject.”

Analysis:

• Each stage requires O(n) time.

• Stage 1 and 3 run once each.

• Stage 2.2 eliminates half of 0s and 1s: Stage 2 runs O(log2 n) times.

• Total for stage 2 is O(log2 n)O(n) = O(n logn).

• Grand total: O(n) +O(n logn) = O(n logn),
so language A ∈ TIME(n logn).

CS 341: Chapter 7 7-26

2-Tape TM for A = {0k1k | k ≥ 0 }
M3 = “On input string w ∈ {0,1}∗:
1. Scan across tape and reject if 0 is found to the right of a 1.

2. Scan across 0s to first 1, copying 0s to tape 2.

3. Scan across 1s on tape 1 until the end.
For each 1 on tape 1, cross off a 0 on tape 2.
If no 0s left, reject.

4. If any 0s left, reject ; otherwise, accept .”

Before Stage 1

Tape 1 0 0 0 1 1 1 �� �� . . .

Tape 2 �� �� �� �� �� �� �� �� . . .

After Stage 2

Tape 1 0 0 0 1 1 1 �� �� . . .

Tape 2 0 0 0 �� �� �� �� �� . . .

Can show that running time of M3 is O(n).

CS 341: Chapter 7 7-27

Runtimes of TMs for A = {0k1k | k ≥ 0 }

• Runtime depends on computational model:

1-tape TM M1: O(n2)

1-tape TM M2: O(n logn)

2-tape TM M3: O(n).

• For computability, all reasonable computational models are equivalent
(Church-Turing Thesis).

• For complexity, choice of computational model affects time
complexity.

CS 341: Chapter 7 7-28

k-Tape TM can be Simulated on 1-Tape TM
with Polynomial Overhead

Theorem 7.8

• Let t(n) be a function where t(n) ≥ n.

• Then any t(n)-time multi-tape TM has an equivalent O(t2(n))-time
single-tape TM.

3-tape TM

Tape 1 0 1 1 �� · · ·

Tape 2 0 0 �� · · ·

Tape 3 1 0 0 1 �� · · ·

Equivalent
1-tape TM # 0 1 1

•
0

•
0 # 1 0

•
0 1 # �� · · ·Tape

CS 341: Chapter 7 7-29

Review Thm 3.13: Simulating k-Tape TM M on 1-Tape TM S

On input w = w1 · · ·wn, the 1-tape TM S does the following:

• First S prepares initial string on single tape:

w1
•

w2 · · · wn # ��
•

��
•

�� �� · · ·
• For each step of M , TM S scans tape twice

1. Scans its tape from

first # (which marks left end of tape) to

(k +1)st # (which marks right end of tape)

to read symbols under “virtual” heads

2. Rescans to write new symbols and move heads

If S tries to move virtual head to the right onto #, then

� M is trying to move head onto unused blank cell.

� So S has to write blank on tape and shift rest of tape right one
cell.

CS 341: Chapter 7 7-30

Complexity of Simulation

• For each step of k-tape TM M , 1-tape TM S performs two scans

Length of active portion of S’s tape determines how long S takes to
perform each scan.

In r steps, TM M can read/write in ≤ k × r different cells on its k
tapes.

As M has t(n) runtime, at any point during M ’s execution,
total # active cells on all of M ’s tapes ≤ k × t(n) = O(t(n)).

Thus, each of S’s scans requires O(t(n)) time.

• Overall runtime of S

Initial tape arrangement: O(n) steps.

S simulates each of M ’s t(n) steps using O(t(n)) steps.

� Thus, total of t(n)×O(t(n)) = O(t2(n)) steps.

Grand total: O(n) +O(t2(n)) = O(t2(n)) steps.

CS 341: Chapter 7 7-31

Running Time of Nondeterministic TMs

•What about nondeterministic TMs (NTMs)?

• Informally, NTM makes “lucky guesses” during computation.

• In terms of computability, no difference between TMs and NTMs.

• For time-complexity, nondeterminism seems to make big difference.

Definition:

• Let N be NTM that is a decider (no looping).

• Running time of NTM N is function f : N → N , where

f(n) = max
|x|=n

(height of tree of configs for N on input x)

the maximum number of steps that NTM N uses

on any branch of the computation

on any input x of size n.

CS 341: Chapter 7 7-32

Deterministic vs. Nondeterministic TM Runtime

Nondeterministic

f(n)f(n)

Deterministic

accept/reject

accept

reject

CS 341: Chapter 7 7-33

Simulating NTM N on 1-Tape DTM D

Requires Exponential Overhead

Theorem 7.11

• Let t(n) be a function with t(n) ≥ n.

• Any t(n)-time nondeterministic TM has an equivalent 2O(t(n))-time
deterministic 1-tape TM.

Proof Idea:

• Suppose N is NTM decider running in t(n) time.

• On each input w, NTM N ’s computation is a tree of configurations.

• Simulate N on 3-tape DTM D using BFS of N ’s computation tree:

D tries all possible branches.

If D finds any accepting configuration, D accepts.

If all branches reject, D rejects.

CS 341: Chapter 7 7-34

Complexity of Simulating NTM N on 1-Tape DTM D

• Analyze NTM N ’s computation tree on input w with |w| = n

Root is starting configuration.

Each node has ≤ b children

� b = max number of legal choices given by N ’s transition fcn δ.

Each branch has length ≤ t(n).

Total number of leaves ≤ bt(n).

Total number of nodes ≤ 2× (max number of leaves) = O(bt(n)).

Time to travel from root to any node is O(t(n)).

• DTM’s runtime ≤ time to visit all nodes:

O(bt(n))×O(t(n)) = 2O(t(n))

• Simulating NTM by DTM requires 3 tapes by Theorem 3.16.

• By Theorem 3.13, simulating 3-tape DTM on 1-tape DTM requires

(2O(t(n)))2 = 22×O(t(n)) = 2O(t(n)) steps.

CS 341: Chapter 7 7-35

Summary of Simulation Results

• Simulating k-tape DTM on 1-tape DTM

increases runtime from t(n) to O(t2(n))

i.e., polynomial increase in runtime.

• Simulating NTM on 1-tape DTM

increases runtime from t(n) to 2O(t(n))

i.e., exponential increase in runtime.

CS 341: Chapter 7 7-36

Polynomial Good, Exponential Bad

106 steps/second

n

f(n) 10 20 30 40 50 60

n .00001 .00002 .00003 .00004 .00005 .00006

seconds seconds seconds seconds seconds seconds
n2 .0001 .0004 .0009 .0016 .0025 .0036

seconds seconds seconds seconds seconds seconds
n3 .001 .008 .027 .064 .125 .216

seconds seconds seconds seconds seconds seconds
n5 .1 3.2 24.3 1.7 5.2 13

seconds seconds seconds minutes minutes minutes
2n .001 1.05 17.9 12.7 35.7 366

seconds seconds minutes days years centuries
3n .059 58 6.5 3855 2× 108 1013

seconds minutes years centuries centuries centuries

CS 341: Chapter 7 7-37

Strong Church-Turing Thesis

• In general, every “reasonable” variant of DTM (k-tape, r-heads, etc.)
can be simulated by a single-tape DTM with only polynomial
time/space overhead.

Any one of these models can simulate another with only polynomial
increase in running time or space required.

All “reasonable” models of computation are polynomially equivalent.

NTM is “unreasonable” variant: it can do O(bs) work on step s.

• If any reasonable version of a DTM can solve a problem in polynomial
time, then any other reasonable type of DTM can also.

• If we ask if a particular problem is solvable in linear time (i.e., O(n)),
answer depends on computational model used.

• If we ask if a particular problem A is solvable in polynomial time,
answer is independent of reasonable computational model used.

CS 341: Chapter 7 7-38

The Class P

Because of polynomial equivalence of DTM models,

• group languages solvable in O(n2), O(n logn), O(n), etc., together
in the polynomial-time class.

Definition: The class of languages that can be decided by a single-tape
DTM in polynomial time is denoted by P, where

P =
⋃

k≥0

TIME(nk).

Remarks:

• If we ask if a particular problem A is solvable in polynomial time
(i.e., is A ∈ P?),

answer is independent of deterministic computational model used.

• Class P roughly corresponds to tractable (i.e., realistically solvable)
problems.

CS 341: Chapter 7 7-39

Encoding of Problems

• Recall: TM running time defined as fcn of length of encoding 〈x〉 of
input x.

• But for given problem, many ways to encode input x as 〈x〉.
Should use “good” encoding scheme.

• For integers

binary is good

unary is bad (exponentially worse)

Example: Suppose input to TM is the number 18 in decimal.

� if encoding in binary, 〈18〉 = 10010

� if encoding in unary, 〈18〉 = 111111111111111111

• For graphs

list of nodes and edges (good)

adjacency matrix (good)

CS 341: Chapter 7 7-40

Example of Problem in P: PATH

•Decision problem: Given directed graph G with nodes s and t,
does G have a path from s to t?

1

2

3

4

5

• Universe Ω = { 〈G, s, t〉 | G is directed graph with nodes s, t } of
instances (for a particular encoding scheme).

• Language of decision problem comprises YES instances:

PATH = { 〈G, s, t〉 |G is directed graph with path from s to t } ⊆ Ω.

• For graph G above, 〈G,1,5〉 ∈ PATH , but 〈G,2,1〉 	∈ PATH .

CS 341: Chapter 7 7-41

PATH ∈ P

Theorem 7.14
PATH ∈ P.

Brute-force algorithm:

• Input is instance 〈G, s, t〉 ∈ Ω

G is directed graph with nodes s and t.

• Let m be number of nodes in G.

≤ m2 edges.

m (or m2) roughly measures size of instance 〈G, s, t〉.
• Any path from s to t need not repeat nodes.

• Examine each potential path in G of length ≤ m.

Check if the path goes from s to t.

What is complexity of this algorithm?

CS 341: Chapter 7 7-42

Complexity of Brute-Force Algorithm for PATH

Brute-force algorithm:

• Input is 〈G, s, t〉 ∈ Ω, where G is directed graph with nodes s and t.

• Any path from s to t need not repeat nodes.

• Examine each potential path in G of length ≤ m (= # nodes in G).

Check if the path goes from s to t.

Complexity analysis:

• There are roughly mm potential paths of length ≤ m.

For each potential path length k = 2,3, . . . ,m,
check all k! permutations of k distinct nodes from

(m
k

)
possibilities.

k! = k × (k − 1)× (k − 2)× · · · × 1,
(m
k

)
= m!

k!(m−k)!

Stirling’s approximation: k! ∼
(
k
e

)k√
2πk.

• This is exponential in the number m of nodes.

• So brute-force algorithm’s runtime is exponential in size of input.

CS 341: Chapter 7 7-43

A Better Algorithm Shows PATH ∈ P

On input 〈G, s, t〉 ∈ Ω, where G is directed graph with nodes s and t:

1. Place mark on node s.

2. Repeat until no additional nodes marked:

• Scan all edges of G.

• If edge (a, b) found from marked node a to unmarked node b,
then mark b.

3. If node t is marked, accept ; otherwise, reject.

Graph G
〈G,1,5〉 ∈ PATH

〈G,5,3〉 ∈ PATH

〈G,2,1〉 	∈ PATH

1

2

3

4

5

CS 341: Chapter 7 7-44

Complexity of Better Algorithm for PATH

On input 〈G, s, t〉 ∈ Ω, where G is a directed graph with nodes s and t:

1. Place mark on node s.
2. Repeat until no additional nodes marked:

• Scan all edges of G.
• If edge (a, b) found from marked node a to unmarked node b, then mark b.

3. If node t is marked, accept ; otherwise, reject.

Complexity of algorithm: (depends on how 〈G, s, t〉 is encoded)
• Suppose G encoded as 〈list of nodes, list of edges〉.
• Suppose input graph G has m nodes, so ≤ m2 edges.

• Stage 1 runs only once, running in O(m) time

• Stage 2 runs at most m times

Each time (except last), it marks new nodes.

Each time requires scanning edges, which runs in O(m2) steps.

• Stage 3 runs only once, running in O(m) time

•Overall complexity: O(m) +O(m)O(m2) +O(m) = O(m3),
so PATH ∈ P.

CS 341: Chapter 7 7-45

Another Problem in P: RELPRIME

•Definition: Two integers x, y are relatively prime if 1 is largest
integer that divides both; greatest common divisor GCD(x, y) = 1.

• Examples:

10 and 21 are relatively prime.

10 and 25 are not.

•Decision problem: Given integers x and y, are x, y relatively prime?

Universe Ω = { 〈x, y〉 | x, y integers } of problem instances.

Language of decision problem:

RELPRIME = { 〈x, y〉 | x and y are relatively prime } ⊆ Ω.

So 〈10,21〉 ∈ RELPRIME and 〈10,25〉 	∈ RELPRIME .

Theorem 7.15
RELPRIME ∈ P.

CS 341: Chapter 7 7-46

Bad Algorithm for RELPRIME

RELPRIME = { 〈x, y〉 | x and y are relatively prime }.
Bad Idea: Test all possible divisors (i.e., 2 to min(x, y)).

Complexity of algorithm depends on how integers are encoded:

• If x, y encoded in unary (bad), then

length of 〈x〉 is x; length of 〈y〉 is y.
testing min(x, y) values is polynomial in length of input 〈x, y〉.

• If x, y encoded in binary (good), then

length of 〈x〉 is log x; length of 〈y〉 is log y.

testing min(x, y) values is exponential in length of input 〈x, y〉
because n is an exponential function of logn (i.e., n = 2log2 n).

• This algorithm is pseudo-polynomial.

Polynomial running time with bad encoding.

Exponential running time with good encoding.

CS 341: Chapter 7 7-47

A Better Algorithm for RELPRIME

Euclidean Algorithm E:

E = “On input 〈x, y〉, where x, y are natural numbers encoded in binary:

1. Repeat until y = 0

• Assign x ← x mod y.

• Exchange x and y.

2. Output x.”

Algorithm R below solves RELPRIME , using E as a subroutine:

R = “On input 〈x, y〉, where x, y are natural numbers encoded in binary:

1. Run E on 〈x, y〉.
2. If output of E is 1, accept ;
otherwise, reject.”

CS 341: Chapter 7 7-48

Complexity of Euclidean Algorithm

Euclidean Algorithm E:

E = “On input 〈x, y〉, where x, y are natural numbers encoded in binary:

1. Repeat until y = 0

• Assign x ← x mod y.

• Exchange x and y.

2. Output x.”

Complexity of E:

• After first step of Stage 1, x < y because of mod.

• Values then swapped, so x > y.

• Can show each subsequent execution of Stage 1 cuts x by at least half.

• # times Stage 1 executed ≤ min(log2 x, log2 y).

• Thus, total running time of E (and R) is polynomial in |〈x, y〉|, so
RELPRIME ∈ P.

CS 341: Chapter 7 7-49

CFLs are in P

Theorem 7.16
Every context-free language is in P.

Remarks:

•Will show that each CFL ∈ TIME(n3)

n is length of input string w ∈ Σ∗.
In contrast, each regular language ∈ TIME(n). Why?

• Theorem 4.9 showed that every CFL is decidable, which we now review.

• Convert CFG into Chomsky normal form:

Each rule has one of the following forms:

A → BC, A → x, S → ε

where A,B,C, S are variables; S is start variable;
B,C are not start variable; x is a terminal.

CS 341: Chapter 7 7-50

Recall Previous Algorithm to Decide CFL

Lemma
If G is in Chomsky normal form and string w ∈ L(G) has length n > 0,
then w has a derivation with 2n− 1 steps.

Theorem 4.9
Every CFL is a decidable language.

Proof.

• Assume L is a CFL generated by CFG G in Chomsky normal form.

• Theorem 4.7: ∃ TM S that decides
ACFG = { 〈G,w〉 | G is a CFG that generates w }.

• Following TM MG decides CFL L ⊆ Σ∗:
MG = “On input w ∈ Σ∗:
1. Run TM S on input 〈G,w〉.
2. If S accepts, accept ; if S rejects, reject.”

CS 341: Chapter 7 7-51

Previous Algorithm is Exponential

• Recall that to determine if 〈G,w〉 ∈ ACFG, TM S tries all derivations
with k = 2n− 1 steps, where n = |w| > 0.

But number of derivations taking k steps can be exponential in k.

So we need to use a different algorithm.

• Use dynamic programming (DP)

Powerful, general technique.

Basic idea: accumulate information about smaller subproblems to
solve larger subproblems.

Store subproblem solutions in a table as they are generated.

Look up smaller subproblem solutions as needed when solving larger
subproblems.

DP for CFGs: Cocke-Younger-Kasami (CYK) algorithm.

CS 341: Chapter 7 7-52

Dynamic Programming

• Fix CFG G in Chomsky normal form.

• Input to DP algorithm is string w = w1w2 · · ·wn with |w| = n

• In our case of DP, subproblems are to determine which variables in G

can generate each substring of w.

• Create an n× n table.

Entry (i, j): row i, column j

Complete string

Substrings of length 1

Substrings of length 2

Substrings of length 3

.
.

.

w
1

w
2

w
3

w
n

. . .

1 2 3 n

1

2

3

n

CS 341: Chapter 7 7-53

Dynamic Programming Table

Complete string

Substrings of length 1

Substrings of length 2

Substrings of length 3

.
.
.

w
1

w
2

w
3

w
n

. . .

1 2 3 n

1

2

3

n

• For i ≤ j, (i, j)th entry contains those variables that can generate
substring wi wi+1 · · ·wj

• For i > j, (i, j)th entry is unused.

• DP starts by filling in all entries for substrings of length 1,
then all entries for length 2,
then all entries for length 3, etc.

• Idea: Use shorter lengths to determine how to construct longer lengths.

CS 341: Chapter 7 7-54

Filling in Dynamic Programming Table

• Suppose s = uv, B
∗⇒ u, C

∗⇒ v, and ∃ rule A → BC.

Then A
∗⇒ s because A ⇒ BC

∗⇒ uv = s.

• Suppose that algorithm has determined which variables generate each
substring of length ≤ k.

• To determine if variable A can generate substring of length k +1:

split substring into 2 non-empty pieces in all possible (k) ways.

For each split, algorithm examines rules A → BC

� Each piece is shorter than current substring,
so table tells how to generate each piece.

� Check if B generates first piece.

� Check if C generates second piece.

� If both possible, then add A to table.

CS 341: Chapter 7 7-55

Example: CYK Algorithm

Does the following CFG in Chomsky Normal Form generate baaba ?

S → XY | Y Z X → Y X | a
Y → ZZ | b Z → XY | a

1 2 3 4 5
1
2
3
4
5

string b a a b a

• Build table t so that for i ≤ j, entry t(i, j) contains variables that can
generate substring starting in position i and ending in position j

• Fill in one diagonal at a time.

CS 341: Chapter 7 7-56

Ex. (cont.): CYK for Substrings of Length 1

Chomsky CFG: S → XY | Y Z X → Y X | a
Y → ZZ | b Z → XY | a

1 2 3 4 5
1 Y

2
3
4
5

string b a a b a

• t(1,1): substring b starts in position 1 and ends in position 1.

CFG has rule Y → b, so put Y in t(1,1).

CS 341: Chapter 7 7-57

Ex. (cont.): CYK for Substrings of Length 1

Chomsky CFG: S → XY | Y Z X → Y X | a
Y → ZZ | b Z → XY | a

1 2 3 4 5
1 Y

2 X,Z

3 X,Z

4 Y

5 X,Z

string b a a b a

• t(2,2): substring a starts in position 2 and ends in position 2.

CFG has rules X → a and Z → a, so put X,Z in t(2,2).

• Similarly fill in other t(i, i).

CS 341: Chapter 7 7-58

Ex. (cont.): CYK for Substrings of Length 2

Chomsky CFG: S → XY | Y Z X → Y X | a
Y → ZZ | b Z → XY | a

1 2 3 4 5
1 Y S,X

2 X,Z

3 X,Z

4 Y

5 X,Z

string b a a b a

• t(1,2): substring ba starts in position 1 and ends in position 2.

split ba = b a :

Y
∗⇒ b by t(1,1); X,Z

∗⇒ a by t(2,2).

If rule RHS ∈ t(1,1) ◦ t(2,2) = {Y X, Y Z}, then LHS
∗⇒ ba:

X ⇒ Y X
∗⇒ ba, S ⇒ Y Z

∗⇒ ba

CS 341: Chapter 7 7-59

Ex. (cont.): CYK for Substrings of Length 2

Chomsky CFG: S → XY | Y Z X → Y X | a
Y → ZZ | b Z → XY | a

1 2 3 4 5
1 Y S,X

2 X,Z Y

3 X,Z

4 Y

5 X,Z

string b a a b a

• t(2,3): substring aa starts in position 2 and ends in position 3.

split aa = a a :

X,Z
∗⇒ a by t(2,2); X,Z

∗⇒ a by t(3,3).

If rule RHS ∈ t(2,2) ◦ t(3,3) = {XX,XZ,ZX,ZZ}, then
LHS

∗⇒ aa:
Y ⇒ ZZ

∗⇒ aa

CS 341: Chapter 7 7-60

Ex. (cont.): CYK for Substrings of Length 2

Chomsky CFG: S → XY | Y Z X → Y X | a
Y → ZZ | b Z → XY | a

1 2 3 4 5
1 Y S,X

2 X,Z Y

3 X,Z S, Z

4 Y S,X

5 X,Z

string b a a b a

• t(3,4): substring ab starts in position 3 and ends in position 4.

split ab = a b : X,Z
∗⇒ a by t(3,3); Y

∗⇒ b by t(4,4).

If rule RHS ∈ t(3,3) ◦ t(4,4) = {XY ,ZY }, then LHS
∗⇒ ab:

S ⇒ XY
∗⇒ ab, Z ⇒ XY

∗⇒ ab

• t(4,5): similarly handle substring ba by adding LHS of rule to t(4,5)

if RHS ∈ t(4,4) ◦ t(5,5).

CS 341: Chapter 7 7-61

Ex. (cont.): CYK for Substrings of Length 3

Chomsky CFG: S → XY | Y Z X → Y X | a
Y → ZZ | b Z → XY | a

1 2 3 4 5
1 Y S,X —
2 X,Z Y

3 X,Z S, Z

4 Y S,X

5 X,Z

string b a a b a

• t(1,3): substring baa starts in position 1 and ends in position 3.

• For each rule, add LHS to t(1,3) if

RHS ∈ t(1,1) ◦ t(2,3) ∪ t(1,2) ◦ t(3, 3).

split baa = b aa : Y
∗⇒ b by t(1,1); Y

∗⇒ aa by t(2,3);
so if rule RHS ∈ t(1,1) ◦ t(2,3) = {Y Y }, then LHS

∗⇒ baa.

split baa = ba a : S,X
∗⇒ ba by t(1,2); X,Z

∗⇒ a by t(3, 3);
if rule RHS ∈ t(1,2) ◦ t(3,3) = {SX, SZ,XX,XZ}, then LHS

∗⇒ baa.

CS 341: Chapter 7 7-62

Ex. (cont.): CYK for Substrings of Length 3

Chomsky CFG: S → XY | Y Z X → Y X | a
Y → ZZ | b Z → XY | a

1 2 3 4 5
1 Y S,X —
2 X,Z Y Y

3 X,Z S, Z Y

4 Y S,X

5 X,Z

string b a a b a

• t(2,4): substring aab starts in position 2 and ends in position 4.

• Add LHS of rule to t(2,4) if RHS ∈ t(2,2) ◦ t(3, 4) ∪ t(2,3) ◦ t(4,4).

split aab = a ab : X,Z
∗⇒ a by t(2, 2); S,Z

∗⇒ ab by t(3,4);
so if rule RHS ∈ t(2,2) ◦ t(3,4) = {XS,XZ,ZS,ZZ}, then LHS

∗⇒ aab:

Y ⇒ ZZ
∗⇒ a ab

split aab = aa b : Y
∗⇒ aa by t(2,3); Y

∗⇒ b by t(4,4);
so if rule RHS ∈ t(2,3) ◦ t(4,4) = {Y Y }, then LHS

∗⇒ aab.

CS 341: Chapter 7 7-63

Ex. (cont.): CYK for Substrings of Length 4

Chomsky CFG: S → XY | Y Z X → Y X | a
Y → ZZ | b Z → XY | a

1 2 3 4 5
1 Y S,X — —
2 X,Z Y Y

3 X,Z S,Z Y

4 Y S,X

5 X,Z

string b a a b a

• t(1,4): substring baab starts in position 1 and ends in position 4.

• For each rule, add LHS to t(1,4) if

RHS ∈ ∪3
k=1 t(1, k) ◦ t(k +1,4).

split b aab : Y
∗⇒ b by t(1,1); Y

∗⇒ aab by t(2,4);
so if rule RHS ∈ t(1,1) ◦ t(2,4) = {Y Y }, then LHS

∗⇒ baab.

split ba ab : S,X
∗⇒ ba by t(1,2); S,Z

∗⇒ ab by t(3,4);
so if rule RHS ∈ t(1,2) ◦ t(3,4) = {SS, SZ,XS,XZ}, then LHS

∗⇒ baab.

split baa b : Nothing
∗⇒ baa as t(1,3) = ∅; Y

∗⇒ b by t(4,4).

CS 341: Chapter 7 7-64

Ex. (cont.): CYK for Substrings of Length 4
Chomsky CFG: S → XY | Y Z X → Y X | a

Y → ZZ | b Z → XY | a
1 2 3 4 5

1 Y S,X — —
2 X,Z Y Y S,X, Z

3 X,Z S,Z Y

4 Y S,X

5 X,Z

string b a a b a

• t(2,5): substring aaba starts in position 2 and ends in position 5.

split a aba: X,Z
∗⇒ a by t(2,2); Y

∗⇒ aba by t(3,5);
so if rule RHS ∈ t(2,2) ◦ t(3,5) = {XY ,ZY }, then LHS

∗⇒ aaba:
S ⇒ XY

∗⇒ a aba, Z ⇒ XY
∗⇒ a aba

split aa ba: Y
∗⇒ aa by t(2,3); S,X

∗⇒ ba by t(4, 5);
so if rule RHS ∈ t(2,3) ◦ t(4,5) = {Y S, Y X}, then LHS

∗⇒ aaba:
X ⇒ Y X

∗⇒ aa ba

split aab a: Y
∗⇒ aab by t(2,4); X,Z

∗⇒ a by t(5,5);
so if rule RHS ∈ t(2,4) ◦ t(5,5) = {Y X, Y Z}, then LHS

∗⇒ aaba:
X ⇒ Y X

∗⇒ aab a

CS 341: Chapter 7 7-65

Ex. (cont.): CYK for Substrings of Length 5

Does the following CFG in Chomsky Normal Form generate baaba ?

S → XY | Y Z X → Y X | a
Y → ZZ | b Z → XY | a

1 2 3 4 5
1 Y S,X — — S,X,Z

2 X,Z Y Y S,X,Z

3 X,Z S, Z Y

4 Y S,X

5 X,Z

string b a a b a

• t(1,5): substring baaba starts in position 1 and ends in position 5.

• For each rule, add LHS to t(1,5) if

RHS ∈ ∪3
k=1 t(1, k) ◦ t(k +1,5).

• Answer is YES iff start variable S ∈ t(1,5).

CS 341: Chapter 7 7-66

Overall CYK Algorithm to show every CFL ∈ P

D = “On input string w = w1w2 · · ·wn ∈ Σ∗:
1. For w = ε, if S → ε is a rule, accept ; else reject. [w = ε case]
2. For i = 1 to n, [examine each substring of length 1]
3. For each variable A,
4. Test whether A → b is a rule, where b = wi.
5. If so, put A in table(i, i).
6. For � = 2 to n, [� is length of substring]
7. For i = 1 to n− �+1, [i is start position of substring]
8. Let j = i+ �− 1, [j is end position of substring]
9. For k = i to j − 1, [k is split position]
10. For each rule A → BC,
11. If table(i, k) contains B and table(k +1, j) contains C,

put A in table(i, j).
12. If S is in table(1, n), accept ; else, reject.”

CS 341: Chapter 7 7-67

Complexity of CYK Algorithm

• Each stage runs in polynomial time.

• Examine stages 2–5:

2. For i = 1 to n, [examine each substring of length 1]
3. For each variable A,
4. Test whether A → b is a rule, where b = wi.
5. If so, put A in table(i, i).

• Analysis:

Stage 2 runs n times

Each time stage 2 runs, stage 3 runs v times, where

� v is number of variables in G

� v is independent of n.

Thus, stages 4 and 5 run at most nv times,
which is O(n) because v is independent of n.

CS 341: Chapter 7 7-68

Complexity (cont)

6. For � = 2 to n, [� is length of substring]
7. For i = 1 to n− �+1, [i is start position of substring]
8. Let j = i+ �− 1, [j is end position of substring]
9. For k = i to j − 1, [k is split position]
10. For each rule A → BC,
11. If table(i, k) contains B and table(k +1, j) contains C,

put A in table(i, j).
12. If S is in table(1, n), accept . Otherwise, reject.

Analysis:

• Stage 6 runs at most n times
• Each time stage 6 runs, stage 7 runs at most n times
• Each time stage 7 runs, stage 9 runs at most n times
• Each time stage 9 runs, stage 10 runs r times (r = # rules = constant)
• Thus, stage 8 runs O(n2) times, and stage 11 runs O(n3) times

Grand total: O(n3)

CS 341: Chapter 7 7-69

Hamiltonian Path

1

2

3

4

5

6

7

8

•Definition: A Hamiltonian path in a directed graph G visits each
node exactly once, e.g., 1 → 3 → 5 → 4 → 2 → 6 → 7 → 8.

•Decision problem: Given a directed graph G with nodes s and t,
does G have a Hamiltonian path from s to t?

• Universe Ω = { 〈G, s, t〉 | directed graph G with nodes s, t }, and
language is

HAMPATH = { 〈G, s, t〉 | G is a directed graph with a

Hamiltonian path from s to t } ⊆ Ω.

• If G is above graph, 〈G,1,8〉 ∈ HAMPATH , 〈G,2,8〉 	∈ HAMPATH .

CS 341: Chapter 7 7-70

Hamiltonian Path

HAMPATH = { 〈G, s, t〉 | G is a directed graph with a

Hamiltonian path from s to t }

•Question: How hard is it to decide HAMPATH?

• Suppose graph G has m nodes.

• Easy to come up with (exponential) brute-force algorithm

Generate each of the (m− 2)! potential paths.

Check if any of these is Hamiltonian.

• Currently unknown if HAMPATH is solvable in polynomial time.

CS 341: Chapter 7 7-71

Hamiltonian Path

• But HAMPATH has feature known as polynomial verifiability.

• A claimed Hamiltonian path can be verified in polynomial time.

Consider 〈G, s, t〉 ∈ HAMPATH , where graph G has m nodes.

Then (# edges in G) ≤ m(m− 1) = O(m2).

Suppose G encoded as 〈list of nodes, list of edges〉.
Suppose given list p1, p2, . . . , pm of nodes that is claimed to be
Hamiltonian path in G from s to t.

Can verify claim by checking

1. if each node in G appears exactly once in claimed path,
which takes O(m2) time,

2. if each pair (pi, pi+1) is edge in G, which takes O(m3) time.

So verification takes time O(m3), which is polynomial in m.

• Thus, verifying a given path is Hamiltonian may be easier than
determining its existence.

CS 341: Chapter 7 7-72

Composite Numbers

Definition: A natural number is composite if it is the product of two
integers greater than one

• a composite number is not prime.

•Decision problem: Given natural number x, is x composite?

• Universe Ω = { 〈x〉 | natural number x }, and language is

COMPOSITES = { 〈x〉 | x = pq, for integers p, q > 1 } ⊆ Ω.

Remarks:

• Can easily verify that a number is composite.

If someone claims a number x is composite and provides a divisor p,
just need to verify that x is divisible by p.

• In 2002, Agrawal, Kayal and Sexena proved that PRIMES ∈ P.

But COMPOSITES = PRIMES , so COMPOSITES ∈ P.

CS 341: Chapter 7 7-73

Verifiability

• Some problems may not be polynomially verifiable.

Consider HAMPATH , which is complement of HAMPATH .

No known way to verify 〈G, s, t〉 ∈ HAMPATH in polynomial time.

•Definition: Verifier for language A is (deterministic) algorithm V ,
where

A = {w | V accepts 〈w, c〉 for some string c }
• String c used to verify string w ∈ A

c is called a certificate, or proof, of membership in A.

Certificate is only for YES instance, not for NO instance.

•We measure verifier runtime only in terms of length of w.

• A polynomial-time verifier runs in (deterministic) time that is
polynomial in |w|.

• Language is polynomially verifiable if it has polynomial-time verifier.

CS 341: Chapter 7 7-74

Examples of Verifiers and Certificates

• For HAMPATH , a certificate for

〈G, s, t〉 ∈ HAMPATH

is simply the Hamiltonian path from s to t.

Can verify in time polynomial in |〈G, s, t〉| if path is Hamiltonian.

• For COMPOSITES , a certificate for

〈x〉 ∈ COMPOSITES

is simply one of its divisors.

Can verify in time polynomial in |〈x〉| that the given divisor actually
divides x

• Remark: Certificate c is only for YES instance, not for NO instance.

CS 341: Chapter 7 7-75

Class NP

Definition: NP is class of languages with polynomial-time verifiers.

Remarks:

• Class NP contains many problems of practical interest

HAMPATH

Travelling salesman

All of P

• The term NP comes from nondeterministic polynomial time.

Can define NP in terms of nondeterministic polynomial-time TMs.

• Recall: a nondeterministic TM (NTM) makes “lucky guesses” in
computation.

CS 341: Chapter 7 7-76

NTM N1 for HAMPATH

N1 = “On input 〈G, s, t〉 ∈ Ω, for directed graph G with nodes s, t:

1. Write list of m numbers p1, p2, . . . , pm, where m is # of nodes in G.
Each number in list selected nondeterministically between 1 and m.

2. Check for repetitions in list. If any found, reject.

3. Check whether p1 = s and pm = t. If either fails, reject.

4. For i = 1 to m− 1, check whether (pi, pi+1) is an edge of G.
If any is not, reject. Otherwise, accept .”

Complexity of N1 (when G encoded as 〈list of nodes, list of edges〉):
• Stage 1 takes nondeterministic polynomial time: O(m).

• Stages 2 and 3 are simple deterministic poly-time checks: O(m2).

• Stage 4 runs in deterministic polynomial time: O(m3).

•Overall: O(m3) nondeterministic running time.

CS 341: Chapter 7 7-77

Equivalent Definition of NP

Theorem 7.20
A language is in NP if and only if it is decided by some polynomial-time
nondeterministic TM.

Proof Idea:

• Recall language in NP has (deterministic) poly-time verifier.

• Given a poly-time verifier, build NTM that on input w,
guesses the certificate c and then runs verifier on input 〈w, c〉.

NTM runs in nondeterministic polynomial time.

• Given a poly-time NTM, build verifier with input 〈w, c〉, where
certificate c tells NTM on input w which is accepting branch.

Verifier runs in deterministic polynomial time.

CS 341: Chapter 7 7-78

Proof: “A ∈ NP” ⇒ “A Decided by Poly-time NTM”

• Let V be polynomial-time verifier for A.

Assume V is DTM with nk runtime, where n is length of input w.

• Using V as subroutine, construct NTM N as follows:

N = “On input w of length n:

1. Nondeterministically select string c of length at most nk.

2. Run V on input 〈w, c〉.
3. If V accepts, accept ;

otherwise, reject.”

• NTM N runs in nondeterministic polynomial time.

Verifier V runs in time nk, so certificate c must have length ≤ nk;
otherwise, V can’t even read entire certificate.

Stage 1 of NTM N takes O(nk) nondeterministic time.

CS 341: Chapter 7 7-79

Proof: “A Decided by Poly-time NTM” ⇒ “A ∈ NP”

• Assume A decided by polynomial-time NTM N .

• Use N to construct polynomial-time verifier V as follows:

V = “On input 〈w, c〉, where w and c are strings:

1. Simulate N on input w, treating each symbol of c as

a description of each step’s nondeterministic choice.

2. If this branch of N ’s computation accepts, accept ;

otherwise, reject.”

• V runs in deterministic polynomial time.

NTM N originally runs in nondeterministic polynomial time.

Certificate c tells NTM N how to compute, eliminating
nondeterminism in N ’s computation.

CS 341: Chapter 7 7-80

NTIME(t(n)) and NP

Definition:

NTIME(t(n)) = {L | L is a language decided

by an O(t(n))-time NTM }

Corollary 7.22

NP =
⋃

k≥0

NTIME(nk).

Remark:

• NP is insensitive to choice of “reasonable” nondeterministic
computational model.

This is because all such models are polynomially equivalent.

CS 341: Chapter 7 7-81

Example: CLIQUE

1

2

3

4

5

6

7

•Definition: A clique in a graph is a subgraph in which every two
nodes are connected by an edge, i.e., clique is complete subgraph.

•Definition: A k-clique is a clique of size k.

•Decision problem: Given graph G and integer k,
does G have k-clique?

Universe Ω = { 〈G, k〉 | G is undirected graph, k integer }
Language of decision problem

CLIQUE = { 〈G, k〉 | G is undirected graph with k-clique } ⊆ Ω.

For graph G above, 〈G,5〉 ∈ CLIQUE , but 〈G,6〉 	∈ CLIQUE .

CS 341: Chapter 7 7-82

CLIQUE ∈ NP

Theorem 7.24
CLIQUE ∈ NP.

Proof.

• The clique is the certificate c.

• Here is a verifier for CLIQUE :

V = “On input 〈〈G, k〉, c〉:
1. Test whether c is a set of k different nodes in G.

2. Test whether G contains all edges connecting nodes in c.

3. If both tests pass, accept ; otherwise, reject.”

• If graph G (encoded as 〈list of nodes, list of edges〉) has m nodes, then

Stage 1 takes O(k)O(m) = O(km) time.

Stage 2 takes O(k2)O(m2) = O(k2m2) time.

CS 341: Chapter 7 7-83

Example: SUBSET-SUM

•Decision problem: Given

collection S of numbers x1, . . . , xk
target number t

does some subcollection of S add up to t?

• Universe Ω = {〈S, t〉 | collection S = {x1, . . . , xk}, target t }.
• Language

SUBSET-SUM = { 〈S, t〉 | S = {x1, . . . , xk} and ∃
{y1, . . . , y�} ⊆ {x1, . . . , xk}
with

∑�
i=1 yi = t } ⊆ Ω

Example:

• 〈{4,11,16,21,27}, 32〉 ∈ SUBSET-SUM as 11+ 21 = 32.

• 〈{4,11,16,21,27}, 17〉 	∈ SUBSET-SUM .

Remark: Collections are multisets: repetitions allowed.
If number x appears r times in S, then sum can include ≤ r copies of x.

CS 341: Chapter 7 7-84

SUBSET-SUM ∈ NP

Theorem 7.25
SUBSET-SUM ∈ NP.

Proof.

• The subset is the certificate c.

• Here is a verifier V for SUBSET-SUM :

V = “On input 〈〈S, t〉, c〉:
1. Test whether c is a collection of numbers that sum to t.

2. Test whether every number in c belongs to S.

3. If both tests pass, accept ;
otherwise, reject.”

•When |S| = k,

|c| ≤ k, so V takes O(k2) time.

CS 341: Chapter 7 7-85

Class coNP

• The complements CLIQUE and SUBSET-SUM are not obviously
members of NP.

CLIQUE = { 〈G, k〉 | undirected graph G does not have k-clique }
Not clear how to define certificates so that we can verify in
polynomial time.

• It seems harder to verify that something does not exist.

Definition: The class coNP consists of languages whose complements
belong to NP.

• Language A ∈ coNP iff A ∈ NP.

Remark: Currently not known if coNP is different from NP.

CS 341: Chapter 7 7-86

P vs. NP Question

• Language in P has polynomial-time decider.

• Language in NP has polynomial-time verifier (or poly-time NTM).

• P ⊆ NP because each poly-time DTM is also poly-time NTM.

or
NP

P

P = NP

• Answering question whether P = NP or not is one of the great
unsolved mysteries in computer science and mathematics.

Most computer scientists believe P 	= NP; e.g., jigsaw puzzle.

Clay Math Institute (www.claymath.org) has $1,000,000 prize to
anyone who can prove either P = NP or P 	= NP.

CS 341: Chapter 7 7-87

Remarks on P vs. NP Question

• If P 	= NP, then

languages in P are tractable (i.e., solvable in polynomial time)

languages in NP− P are intractable (i.e., polynomial-time solution
doesn’t exist).

or
NP

P

P = NP

• If any NP language A 	∈ P, then P 	= NP.

Nobody has been able to (dis)prove ∃ language ∈ NP− P.

CS 341: Chapter 7 7-88

NP-Complete

Informally, the class NP-Complete comprise languages that are

• “hardest” languages in NP

• “least likely” to be in P

• If any NP-Complete language A ∈ P, then P = NP.

If P 	= NP, then every NP-Complete language A 	∈ P.

• Because NP-Complete ⊆ NP,

if any NP-Complete language A 	∈ P, then P 	= NP.

We will give a formal definition of NP-Complete later.

CS 341: Chapter 7 7-89

Satisfiability Problem

• A Boolean variable is a variable that can take on only the values
TRUE (1) and FALSE (0).

• Boolean operations

AND: ∧
OR: ∨
NOT: ¬ or overbar (x = ¬x)

• Examples

0 ∧ 1 = 0

0 ∨ 1 = 1

0 = 1

CS 341: Chapter 7 7-90

Satisfiability Problem

• A Boolean formula (or function) is an expression involving Boolean
variables and operations, e.g.,

φ1 = (x ∧ y) ∨ (x ∧ z)

•Definition: A formula is satisfiable if some assignment of 0s and 1s
to the variables makes the formula evaluate to 1.

Example: φ1 above is satisfiable by (x, y, z) = (0,1,0).
This assignment satisfies φ1.

Example: The following formula is not satisfiable:

φ2 = (x ∨ y) ∧ (z ∧ z) ∧ (y ∨ x)

•Decision problem SAT : Given Boolean fcn φ, is φ satisfiable?

Universe Ω = { 〈φ〉 | φ is a Boolean fcn }
Language of satisfiability problem:

SAT = { 〈φ〉 | φ is a satisfiable Boolean function } ⊆ Ω

so 〈φ1〉 ∈ SAT and 〈φ2〉 	∈ SAT .

CS 341: Chapter 7 7-91

More Definitions Related to Satisfiability

• A literal is a variable or negated variable: x or x

• A clause is several literals joined by ORs (∨): (x1 ∨ x3 ∨ x7)

Clause is TRUE iff at least one of its literals is TRUE.

• A Boolean function is in conjunctive normal form, called a
cnf-formula, if it comprises several clauses connected with ANDs (∧):

(x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x3 ∨ x5 ∨ x6) ∧ (x3 ∨ x6)

• 3cnf-formula has all clauses with 3 literals:

(x1∨x2∨x3)∧ (x3∨x5∨x6)∧ (x3∨x6∨x4)∧ (x2∨x1∨ x5)

•Decision problem 3SAT : Given a 3cnf-formula φ, is φ satisfiable?

Universe Ω = { 〈φ〉 | φ is 3cnf-formula }
Language of decision problem:

3SAT = { 〈φ〉 | φ is a satisfiable 3cnf-function } ⊆ Ω.

〈φ〉 ∈ 3SAT iff each clause in φ has at least one literal assigned 1.

CS 341: Chapter 7 7-92

Polynomial-Time Computable Functions

Definition: A polynomial-time computable function is

f : Σ∗
1 → Σ∗

2

if ∃ Turing machine that

• starts with input w ∈ Σ∗
1,

• halts with only f(w) ∈ Σ∗
2 on the tape, and

• has runtime that is polynomial in |w| for w ∈ Σ∗
1.

CS 341: Chapter 7 7-93

Polynomial-Time Mapping Reducible: A ≤P B

Consider

• language A defined over alphabet Σ1; i.e., universe Ω1 = Σ∗
1.

• language B defined over alphabet Σ2; i.e., universe Ω2 = Σ∗
2.

Definition: A is polynomial-time mapping reducible to B, written

A ≤P B

if there is a polynomial-time computable function

f : Σ∗
1 → Σ∗

2

such that, for every string w ∈ Σ∗
1,

w ∈ A ⇐⇒ f(w) ∈ B.

CS 341: Chapter 7 7-94

Polynomial-Time Mapping Reducible: A ≤P B

Ω1 = Σ∗
1

Ω2 = Σ∗
2

A B

f

f

w ∈ A ⇐⇒ f(w) ∈ B

YES instance for problem A ⇐⇒ YES instance for problem B

• converts questions about membership in A to membership in B

• conversion is done efficiently (i.e., in polynomial time).

CS 341: Chapter 7 7-95

Polynomial-Time Mapping Reducible

Theorem 7.31
If A ≤P B and B ∈ P, then A ∈ P.

Proof.

Ω1 = Σ∗
1

Ω2 = Σ∗
2

A B

f

f

• B ∈ P ⇒ ∃ TM M that is polynomial-time decider for B.

• A ≤P B ⇒ ∃ function f that reduces A to B in polynomial time.

• Define TM N that decides A ⊆ Ω1 as follows:

N = “On input w ∈ Ω1,
1. Compute f(w) ∈ Ω2.
2. Run M on input f(w) and output whatever M outputs.”

• Analysis of Time Complexity of TM N :

Each stage runs once.

Stage 1 is polynomial because f is polynomial-time function.

Stage 2 is polynomial because M is polynomial-time decider for B.

CS 341: Chapter 7 7-96

3SAT ≤P CLIQUE

Theorem 7.32
3SAT is polynomial-time mapping reducible to CLIQUE .

Proof Idea: Convert instance φ of 3SAT problem with k clauses into
instance 〈G, k〉 of clique problem: 〈φ〉 ∈ 3SAT iff 〈G, k〉 ∈ CLIQUE .

• Recall

3SAT = { 〈φ〉 | 3cnf-fcn φ is satisfiable }
⊆ { 〈φ〉 | 3cnf-fcn φ } ≡ Ω3,

CLIQUE = { 〈G, k〉 | undirected graph G has k-clique }
⊆ { 〈G, k〉 | undirected graph G, integer k } ≡ ΩC.

• Need poly-time reducing function f : Ω3 → ΩC

Ω3 ΩC

3SAT CLIQUE

f

f

CS 341: Chapter 7 7-97

3SAT is Mapping Reducible to CLIQUE

Proof Idea: Map instance 〈φ〉 ∈ Ω3 of 3SAT problem with k clauses
into instance 〈G, k〉 ∈ ΩC of clique problem:

〈φ〉 ∈ 3SAT iff 〈G, k〉 ∈ CLIQUE

• Suppose φ is a 3cnf-function with k clauses, e.g.,

φ = (x1∨x2∨x3)∧(x3∨x5∨x6)∧(x3∨x6∨x4)∧(x2∨x1∨x5)

• Convert φ into a graph G as follows:

Each literal in φ corresponds to a node in G.

Nodes in G are organized into k triples t1, t2, . . . , tk.

Triple ti corresponds to the ith clause in φ.

Add edges between each pair of nodes, except

� within same triple

� between contradictory literals, e.g., x1 and x1

CS 341: Chapter 7 7-98

3SAT is Mapping Reducible to CLIQUE

Example: 3cnf-function with k = 3 clauses and m = 2 variables:

φ = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2)

Corresponding Graph:

Clause 1

x1

x1

x2

Clause 2

x1 x2 x2

Clause 3

x1

x2

x2

CS 341: Chapter 7 7-99

3SAT is Mapping Reducible to CLIQUE

• 3cnf-formula with k = 3 clauses and m = 2 variables

φ = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2)

is satisfiable by assignment x1 = 0, x2 = 1.

• Resulting graph has k-clique based on true literal from each clause:

Clause 1

x1

x1

x2

Clause 2

x1 x2 x2

Clause 3

x1

x2

x2

CS 341: Chapter 7 7-100

3SAT is Mapping Reducible to CLIQUE

Need to show 3cnf-fcn φ with k clauses is satisfiable iff G has a k-clique.

• Key Idea: 〈φ〉 ∈ 3SAT iff each clause in φ has ≥ 1 true literal.

• Recall: G has node triples corresponding to clauses in φ.

• Add edges between each pair of nodes, except

within same triple
between contradictory literals, e.g., x1 and x1

• k-clique in G

must have 1 node from each triple
cannot include contradictory literals

• If 〈φ〉 ∈ 3SAT , then choose node corresponding to satisfied literal in
each clause to get k-clique in G.

• If 〈G, k〉 ∈ CLIQUE , then literals corresponding to k-clique satisfy φ.

Conclusion: 〈φ〉 ∈ 3SAT iff 〈G, k〉 ∈ CLIQUE , so

3SAT ≤m CLIQUE .

CS 341: Chapter 7 7-101

Reducing 3SAT to CLIQUE Takes Polynomial Time

Claim: The mapping φ → 〈G, k〉 is polynomial-time computable.

Proof.

• Size of given 3cnf-function φ

k clauses

m variables.

• Constructing graph G

G has 3k nodes

Adding edges entails considering each pair of nodes in G:(
3k

2

)
=

3k(3k − 1)

2
= O(k2)

Time to construct G is polynomial in size of 3cnf-function φ.

CS 341: Chapter 7 7-102

NP-Complete

Definition: Language B is NP-Complete if

1. B ∈ NP, and

2. B is NP-Hard: For every language A ∈ NP, we have A ≤P B.

A1

A2

A3 A4

A5

B

NP

Remarks:

• NP-Complete problems are the most difficult problems in NP.

•Definition: Language B is NP-Hard if B satisfies part 2 of
NP-Complete.

CS 341: Chapter 7 7-103

NP-Complete and P vs. NP Question

Theorem 7.35
If there is an NP-Complete language B and B ∈ P, then P = NP.

Proof.

• Consider any language A ∈ NP.

• As A ∈ NP, defn of NP-completeness
implies A ≤P B. A1

A2

A3 A4

A5

B

NP

• Recall Theorem 7.31: If A ≤P B and B ∈ P, then A ∈ P.

• Because B ∈ P, it follows that also A ∈ P by Theorem 7.31.

CS 341: Chapter 7 7-104

Identifying New NP-Complete Problems from Known Ones

Theorem 7.36
If B is NP-Complete and B ≤P C for C ∈ NP, then C is NP-Complete.

A1

A2

A3 A4

A5

B

NP

C

CS 341: Chapter 7 7-105

Identifying New NP-Complete Problems from Known Ones

Recall Theorem 7.36:
If B is NP-Complete and B ≤P C for C ∈ NP, then C is NP-Complete.

Proof.

• Assume that C ∈ NP.

•Must show that every A ∈ NP satisfies A ≤P C.

• Because B is NP-Complete,

every language in NP is polynomial-time reducible to B.

Thus, A ≤P B when A ∈ NP.

• By assumption, B is polynomial-time reducible to C.

Hence, B ≤P C.

• But polynomial-time reductions compose.

So A ≤P B and B ≤P C imply A ≤P C.

CS 341: Chapter 7 7-106

Cook-Levin Theorem

• Once we have one NP-Complete problem,
can identify others by using polynomial-time reduction (Theorem 7.36).

• But identifying the first NP-Complete problem requires some effort.

• Recall satisfiability problem:

SAT = { 〈φ〉 | φ is a satisfiable Boolean function }

Theorem 7.37
SAT is NP-Complete.

Proof Idea:

• SAT ∈ NP because a polynomial-time NTM can guess assignment to
formula φ and accept if assignment satisfies φ.

• Show that SAT is NP-Hard: A ≤P SAT for every language A ∈ NP.

CS 341: Chapter 7 7-107

Proof Outline of Cook-Levin Theorem

• Let A ⊆ Σ∗
1 be a language in NP.

• Need to show that A ≤P SAT .

• For every w ∈ Σ∗
1, we want a (CNF) formula φ such that

w ∈ A iff 〈φ〉 ∈ SAT

polynomial-time reduction that constructs φ from w.

• Let N be poly-time NTM that decides A in time at most nk

for input w with |w| = n.

• Basic approach:

w ∈ A ⇐⇒ NTM N accepts input w

⇐⇒ ∃ accepting computation history of N on w

⇐⇒ ∃ Boolean function φ and variables x1, . . . , xm
with φ(x1, . . . , xm) = TRUE

CS 341: Chapter 7 7-108

Proof Outline of Cook-Levin Theorem

Idea: “Satisfying assignments of φ”
↔ “accepting computation history of NTM N on w”

Step 1: Describe computations of NTM N on w by Boolean variables.

• Any computation history of N = (Q,Σ,Γ, δ, q0, qA, qR) on w with
|w| = n has ≤ nk configurations since assumed N runs in time nk.

• Each configuration is an element of C(nk), where C = Q ∪ Γ ∪ {#}
(mark left and right ends with #, where # 	∈ Γ).

• Computation described by nk × nk “tableau”

Each row of tableau represents one configuration.

Each cell in tableau contains one element of C.

• Represent contents of cell (i, j) by |C| Boolean variables
{xi,j,s | s ∈ C }

xi,j,s = 1 means “cell (i, j) contains s” (variable is “on”)

CS 341: Chapter 7 7-109

Tableau is an nk × nk table of configurations

q0 w1 w2 · · · wn �� · · · �� # start configuration

second configuration

#

2× 3 window

nkth configuration

nk

nk

CS 341: Chapter 7 7-110

Proof Outline of Cook-Levin Theorem

Step 2: Express conditions for an accepting sequence of configurations of
NTM N on w by Boolean formulas:

φcell = “for each cell (i, j), exactly one s ∈ C with xi,j,s = 1”,

φstart = “first row of tableau is the starting configuration of N on w”,

φaccept = “last row of tableau is an accepting configuration of N on w”,

φmove = “every 2× 3 window is consistent with N ’s transition fcn”.

For example,

φcell =
∧

1≤i,j≤nk︸ ︷︷ ︸
for each cell (i, j),

[
(

∨
s∈C

xi,j,s)︸ ︷︷ ︸
≥ 1 symbol used

∧ (
∧

s,t∈C
s	=t

(xi,j,s ∨ xi,j,t))

︸ ︷︷ ︸
not ≥ 2 symbols used

]
.

Step 3: Show that each of the above formulas can be

• expressed by a formula of size O((nk)2) = O(n2k)

• constructed from w in time polynomial in n = |w|.

CS 341: Chapter 7 7-111

Proof Outline of Cook-Levin Theorem

Step 4: Show that N has an accepting computation history on w iff

φ = φcell ∧ φstart ∧ φaccept ∧ φmove

has a satisfying assignment of the xi,j,s variables.

Thus, we constructed φ using a polynomial-time reduction from A to SAT :

A ≤P SAT

Because construction holds for every A ∈ NP,
SAT is then NP-Complete.

CS 341: Chapter 7 7-112

3SAT is NP-Complete

Recall
3SAT = { 〈φ〉 | φ is a satisfiable 3cnf-function }

Corollary 7.42
3SAT is NP-Complete.

Proof Idea:
Can modify proof that SAT is NP-Complete (Theorem 7.37) so that
resulting Boolean function is a 3cnf-function.

CS 341: Chapter 7 7-113

Proving NP-Completeness

• Tedious to prove a language C is NP-Complete using definition:

1. C ∈ NP, and

2. C is NP-Hard: For every language A ∈ NP, we have A ≤P C.

• Recall Theorem 7.36:
If B is NP-Complete and B ≤P C for C ∈ NP,
then C is NP-Complete. A1

A2

A3 A4

A5

B

NP

C

• Typically prove a language C is NP-Complete by applying Thm 7.36

1. Prove that language C ∈ NP.

2. Reduce a known NP-Complete problem B to C.

At this point, have shown that SAT and 3SAT are NP-Complete.

3. Show that reduction takes polynomial time.

CS 341: Chapter 7 7-114

CLIQUE is NP-Complete

CLIQUE = { 〈G, k〉 | G is an undirected graph with a k-clique }
1

2

3

4

5

6

7

Corollary 7.43
CLIQUE is NP-Complete.

Proof.

• Theorem 7.24: CLIQUE ∈ NP.

• Corollary 7.42: 3SAT is NP-Complete.

• Theorem 7.32: 3SAT ≤P CLIQUE .

• Thus, Theorem 7.36 implies CLIQUE is NP-Complete.

CS 341: Chapter 7 7-115

Integer Linear Programming

Definition: An integer linear program (ILP) is

• set of variables y1, y2, . . . , yn, which must take integer values.

• set of m linear inequalities:

a11 y1 + a12 y2 + · · · + a1n yn ≤ b1
a21 y1 + a22 y2 + · · · + a2n yn ≤ b2

...
am1 y1 + am2 y2 + · · · + amn yn ≤ bm

where the aij and bi are given constants.

• In matrix notation, Ay ≤ b, with matrix A and vectors y, b:

A =

⎛
⎜⎜⎜⎜⎜⎜⎝
a11 a12 · · · a1n
a21 a22 · · · a2n
...

am1 am2 · · · amn

⎞
⎟⎟⎟⎟⎟⎟⎠, y =

⎛
⎜⎜⎜⎜⎜⎜⎝
y1
y2
...
yn

⎞
⎟⎟⎟⎟⎟⎟⎠, b =

⎛
⎜⎜⎜⎜⎜⎜⎝
b1
b2
...
bm

⎞
⎟⎟⎟⎟⎟⎟⎠.

CS 341: Chapter 7 7-116

Integer Linear Programming

Example: Can transform ≥ and = relations into ≤ relations:

5y1 − 2y2 + y3 ≤ 7

y1 ≥ 2 ←→ −y1 ≤ −2

y2 + 2y3 = 8 ←→ y2 + 2y3 ≤ 8 & y2 + 2y3 ≥ 8

becomes ILP
5 y1 − 2 y2 + 1y3 ≤ 7

−1 y1 + 0 y2 + 0 y3 ≤ −2

0 y1 + 1 y2 + 2 y3 ≤ 8

0 y1 − 1 y2 − 2 y3 ≤ −8
so

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

5 −2 1

−1 0 0

0 1 2

0 −1 −2

⎞
⎟⎟⎟⎟⎟⎟⎠, y =

⎛
⎜⎜⎜⎝
y1
y2
y3

⎞
⎟⎟⎟⎠, b =

⎛
⎜⎜⎜⎜⎜⎜⎝

7

−2

8

−8

⎞
⎟⎟⎟⎟⎟⎟⎠.

CS 341: Chapter 7 7-117

ILP is NP-Complete

•Decision problem: Given matrix A and vector b,
is there an integer vector y such that Ay ≤ b?

ILP = { 〈A, b〉 | matrix A and vector b satisfy Ay ≤ b

with y an integer vector }
⊆ { 〈A, b〉 | matrix A, vector b } ≡ ΩI

• Example: The instance 〈A, b〉 ∈ ΩI , where

A =

⎛
⎝ 1 2

2 4

⎞
⎠, b =

⎛
⎝ 3

7

⎞
⎠,

satisfies Ay ≤ b for y = (1,1)�, so 〈A, b〉 ∈ ILP .

• Example: The instance 〈C, d〉 ∈ ΩI , where

C =

⎛
⎝ 2 0

−2 0

⎞
⎠, d =

⎛
⎝ 3

−3

⎞
⎠,

requires 2y1 ≤ 3 & −2y1 ≤ −3, which means 2y1 = 3, so only
non-integer solutions y = (3/2, y2)

� for any y2; thus, 〈C, d〉 	∈ ILP .

• Theorem: ILP is NP-Complete.

CS 341: Chapter 7 7-118

ILP ∈ NP

Proof.

• The certificate c is an integer vector satisfying Ac ≤ b.

• Here is a verifier for ILP :

V = “On input 〈〈A, b〉, c〉:
1. Test whether c is a vector of all integers.

2. Test whether Ac ≤ b.

3. If both tests pass, accept ; otherwise, reject.”

• If Ay ≤ b has m inequalities and n variables, then

Stage 1 takes O(n) time

Stage 2 takes O(mn) time

So verifier V runs in O(mn), which is polynomial in size of instance.

Now prove ILP is NP-Hard by showing 3SAT ≤P ILP .

CS 341: Chapter 7 7-119

3SAT ≤m ILP

• Reducing fcn f : Ω3 → ΩI

〈φ〉 ∈ 3SAT iff f(〈φ〉) = 〈A, b〉 ∈ ILP

Ω3 ΩI

3SAT ILP

f

f

• Consider 3cnf-formula with m = 4 variables and k = 3 clauses:

φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x4 ∨ x3)

• Define integer linear program with

2m = 8 variables y1, y
′
1, y2, y

′
2, y3, y

′
3, y4, y

′
4

� yi corresponds to xi
� y′i corresponds to xi
3 sets of inequalities for each pair (yi, y

′
i), which must be integers:

0 ≤ y1 ≤ 1, 0 ≤ y′1 ≤ 1, y1 + y′1 = 1

0 ≤ y2 ≤ 1, 0 ≤ y′2 ≤ 1, y2 + y′2 = 1

0 ≤ y3 ≤ 1, 0 ≤ y′3 ≤ 1, y3 + y′3 = 1

0 ≤ y4 ≤ 1, 0 ≤ y′4 ≤ 1, y4 + y′4 = 1

� Exactly one of yi and y′i is 1, and other is 0.

CS 341: Chapter 7 7-120

3SAT ≤m ILP

• Recall 3cnf-formula with m = 4 variables and k = 3 clauses:

φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x4 ∨ x3)

φ satisfiable iff each clause evaluates to 1.

A clause evaluates to 1 iff at least one literal in the clause equals 1.

For each clause (xi ∨ xj ∨ x�), create inequality yi + y′j + y� ≥ 1.

For our example, ILP has k = 3 inequalities of this type:

y1 + y2 + y′3 ≥ 1

y′1 + y′2 + y4 ≥ 1

y′2 + y′4 + y′3 ≥ 1

� All true for binary variables iff 3cnf-function is satisfiable.

CS 341: Chapter 7 7-121

3SAT ≤m ILP

• Given 3cnf-formula:

φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x4 ∨ x3)

• Constructed ILP:

0 ≤ y1 ≤ 1, 0 ≤ y′1 ≤ 1, y1 + y′1 = 1

0 ≤ y2 ≤ 1, 0 ≤ y′2 ≤ 1, y2 + y′2 = 1

0 ≤ y3 ≤ 1, 0 ≤ y′3 ≤ 1, y3 + y′3 = 1

0 ≤ y4 ≤ 1, 0 ≤ y′4 ≤ 1, y4 + y′4 = 1

y1 + y2 + y′3 ≥ 1

y′1 + y′2 + y4 ≥ 1

y′2 + y′4 + y′3 ≥ 1

• Note that:

φ satisfiable ⇐⇒ constructed ILP has solution

(with values of variables ∈ {0,1})

CS 341: Chapter 7 7-122

Reducing 3SAT to ILP Takes Polynomial Time

• Given 3cnf-formula φ with

m variables: x1, x2, . . . , xm

k clauses

• Constructed ILP has

2m (integer) variables: y1, y
′
1, y2, y

′
2, . . . , ym, y′m

6m+ k inequalities:

� 3 sets of inequalities for each pair yi, y
′
i:

0 ≤ yi ≤ 1, 0 ≤ y′i ≤ 1, yi + y′i = 1,

so total of 6m inequalities of this type (convert = into ≤ & ≥)

� For each clause in φ, ILP has corresponding inequality, e.g.,

(x1 ∨ x2 ∨ x3) ←→ y1 + y2 + y′3 ≥ 1,

so total of k inequalities of this type.

Thus, size of ILP is polynomial in m and k.

CS 341: Chapter 7 7-123

Many Other NP-Complete Problems

• HAMPATH , SUBSET-SUM , . . .

• Travelling Salesman Problem (TSP): Given a graph G with weighted
edges and a threshold value d, is there a tour that visits each node
once and has total length at most d?

• Long-Path Problem: Given a graph G with weighted edges, two nodes
s and t in G, and a threshold value d, is there path (with no cycles)
from s to t with length at least d?

• Scheduling Final Exams: Is there a way to schedule final exams in a
d-day period so no student is scheduled to take 2 exams at same time?

•Minesweeper, Sudoku, Tetris

• See Garey and Johnson (1979), Computers and Intractability: A Guide

to the Theory of NP-Completeness, for many reductions.

CS 341: Chapter 7 7-124

NP-Hard Optimization Problems

• Decision problems have YES/NO answers.

•Many decision problems have corresponding optimization version.

• Optimization version of NP-Complete problems are NP-Hard.

Problem Decision Version Optimization Version

CLIQUE Does a graph G have Find largest clique
a clique of size k ?

ILP Does ∃ integer vector y Find integer vector y to

such that Ay ≤ b ? max d�y s.t. Ay ≤ b

TSP Does a graph G have tour Find min length tour
of length ≤ d ?

Scheduling Given set of tasks and constraints, Find min time schedule
can we finish all tasks in time d ?

CS 341: Chapter 7 7-125

Why are NP-Complete and NP-Hard Important?

• Suppose you are faced with a problem and you can’t come up with an
efficient algorithm for it.

• If you can prove the problem is NP-Complete or NP-Hard,
then there is no known efficient algorithm to solve it.

No known polynomial-time algorithms for NP-Complete and
NP-Hard problems.

• How to deal with an NP-Complete or NP-Hard problem?

Approximation algorithm

Probabilistic algorithm

Special cases

Heuristic

CS 341: Chapter 7 7-126

Summary of Chapter 7

• Time complexity: In terms of size n of input w,
how many time steps are required by TM to solve problem?

• Big-O notation: f(n) = O(g(n))

f(n) ≤ c · g(n) for all n ≥ n0.

g(n) is an asymptotic upper bound on f(n).

Polynomials akn
k + ak−1n

k−1 + · · · = O(nk).

Polynomial = O(nc) for constant c ≥ 0

Exponential = O(2n
δ
) for constant δ > 0

Exponentials are asymptotically much bigger than any polynomial

• t(n)-time k-tape TM has equivalent O(t2(n))-time 1-tape TM.

• t(n)-time NTM has equivalent 2O(t(n))-time 1-tape DTM.

• Strong Church-Turing Thesis: all reasonable variants of DTM are
polynomial-time equivalent.

CS 341: Chapter 7 7-127

• Class P comprises problems that can be solved in polynomial time

P includes PATH , RELPRIME , CFLs (using dynamic programming)

• Class NP: problems that can be verified in deterministic polynomial
time (equivalently, solved in nondeterministic polynomial time).

NP includes all of P and HAMPATH , CLIQUE , SUBSET-SUM ,
3SAT , ILP

• P vs. NP problem:

Know P ⊆ NP: poly-time DTM is also poly-time NTM.

Unknown if P = NP or P 	= NP.

CS 341: Chapter 7 7-128

• Polynomial-time mapping reducible: A ≤P B if ∃ polynomial-time
computable function f such that

w ∈ A ⇐⇒ f(w) ∈ B.

• Defn: language B is NP-Complete if B ∈ NP and A ≤P B for all
A ∈ NP.

If any NP-Complete language B is in P, then P = NP.

If any NP language B is not in P, then P 	= NP.

If B is NP-Complete and B ≤P C for C ∈ NP,
then C is NP-Complete.

Cook-Levin Theorem: SAT is NP-Complete.

3SAT , CLIQUE , ILP , SUBSET-SUM , HAMPATH , etc. are all
NP-Complete

