Chapter 7

Time Complexity

CS 341: Foundations of CS II

Marvin K. Nakayama
Computer Science Department
New Jersey Institute of Technology
Newark, NJ 07102

Contents

- Time and space as resources
- Big O/little o notation, asymptotics
- Time complexity
- Polynomial time (P)
- Nondeterministic polynomial time (NP)
- NP-completeness

Introduction

- Chapters 3-5 dealt with computability theory:
- "What is and what is not possible to solve with a computer?"
- For the problems that are computable, this leads to the next question:
- "If we can decide a language A, how easy or hard is it to do so?"
- Complexity theory tries to answer this.

Counting Resources

- Two ways of measuring "hardness" of problem:

1. Time Complexity:

How many time-steps are required in the computation of a problem?

2. Space Complexity:

How many bits of memory are required for the computation?

- We will only examine time complexity in this course.
- We will use the Turing machine model.
- If we measure time complexity in a crude enough way, then results for TMs will also hold for all "reasonable" variants of TMs.

Example

- Consider language

$$
A=\left\{0^{k} 1^{k} \mid k \geq 0\right\}
$$

- Below is a single-tape Turing machine M_{1} that decides A :
$M_{1}=$ "On input w, where $w \in\{0,1\}^{*}$ is a string:

1. Scan across tape and reject if 0 is found to the right of a 1 .
2. Repeat the following if both Os and 1 s appear on tape:

- Scan across tape, crossing off single 0 and single 1.

3. If 0 s still remain after all 1 s crossed out, or vice-versa, reject. Otherwise, if all Os and 1s crossed out, accept."

- Question: How much time does TM M_{1} need to decide A ?

How much time does M_{1} need?

- Number of steps may depend on several parameters.
- Example: If input is a graph, this could depend on
- number of nodes
- number of edges
- maximum degree
- all, some, or none of the above
- Definition: Complexity is measured as function of length of input string.
- Worst case: longest running time on input of given length.
- Average case: average running time on input of given length.
- We will only consider worst-case complexity.

Running Time

- Let M be a deterministic TM that halts on all inputs.
- We will study the relationship between
- the length of encoding of a problem instance and
- the required time complexity of the solution for such an instance (worst case).
- Definition: The running time or time complexity of M is a function $f: \mathcal{N} \rightarrow \mathcal{N}$ defined by the maximization:

$$
f(n)=\max _{|x|=n}(\text { number of time steps of } M \text { on input } x)
$$

- Terminology
- $f(n)$ is the running time of M.
- M is an $f(n)$-time Turing machine.

CS 341: Chapter 7

Running Time

- The exact running time of most algorithms is quite complex.
- Instead use an approximation for large problems.
- Informally, we want to focus only on "important" parts of running time.

- Examples:

- $6 n^{3}+2 n^{2}+20 n+45$ has four terms.
- $6 n^{3}$ most important when n is large.
- Leading coefficient " 6 " does not depend on n, so only focus on n^{3}.

Asymptotic Notation

- Consider functions f and g, where

$$
f, g: \mathcal{N} \rightarrow \mathcal{R}^{+}
$$

- Definition: We say that

$$
f(n)=O(g(n))
$$

if there are two positive constants c and n_{0} such that

$$
f(n) \leq c \cdot g(n) \text { for all } n \geq n_{0}
$$

- We say that:
- " $g(n)$ is an asymptotic upper bound on $f(n)$."
- " $f(n)$ is big-O of $g(n)$."

Some big-0 examples

- Example 1: Show $f(n)=O(g(n))$ for

$$
f(n)=15 n^{2}+7 n, \quad g(n)=\frac{1}{2} n^{3} .
$$

- Let $n_{0}=16$ and $c=2$, so we have $\forall n \geq n_{0}$:

$$
f(n)=15 n^{2}+7 n \leq 16 n^{2} \leq n^{3}=2 \cdot \frac{1}{2} n^{3}=c \cdot g(n)
$$

- For first \leq, if $7 \leq n$, then $7 n \leq n^{2}$ by multiplying both sides by n.
- For second \leq, if $16 \leq n$, then $16 n^{2} \leq n^{3}$ (mult. by n^{2}).
- Example 2: $5 n^{4}+27 n=O\left(n^{4}\right)$.
- Take $n_{0}=1$ and $c=32$. (Also $n_{0}=3$ and $c=6$ works.)
- But $5 n^{4}+27 n$ is not $O\left(n^{3}\right)$: no values for c and n_{0} work.
- Basic idea: ignore constant factor differences:
- $2 n^{3}+52 n^{2}+829 n+2193=O\left(n^{3}\right)$.
- $2=O(1)$ and $\sin (n)+3=O(1)$.

Big-O for Logarithms

- Let $\log _{b}$ denote logarithm with base b.
- Recall $c=\log _{b} n$ if $b^{c}=n$; e.g., $\log _{2} 8=3$.
- $\log _{b}\left(x^{y}\right)=y \log _{b} x$ because $x=b^{\log _{b} x}$ and

$$
b^{y \log _{b} x}=\left(b^{\log _{b} x}\right)^{y}=x^{y}
$$

- Note that $n=2^{\log _{2} n}$ and $\log _{b}\left(x^{y}\right)=y \log _{b} x$ imply

$$
\log _{b} n=\log _{b}\left(2^{\log _{2} n}\right)=\left(\log _{2} n\right)\left(\log _{b} 2\right)
$$

- Changing base b changes value by only constant factor.
- So when we say $f(n)=O(\log n)$, the base is unimportant.
- Note that $\log n=O(n)$.
- In fact, $\log n=O\left(n^{d}\right)$ for any $d>0$.
- Polynomials overpower logarithms,
just like exponentials overpower polynomials.
- Thus, $n \log n=O\left(n^{2}\right)$.
- $O\left(n^{2}\right)+O(n)=O\left(n^{2}\right)$ and $O\left(n^{2}\right) O(n)=O\left(n^{3}\right)$
- Sometimes we have

$$
f(n)=2^{O(n)}
$$

What does this mean?

- Answer: $f(n)$ has an asymptotic upper bound of $2^{c n}$ for some constant c.
- What does $f(n)=2^{O(\log n)}$ mean?
- Recall the identities:

$$
\begin{aligned}
n & =2^{\log _{2} n} \\
n^{c} & =2^{c \log _{2} n}=2^{O\left(\log _{2} n\right)} .
\end{aligned}
$$

- Thus, $2^{O(\log n)}$ means an upper bound of n^{c} for some constant c.

More Remarks

- Definition:

- A bound of n^{c}, where $c>0$ is a constant, is called polynomial
- A bound of $2^{\left(n^{\delta}\right)}$, where $\delta>0$ is a constant, is called exponential.
- $f(n)=O(f(n))$ for all functions f.
- $[\log (n)]^{k}=O(n)$ for all constants k.
- $n^{k}=O\left(2^{n}\right)$ for all constants k.
- Because $n=2^{\log _{2} n}, n$ is an exponential function of $\log n$.
- If $f(n)$ and $g(m)$ are polynomials, then $g(f(n))$ is polynomial in n.
- Example: If $f(n)=n^{2}$ and $g(m)=m^{3}$, then

$$
g(f(n))=g\left(n^{2}\right)=\left(n^{2}\right)^{3}=n^{6}
$$

Remarks

- Big-O notation is about "asymptotically less than or equal to".
- Little-o is about "asymptotically much smaller than".
- Make it clear whether you mean $O(g(n))$ or $o(g(n))$.
- Make it clear which variable the function is in:
- $O\left(x^{y}\right)$ can be a polynomial in x or an exponential in y.
- Simplify!
- Rather than $O\left(8 n^{3}+2 n\right)$, instead use $O\left(n^{3}\right)$.
- Try to keep your big-O as "tight" as possible.
- Suppose $f(n)=2 n^{3}+8 n^{2}$.
- Although $f(n)=O\left(n^{5}\right)$, better to write $f(n)=O\left(n^{3}\right)$.

Back to Example of TM M_{1} for $A=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$
$M_{1}=$ "On input string $w \in\{0,1\}^{*}$:

1. Scan across tape and reject if 0 is found to the right of a 1 .
2. Repeat the following if both 0 s and 1 s appear on tape:

- Scan across tape, crossing off single 0 and single 1 .

3. If no 0 s or 1 s remain, accept;
otherwise, reject."

Let's now analyze M_{1} 's run-time complexity.

- We will examine each stage separately.
- Suppose input string w is of length n.

Analysis of Stage 2

2. Repeat the following if both 0 s and 1 s appear on tape:

- Scan across tape, crossing off single 0 and single 1 .

Analysis:

- Each scan requires $O(n)$ steps.
- Because each scan crosses off two symbols,
- at most $n / 2$ scans can occur.
- Total is $O\left(\frac{n}{2}\right) O(n)=O\left(n^{2}\right)$ steps.

Analysis of Stage 1

1. Scan across tape and reject if 0 is found to the right of a 1 .

Analysis:

- Input string w is of length n.
- Scanning requires n steps.
- Repositioning head back to beginning of tape requires n steps.
- Total is $2 n=O(n)$ steps.

Analysis of Stage 3 and Overall

3. If no 0 s or 1 s remain, accept; otherwise, reject.

Analysis:

- Single scan requires $O(n)$ steps.

Total cost for each stage:

- Stage 1: $O(n)$
- Stage 2: $O\left(n^{2}\right)$
- Stage 3: $O(n)$

Overall complexity: $O(n)+O\left(n^{2}\right)+O(n)=O\left(n^{2}\right)$

Time Complexity Class

Definition: For a function $t: \mathcal{N} \rightarrow \mathcal{N}$,

$$
\begin{aligned}
\operatorname{TIME}(t(n))=\{L \mid & \text { there is a } 1 \text {-tape TM that decides } \\
& \text { language } L \text { in time } O(t(n))\}
\end{aligned}
$$

Remarks:

- TM M_{1} decides language $A=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$
- M_{1} has run-time complexity $O\left(n^{2}\right)$.
- Thus, $A \in \operatorname{TIME}\left(n^{2}\right)$.
- Can we do better?

$$
\text { Another TM for } A=\left\{0^{k} 1^{k} \mid k \geq 0\right\}
$$

$M_{2}=$ "On input string $w \in\{0,1\}^{*}$:

1. Scan across tape and reject if 0 is found to the right of a 1 .
2. Repeat the following if both Os and 1 s appear on tape:
2.1 Scan across tape, checking whether total number of 0 s and 1 s is even or odd. If odd, reject.
2.2 Scan across tape, crossing off every other 0 (starting with the leftmost), and every other 1 (starting with the leftmost).
3. If no 0 s or 1 s remain, accept; otherwise, reject."

Why M_{2} Halts

- Stage 2.2: Scan across tape, crossing every other 0 and 1.
- On each scan in Stage 2.2,
- Total number of 0 s is decreased by (at least) half
- Same for the 1 s

- Example:

- Start with 13 Os.

0	0	0	0	0	0	0	0	0	0	0	0	0

- After first pass, 6 remaining

- After second pass, 3 remaining.
$\varnothing|\varnothing| \varnothing|0| \varnothing|\varnothing| \varnothing|0| \varnothing|\varnothing| \varnothing|0| \varnothing$
- After third pass, 1 remaining.

Ø| $|\varnothing| \varnothing|\varnothing| \varnothing|\varnothing| 0|\varnothing| \varnothing|\varnothing| \varnothing \mid \varnothing$

- After fourth pass, none remaining.

Why M_{2} Works

- Consider parity of Os and 1 s in Stage 2.1.
- Example: Start with $0^{13} 1^{13}$
- Initially, odd-odd $(13,13)$

$$
\left.\begin{array}{|l|}
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array} \right\rvert\,
$$

- Then, even-even $(6,6)$
- Then, odd-odd $(3,3)$

- Then, odd-odd $(1,1)$

- Result is 1011, which is reverse of binary representation of 13 .
- Each pass checks one binary digit.
$M_{2}=$ "On input string $w \in\{0,1\}^{*}$:

1. Scan across tape and reject if 0 is found to the right of a 1 .
2. Repeat the following if both Os and 1 s appear on tape:
2.1 Scan across tape, checking whether total number of 0 s and 1 s is even or odd. If odd, reject.
2.2 Scan across tape, crossing off every other 0 (starting with the leftmost), and every other 1 (starting with the leftmost).
3. If no 0 s or 1 s remain, accept; otherwise, reject."

Analysis:

- Each stage requires $O(n)$ time.
- Stage 1 and 3 run once each.
- Stage 2.2 eliminates half of 0 s and 1 s : Stage 2 runs $O\left(\log _{2} n\right)$ times.
- Total for stage 2 is $O\left(\log _{2} n\right) O(n)=O(n \log n)$.
- Grand total: $O(n)+O(n \log n)=O(n \log n)$, so language $A \in \operatorname{TIME}(n \log n)$.

2-Tape TM for $A=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$
$M_{3}=$ "On input string $w \in\{0,1\}^{*}$:

1. Scan across tape and reject if 0 is found to the right of a 1 .
2. Scan across Os to first 1 , copying Os to tape 2.
3. Scan across 1s on tape 1 until the end.

For each 1 on tape 1 , cross off a 0 on tape 2 .
If no Os left, reject.
4. If any Os left, reject; otherwise, accept."

Can show that running time of M_{3} is $O(n)$.

Runtimes of TMs for $A=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$

- Runtime depends on computational model:
- 1-tape TM $M_{1}: O\left(n^{2}\right)$
- 1-tape TM $M_{2}: O(n \log n)$
- 2-tape TM $M_{3}: O(n)$.
- For computability, all reasonable computational models are equivalent (Church-Turing Thesis).
- For complexity, choice of computational model affects time complexity.

k-Tape TM can be Simulated on 1-Tape TM with Polynomial Overhead

Theorem 7.8

- Let $t(n)$ be a function where $t(n) \geq n$.
- Then any $t(n)$-time multi-tape TM has an equivalent $O\left(t^{2}(n)\right)$-time single-tape TM.

Review Thm 3.13: Simulating k-Tape TM M on 1-Tape TM S On input $w=w_{1} \cdots w_{n}$, the 1-tape TM S does the following:

- First S prepares initial string on single tape:

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \# & w_{1} & w_{2} & \cdots & w_{n} & \# & \bullet & \# & \bullet & \# & \sqcup & \sqcup \\
\hline
\end{array}
$$

- For each step of M, TM S scans tape twice

1. Scans its tape from

- first \# (which marks left end of tape) to
- ($k+1$)st \# (which marks right end of tape)
to read symbols under "virtual" heads

2. Rescans to write new symbols and move heads

- If S tries to move virtual head to the right onto \#, then
ΔM is trying to move head onto unused blank cell.
Δ So S has to write blank on tape and shift rest of tape right one cell.

Complexity of Simulation

- For each step of k-tape TM M, 1-tape TM S performs two scans
- Length of active portion of S 's tape determines how long S takes to perform each scan.
- In r steps, TM M can read/write in $\leq k \times r$ different cells on its k tapes.
- As M has $t(n)$ runtime, at any point during M 's execution, total \# active cells on all of M 's tapes $\leq k \times t(n)=O(t(n))$.
- Thus, each of S 's scans requires $O(t(n))$ time.
- Overall runtime of S
- Initial tape arrangement: $O(n)$ steps.
- S simulates each of M 's $t(n)$ steps using $O(t(n))$ steps.
© Thus, total of $t(n) \times O(t(n))=O\left(t^{2}(n)\right)$ steps.
- Grand total: $O(n)+O\left(t^{2}(n)\right)=O\left(t^{2}(n)\right)$ steps.

Running Time of Nondeterministic TMs

- What about nondeterministic TMs (NTMs)?
- Informally, NTM makes "lucky guesses" during computation.
- In terms of computability, no difference between TMs and NTMs.
- For time-complexity, nondeterminism seems to make big difference.

Definition:

- Let N be NTM that is a decider (no looping).
- Running time of NTM N is function $f: \mathcal{N} \rightarrow \mathcal{N}$, where

$$
f(n)=\max _{|x|=n}(\text { height of tree of configs for } N \text { on input } x)
$$

- the maximum number of steps that NTM N uses
- on any branch of the computation
- on any input x of size n.

Deterministic vs. Nondeterministic TM Runtime

Deterministic

Simulating NTM N on 1-Tape DTM D Requires Exponential Overhead

Theorem 7.11

- Let $t(n)$ be a function with $t(n) \geq n$.
- Any $t(n)$-time nondeterministic TM has an equivalent $2^{O(t(n))}$-time deterministic 1-tape TM.

Proof Idea:

- Suppose N is NTM decider running in $t(n)$ time.
- On each input w, NTM N 's computation is a tree of configurations.
- Simulate N on 3-tape DTM D using BFS of N 's computation tree:
- D tries all possible branches.
- If D finds any accepting configuration, D accepts.
- If all branches reject, D rejects.

Complexity of Simulating NTM N on 1-Tape DTM D

- Analyze NTM N 's computation tree on input w with $|w|=n$
- Root is starting configuration.
- Each node has $\leq b$ children
$\Delta b=\max$ number of legal choices given by N 's transition fcn δ.
- Each branch has length $\leq t(n)$.
- Total number of leaves $\leq b^{t(n)}$.
- Total number of nodes $\leq 2 \times($ max number of leaves $)=O\left(b^{t(n)}\right)$.
- Time to travel from root to any node is $O(t(n))$.
- DTM's runtime \leq time to visit all nodes:

$$
O\left(b^{t(n)}\right) \times O(t(n))=2^{O(t(n))}
$$

- Simulating NTM by DTM requires 3 tapes by Theorem 3.16.
- By Theorem 3.13, simulating 3-tape DTM on 1-tape DTM requires

$$
\left(2^{O(t(n))}\right)^{2}=2^{2 \times O(t(n))}=2^{O(t(n))} \text { steps. }
$$

Summary of Simulation Results

- Simulating k-tape DTM on 1-tape DTM
- increases runtime from $t(n)$ to $O\left(t^{2}(n)\right)$
- i.e., polynomial increase in runtime.

- Simulating NTM on 1-tape DTM

- increases runtime from $t(n)$ to $2^{O(t(n))}$
- i.e., exponential increase in runtime.

Polynomial Good, Exponential Bad

	n					
$f(n)$	10	20	30	40	50	60
n	$.00001$ seconds	$.00002$ seconds	$.00003$ seconds	$.00004$ seconds	$\begin{aligned} & \hline .00005 \\ & \text { seconds } \end{aligned}$	$.00006$ seconds
n^{2}	$.0001$ seconds	$.0004$ seconds	$\begin{aligned} & .0009 \\ & \text { seconds } \end{aligned}$	$.0016$ seconds	$.0025$ seconds	$\begin{aligned} & .0036 \\ & \text { seconds } \end{aligned}$
n^{3}	$\begin{gathered} .001 \\ \text { seconds } \end{gathered}$	$\begin{gathered} .008 \\ \text { seconds } \end{gathered}$	$\begin{gathered} .027 \\ \text { seconds } \end{gathered}$	$.064$ seconds	$\begin{gathered} .125 \\ \text { seconds } \end{gathered}$	$.216$ seconds
n^{5}	. 1 seconds	$\begin{gathered} 3.2 \\ \text { seconds } \end{gathered}$	24.3 seconds	1.7 minutes	5.2 minutes	13 minutes
2^{n}	$\begin{gathered} .001 \\ \text { seconds } \end{gathered}$	$\begin{gathered} 1.05 \\ \text { seconds } \end{gathered}$	17.9 minutes	$\begin{aligned} & 12.7 \\ & \text { days } \end{aligned}$	35.7 years	366 centuries
3^{n}	$\begin{gathered} .059 \\ \text { seconds } \end{gathered}$	58 minutes	$\begin{gathered} 6.5 \\ \text { years } \end{gathered}$	3855 centuries	2×10^{8} centuries	10^{13} centuries

Strong Church-Turing Thesis

- In general, every "reasonable" variant of DTM (k-tape, r-heads, etc.) can be simulated by a single-tape DTM with only polynomial time/space overhead.
- Any one of these models can simulate another with only polynomial increase in running time or space required.
- All "reasonable" models of computation are polynomially equivalent.
- NTM is "unreasonable" variant: it can do $O\left(b^{s}\right)$ work on step s.
- If any reasonable version of a DTM can solve a problem in polynomial time, then any other reasonable type of DTM can also.
- If we ask if a particular problem is solvable in linear time (i.e., $O(n)$), answer depends on computational model used.
- If we ask if a particular problem A is solvable in polynomial time, answer is independent of reasonable computational model used.

The Class P

Because of polynomial equivalence of DTM models,

- group languages solvable in $O\left(n^{2}\right), O(n \log n), O(n)$, etc., together in the polynomial-time class.

Definition: The class of languages that can be decided by a single-tape DTM in polynomial time is denoted by P , where

$$
\mathrm{P}=\bigcup_{k \geq 0} \operatorname{TIME}\left(n^{k}\right)
$$

Remarks:

- If we ask if a particular problem A is solvable in polynomial time (i.e., is $A \in \mathrm{P}$?),
- answer is independent of deterministic computational model used.
- Class P roughly corresponds to tractable (i.e., realistically solvable) problems.

Example of Problem in P: PATH

- Decision problem: Given directed graph G with nodes s and t, does G have a path from s to t ?

- Universe $\Omega=\{\langle G, s, t\rangle \mid G$ is directed graph with nodes $s, t\}$ of instances (for a particular encoding scheme).
- Language of decision problem comprises YES instances: PATH $=\{\langle G, s, t\rangle \mid G$ is directed graph with path from s to $t\} \subseteq \Omega$.
- For graph G above, $\langle G, 1,5\rangle \in \operatorname{PATH}$, but $\langle G, 2,1\rangle \notin$ PATH.

PATH $\in \mathbf{P}$

Theorem 7.14

$P A T H \in P$.

Brute-force algorithm:

- Input is instance $\langle G, s, t\rangle \in \Omega$
- G is directed graph with nodes s and t.
- Let m be number of nodes in G.
- $\leq m^{2}$ edges.
- m (or m^{2}) roughly measures size of instance $\langle G, s, t\rangle$.
- Any path from s to t need not repeat nodes.
- Examine each potential path in G of length $\leq m$.
- Check if the path goes from s to t.

What is complexity of this algorithm?

Complexity of Brute-Force Algorithm for PATH

Brute-force algorithm:

- Input is $\langle G, s, t\rangle \in \Omega$, where G is directed graph with nodes s and t.
- Any path from s to t need not repeat nodes.
- Examine each potential path in G of length $\leq m(=\#$ nodes in $G)$.
- Check if the path goes from s to t.

Complexity analysis:

- There are roughly m^{m} potential paths of length $\leq m$.
- For each potential path length $k=2,3, \ldots, m$, check all k ! permutations of k distinct nodes from $\binom{m}{k}$ possibilities.
- $k!=k \times(k-1) \times(k-2) \times \cdots \times 1, \quad\binom{m}{k}=\frac{m!}{k!(m-k)!}$
- Stirling's approximation: k ! $\sim\left(\frac{k}{e}\right)^{k} \sqrt{2 \pi k}$.
- This is exponential in the number m of nodes.
- So brute-force algorithm's runtime is exponential in size of input.

A Better Algorithm Shows PATH $\in \mathbf{P}$

On input $\langle G, s, t\rangle \in \Omega$, where G is directed graph with nodes s and t :

1. Place mark on node s.
2. Repeat until no additional nodes marked:

- Scan all edges of G.
- If edge (a, b) found from marked node a to unmarked node b, then mark b.

3. If node t is marked, accept; otherwise, reject.

Graph G

$\langle G, 1,5\rangle \in$ PATH
$\langle G, 5,3\rangle \in$ PATH
$\langle G, 2,1\rangle \notin$ PATH

Complexity of Better Algorithm for PATH

On input $\langle G, s, t\rangle \in \Omega$, where G is a directed graph with nodes s and t :

1. Place mark on node s.
2. Repeat until no additional nodes marked:

- Scan all edges of G.
- If edge (a, b) found from marked node a to unmarked node b, then mark b.

3. If node t is marked, accept; otherwise, reject.

Complexity of algorithm: (depends on how $\langle G, s, t\rangle$ is encoded)

- Suppose G encoded as 〈list of nodes, list of edges〉.
- Suppose input graph G has m nodes, so $\leq m^{2}$ edges.
- Stage 1 runs only once, running in $O(m)$ time
- Stage 2 runs at most m times
- Each time (except last), it marks new nodes.
- Each time requires scanning edges, which runs in $O\left(m^{2}\right)$ steps.
- Stage 3 runs only once, running in $O(m)$ time
- Overall complexity: $O(m)+O(m) O\left(m^{2}\right)+O(m)=O\left(m^{3}\right)$, so $P A T H \in P$.

Another Problem in P: RELPRIME

- Definition: Two integers x, y are relatively prime if 1 is largest integer that divides both; greatest common divisor $\operatorname{GCD}(x, y)=1$.

- Examples:

- 10 and 21 are relatively prime.
- 10 and 25 are not.
- Decision problem: Given integers x and y, are x, y relatively prime?
- Universe $\Omega=\{\langle x, y\rangle \mid x, y$ integers $\}$ of problem instances.
- Language of decision problem:

RELPRIME $=\{\langle x, y\rangle \mid x$ and y are relatively prime $\} \subseteq \Omega$.

- So $\langle 10,21\rangle \in R E L P R I M E$ and $\langle 10,25\rangle \notin R E L P R I M E$.

Theorem 7.15

$R E L P R I M E \in P$.

Bad Algorithm for RELPRIME

$$
\text { RELPRIME }=\{\langle x, y\rangle \mid x \text { and } y \text { are relatively prime }\} .
$$

Bad Idea: Test all possible divisors (i.e., 2 to $\min (x, y)$).
Complexity of algorithm depends on how integers are encoded:

- If x, y encoded in unary (bad), then
- length of $\langle x\rangle$ is x; length of $\langle y\rangle$ is y.
- testing $\min (x, y)$ values is polynomial in length of input $\langle x, y\rangle$.
- If x, y encoded in binary (good), then
- length of $\langle x\rangle$ is $\log x$; length of $\langle y\rangle$ is $\log y$.
- testing $\min (x, y)$ values is exponential in length of input $\langle x, y\rangle$ because n is an exponential function of $\log n$ (i.e., $n=2^{\log _{2} n}$).
- This algorithm is pseudo-polynomial.
- Polynomial running time with bad encoding.
- Exponential running time with good encoding.

A Better Algorithm for RELPRIME

Euclidean Algorithm E :

$E=$ "On input $\langle x, y\rangle$, where x, y are natural numbers encoded in binary:

1. Repeat until $y=0$

- Assign $x \leftarrow x \bmod y$.
- Exchange x and y.

2. Output x."

Algorithm R below solves RELPRIME, using E as a subroutine:
$R=$ "On input $\langle x, y\rangle$, where x, y are natural numbers encoded in binary:

1. Run E on $\langle x, y\rangle$.
2. If output of E is 1 , accept;
otherwise, reject."

Complexity of Euclidean Algorithm

Euclidean Algorithm E :

$E=$ "On input $\langle x, y\rangle$, where x, y are natural numbers encoded in binary:

1. Repeat until $y=0$

- Assign $x \leftarrow x \bmod y$.
- Exchange x and y.

2. Output x."

Complexity of E :

- After first step of Stage $1, x<y$ because of mod.
- Values then swapped, so $x>y$.
- Can show each subsequent execution of Stage 1 cuts x by at least half.
- \# times Stage 1 executed $\leq \min \left(\log _{2} x, \log _{2} y\right)$.
- Thus, total running time of E (and R) is polynomial in $|\langle x, y\rangle|$, so RELPRIME $\in \mathrm{P}$.

CFLs are in P

Theorem 7.16

Every context-free language is in P .

Remarks:

- Will show that each CFL $\in \operatorname{TIME}\left(n^{3}\right)$
- n is length of input string $w \in \Sigma^{*}$.
- In contrast, each regular language $\in \operatorname{TIME}(n)$. Why?
- Theorem 4.9 showed that every CFL is decidable, which we now review.
- Convert CFG into Chomsky normal form:
- Each rule has one of the following forms:

$$
A \rightarrow B C, \quad A \rightarrow x, \quad S \rightarrow \varepsilon
$$

$\begin{array}{lll}\text { where } & A, B, C, S \text { are variables; } & S \text { is start variable; } \\ B, C \text { are not start variable; } & x \text { is a terminal. }\end{array}$

Recall Previous Algorithm to Decide CFL

Lemma

If G is in Chomsky normal form and string $w \in L(G)$ has length $n>0$, then w has a derivation with $2 n-1$ steps.
Theorem 4.9
Every CFL is a decidable language.

Proof.

- Assume L is a CFL generated by CFG G in Chomsky normal form.
- Theorem 4.7: \exists TM S that decides $A_{\text {CFG }}=\{\langle G, w\rangle \mid G$ is a CFG that generates $w\}$.
- Following TM M_{G} decides CFL $L \subseteq \Sigma^{*}$:
$M_{G}=$ "On input $w \in \Sigma^{*}:$

1. Run TM S on input $\langle G, w\rangle$.
2. If S accepts, accept; if S rejects, reject."

Dynamic Programming

- Fix CFG G in Chomsky normal form.

- Input to DP algorithm is string $w=w_{1} w_{2} \cdots w_{n}$ with $|w|=n$
- In our case of DP, subproblems are to determine which variables in G can generate each substring of w.
- Create an $n \times n$ table.
- Entry (i, j) : row i, column j

Dynamic Programming Table

- For $i \leq j,(i, j)$ th entry contains those variables that can generate substring $w_{i} w_{i+1} \cdots w_{j}$
- For $i>j,(i, j)$ th entry is unused.
- DP starts by filling in all entries for substrings of length 1 ,
then all entries for length 2,
then all entries for length 3, etc.
- Idea: Use shorter lengths to determine how to construct longer lengths.

Filling in Dynamic Programming Table

- Suppose $s=u v, \quad B \stackrel{*}{\Rightarrow} u, \quad C \stackrel{*}{\Rightarrow} v, \quad$ and \exists rule $A \rightarrow B C$.
- Then $A \stackrel{*}{\Rightarrow} s$ because $A \Rightarrow B C \stackrel{*}{\Rightarrow} u v=s$.
- Suppose that algorithm has determined which variables generate each substring of length $\leq k$.
- To determine if variable A can generate substring of length $k+1$:
- split substring into 2 non-empty pieces in all possible (k) ways.
- For each split, algorithm examines rules $A \rightarrow B C$
\triangle Each piece is shorter than current substring, so table tells how to generate each piece.
Δ Check if B generates first piece.
Δ Check if C generates second piece.
Δ If both possible, then add A to table.

Example: CYK Algorithm

Does the following CFG in Chomsky Normal Form generate baaba ?

$$
\begin{array}{ll}
S \rightarrow X Y \mid Y Z & X \rightarrow Y X \mid a \\
Y \rightarrow Z Z \mid b & Z \rightarrow X Y \mid a
\end{array}
$$

	1	2	3	4	5
1					
2					
3					
4					
5					
string	b	a	a	b	a

- Build table t so that for $i \leq j$, entry $t(i, j)$ contains variables that can generate substring starting in position i and ending in position j
- Fill in one diagonal at a time.

Ex. (cont.): CYK for Substrings of Length 1
Chomsky CFG: $\quad S \rightarrow X Y|Y Z \quad X \rightarrow Y X| a$

$$
Y \rightarrow Z Z|b \quad Z \rightarrow X Y| a
$$

	1	2	3	4	5
1	Y				
2					
3					
4					
5					
string	b	a	a	b	a

- $t(1,1)$: substring b starts in position 1 and ends in position 1.
- CFG has rule $Y \rightarrow b$, so put Y in $t(1,1)$.

Ex. (cont.): CYK for Substrings of Length 1

Chomsky CFG:
$S \rightarrow X Y \mid Y Z$
$X \rightarrow Y X \mid a$
$Y \rightarrow Z Z \mid b$
$Z \rightarrow X Y \mid a$

	1	2	3	4	5
1	Y				
2		X, ${ }^{\text {I }}$			
3			X, Z		
4				Y	
5					X, ${ }^{\text {a }}$
string	b	a	a	b	a

- $t(2,2)$: substring a starts in position 2 and ends in position 2.
- CFG has rules $X \rightarrow a$ and $Z \rightarrow a$, so put X, Z in $t(2,2)$.
- Similarly fill in other $t(i, i)$.

Ex. (cont.): CYK for Substrings of Length 2

Chomsky CFG:

$$
\begin{aligned}
& S \rightarrow X Y \mid Y Z \\
& Y \rightarrow Z Z \mid b
\end{aligned}
$$

$$
X \rightarrow Y X \mid a
$$

$$
Z \rightarrow X Y \mid a
$$

1					
1		2	3	4	5
1	Y	S, X			
2		X, Z	Y		
3			X, Z		
4				Y	X, Z
					a

- $t(2,3)$: substring $a a$ starts in position 2 and ends in position 3.
- split $a a=a a$:

$$
X, Z \stackrel{*}{\Rightarrow} a \text { by } t(2,2) ; \quad X, Z \stackrel{*}{\Rightarrow} a \text { by } t(3,3)
$$

- If rule $\mathrm{RHS} \in t(2,2) \circ t(3,3)=\{X X, X Z, Z X, Z Z\}$, then LHS $\stackrel{*}{\Rightarrow} a a$:

$$
Y \Rightarrow Z Z \stackrel{*}{\Rightarrow} a a
$$

Ex. (cont.): CYK for Substrings of Length 2
Chomsky CFG:

$$
\begin{aligned}
& S \rightarrow X Y \mid Y Z \\
& Y \rightarrow Z Z \mid b
\end{aligned}
$$

$$
X \rightarrow Y X \mid a
$$

$$
Z \rightarrow X Y \mid a
$$

	1	2	3	4	5
1	Y	S, X			
2		X, Z			
3			X, Z		
4				Y	
5					X, Z
string	b	a	a	b	a

- $t(1,2)$: substring $b a$ starts in position 1 and ends in position 2.
- split $b a=b a$:

$$
Y \stackrel{*}{\Rightarrow} b \text { by } t(1,1) ; \quad X, Z \stackrel{*}{\Rightarrow} a \text { by } t(2,2) .
$$

- If rule $\mathrm{RHS} \in t(1,1) \circ t(2,2)=\{Y X, Y Z\}$, then $\mathrm{LHS} \stackrel{*}{\Rightarrow} b a$:

$$
X \Rightarrow Y X \stackrel{*}{\Rightarrow} b a, \quad S \Rightarrow Y Z \stackrel{*}{\Rightarrow} b a
$$

Ex. (cont.): CYK for Substrings of Length 2
Chomsky CFG

$$
S \rightarrow X Y \mid Y Z
$$

$$
X \rightarrow Y X \mid a
$$

$$
Y \rightarrow Z Z|b \quad Z \rightarrow X Y| a
$$

	1	2	3	4	5
1	Y	S, X			
2		X, Z	Y		
3			X, Z	S, Z	
4				Y	S, X
5					X, Z
string	b	a	a	b	a

- $t(3,4)$: substring $a b$ starts in position 3 and ends in position 4.
- split $a b=a b: \quad X, Z \stackrel{*}{\Rightarrow} a$ by $t(3,3) ; \quad Y \stackrel{*}{\Rightarrow} b$ by $t(4,4)$.
- If rule RHS $\in t(3,3) \circ t(4,4)=\{X Y, Z Y\}$, then LHS $\stackrel{*}{\Rightarrow} a b$:

$$
S \Rightarrow X Y \stackrel{*}{\Rightarrow} a b, \quad Z \Rightarrow X Y \stackrel{*}{\Rightarrow} a b
$$

- $t(4,5)$: similarly handle substring ba by adding LHS of rule to $t(4,5)$ if $\mathrm{RHS} \in t(4,4) \circ t(5,5)$.

Ex. (cont.): CYK for Substrings of Length 3
Chomsky CFG:

$$
\begin{array}{ll}
S \rightarrow X Y \mid Y Z & X \rightarrow Y X \mid a \\
Y \rightarrow Z Z \mid b & Z \rightarrow X Y \mid a
\end{array}
$$

	1	2	3	4	5
1	Y	S, X	-		
2		X, Z	Y		
3			X, Z	S, Z	
4				Y	S, X
5					X, Z
string	b	a	a	b	a

- $t(1,3)$: substring baa starts in position 1 and ends in position 3.
- For each rule, add LHS to $t(1,3)$ if

$$
\text { RHS } \in t(1,1) \circ t(2,3) \cup t(1,2) \circ t(3,3) .
$$

- split $b a a=b a a: \quad Y \stackrel{*}{\Rightarrow} b$ by $t(1,1) ; \quad Y \stackrel{*}{\Rightarrow} a a$ by $t(2,3)$; so if rule RHS $\in t(1,1) \circ t(2,3)=\{Y Y\}$, then LHS $\stackrel{*}{\Rightarrow} b a a$.
- split $b a a=b a a: \quad S, X \stackrel{*}{\Rightarrow} b a$ by $t(1,2) ; \quad X, Z \stackrel{*}{\Rightarrow} a$ by $t(3,3)$; if rule RHS $\in t(1,2) \circ t(3,3)=\{S X, S Z, X X, X Z\}$, then LHS $\stackrel{*}{\Rightarrow}$ baa.

Ex. (cont.): CYK for Substrings of Length 3
Chomsky CFG:

$$
\begin{array}{ll}
S \rightarrow X Y \mid Y Z & X \rightarrow Y X \mid a \\
Y \rightarrow Z Z \mid b & Z \rightarrow X Y \mid a
\end{array}
$$

	1	2	3	4	5
1	Y	S, X	-		
2		X, Z	Y	Y	
3			X, Z	S, Z	Y
4				Y	S, X
5					X, Z
ring	b	a	a	b	a

- $t(2,4)$: substring $a a b$ starts in position 2 and ends in position 4.
- Add LHS of rule to $t(2,4)$ if RHS $\in t(2,2) \circ t(3,4) \cup t(2,3) \circ t(4,4)$.
- split $a a b=a a b: \quad X, Z \stackrel{*}{\Rightarrow} a$ by $t(2,2) ; \quad S, Z \stackrel{*}{\Rightarrow} a b$ by $t(3,4)$; so if rule RHS $\in t(2,2) \circ t(3,4)=\{X S, X Z, Z S, Z Z\}$, then LHS $\stackrel{*}{\Rightarrow} a a b$:

$$
Y \Rightarrow Z Z \stackrel{*}{\Rightarrow} a a b
$$

- split $a a b=a a b: \quad Y \stackrel{*}{\Rightarrow} a a$ by $t(2,3) ; \quad Y \stackrel{*}{\Rightarrow} b$ by $t(4,4)$; so if rule RHS $\in t(2,3) \circ t(4,4)=\{Y Y\}$, then LHS $\stackrel{*}{\Rightarrow} a a b$.

Ex. (cont.): CYK for Substrings of Length 4

	CF	$\begin{aligned} & S \rightarrow X Y \mid Y Z \\ & Y \rightarrow Z Z \mid b \end{aligned}$		$\begin{aligned} & X \rightarrow Y X \mid a \\ & Z \rightarrow X Y \mid a \end{aligned}$	
	1	2	3	4	5
1	Y	S, X	-	-	
2		X, Z	Y	Y	
3			X, Z	S, Z	Y
4				Y	S, X
5					X, Z
string	b	a	a	b	a

- $t(1,4)$: substring baab starts in position 1 and ends in position 4.
- For each rule, add LHS to $t(1,4)$ if

$$
\text { RHS } \in \cup_{k=1}^{3} t(1, k) \circ t(k+1,4) .
$$

- split $b a a b: \quad Y \stackrel{*}{\Rightarrow} b$ by $t(1,1) ; \quad Y \stackrel{*}{\Rightarrow} a a b$ by $t(2,4)$; so if rule RHS $\in t(1,1) \circ t(2,4)=\{Y Y\}$, then LHS $\stackrel{*}{\Rightarrow}$ baab.
- split $b a a b: \quad S, X \xrightarrow{*} b a$ by $t(1,2) ; \quad S, Z \stackrel{*}{\Rightarrow} a b$ by $t(3,4)$;
so if rule RHS $\in t(1,2) \circ t(3,4)=\{S S, S Z, X S, X Z\}$, then LHS $\stackrel{*}{\Rightarrow} b a a b$.
- split baa b : Nothing $\stackrel{*}{\Rightarrow} b a a$ as $t(1,3)=\emptyset ; Y \stackrel{*}{\Rightarrow} b$ by $t(4,4)$.

Ex. (cont.): CYK for Substrings of Length 4

Ch	C	$\begin{aligned} & S \rightarrow X Y \mid Y Z \\ & Y \rightarrow Z Z \mid b \end{aligned}$		$\begin{aligned} & X \rightarrow Y X \mid a \\ & Z \rightarrow X Y \mid a \end{aligned}$	
	1	2	3	4	5
1	Y	S, X	-	-	
2		X, Z	Y	Y	S, X, Z
3			X, Z	S, Z	Y
4				Y	S, X
5					X, Z
string	b	a	a	b	a

- $t(2,5)$: substring $a a b a$ starts in position 2 and ends in position 5.
- split a aba: $\quad X, Z \stackrel{*}{\Rightarrow} a$ by $t(2,2) ; \quad Y \stackrel{*}{\Rightarrow} a b a$ by $t(3,5)$; so if rule RHS $\in t(2,2) \circ t(3,5)=\{X Y, Z Y\}$, then LHS $\stackrel{*}{\Rightarrow} a a b a$:

$$
S \Rightarrow X Y \stackrel{H}{\Rightarrow} a a b a, \quad Z \Rightarrow X Y \stackrel{ }{\Rightarrow} a a b a
$$

- split $a a b a: \quad Y \stackrel{*}{\Rightarrow} a a$ by $t(2,3) ; \quad S, X \xrightarrow{*}$ ba by $t(4,5)$; so if rule RHS $\in t(2,3) \circ t(4,5)=\{Y S, Y X\}$, then LHS $\stackrel{\text { * }}{\Rightarrow}$ aaba:

$$
X \Rightarrow Y X \stackrel{*}{\Rightarrow} a a b a
$$

- split $a a b a$: $\quad Y \stackrel{*}{\Rightarrow} a a b$ by $t(2,4) ; \quad X, Z \stackrel{*}{\Rightarrow} a$ by $t(5,5)$; so if rule RHS $\in t(2,4) \circ t(5,5)=\{Y X, Y Z\}$, then LHS $\stackrel{*}{\Rightarrow} a a b a$:

$$
X \Rightarrow Y X \stackrel{*}{\Rightarrow} a a b a
$$

Ex. (cont.): CYK for Substrings of Length 5

Does the following CFG in Chomsky Normal Form generate baaba?

$$
\begin{array}{ll}
S \rightarrow X Y \mid Y Z & X \rightarrow Y X \mid a \\
Y \rightarrow Z Z \mid b & Z \rightarrow X Y \mid a
\end{array}
$$

	1	2	3	4	5
1	Y	S, X	-	-	S, X, Z
2		X, Z	Y	Y	S, X, Z
3			X, Z	S, Z	Y
4				Y	S, X
5					X, Z
string	b	a	a	b	a

- $t(1,5)$: substring baaba starts in position 1 and ends in position 5 .
- For each rule, add LHS to $t(1,5)$ if

$$
\mathrm{RHS} \in \cup_{k=1}^{3} t(1, k) \circ t(k+1,5) .
$$

- Answer is YES iff start variable $S \in t(1,5)$.

Overall CYK Algorithm to show every CFL $\in \mathrm{P}$
$D=$ "On input string $w=w_{1} w_{2} \cdots w_{n} \in \Sigma^{*}$:
For $w=\varepsilon$, if $S \rightarrow \varepsilon$ is a rule, accept; else reject. $\quad[w=\varepsilon$ case] For $i=1$ to n,

For each variable A,
Test whether $A \rightarrow b$ is a rule, where $b=w_{i}$.
If so, put A in table (i, i).
For $\ell=2$ to n,
[ℓ is length of substring]

$$
\text { For } i=1 \text { to } n-\ell+1, \quad[i \text { is start position of substring }]
$$

Let $j=i+\ell-1, \quad[j$ is end position of substring]
For $k=i$ to $j-1$,
[k is split position]
For each rule $A \rightarrow B C$,
11. If table (i, k) contains B and table $(k+1, j)$ contains C, put A in table (i, j).
12. If S is in table $(1, n)$, accept; else, reject."

Complexity of CYK Algorithm

- Each stage runs in polynomial time.
- Examine stages 2-5:

2. For $i=1$ to n, [examine each substring of length 1] 3. For each variable A,
3. Test whether $A \rightarrow b$ is a rule, where $b=w_{i}$.
4. If so, put A in table (i, i).

- Analysis:

- Stage 2 runs n times
- Each time stage 2 runs, stage 3 runs v times, where
Δv is number of variables in G
Δv is independent of n.
- Thus, stages 4 and 5 run at most $n v$ times, which is $O(n)$ because v is independent of n.

Complexity (cont)

6. For $\ell=2$ to n,
[ℓ is length of substring]
7. For $i=1$ to $n-\ell+1, \quad$ [i is start position of substring]
8. Let $j=i+\ell-1, \quad$ [j is end position of substring]
9. For $k=i$ to $j-1$,
[k is split position]
10. For each rule $A \rightarrow B C$,
11. If table (i, k) contains B and table $(k+1, j)$ contains C, put A in table (i, j).
12. If S is in table $(1, n)$, accept. Otherwise, reject.

Analysis:

- Stage 6 runs at most n times
- Each time stage 6 runs, stage 7 runs at most n times
- Each time stage 7 runs, stage 9 runs at most n times
- Each time stage 9 runs, stage 10 runs r times ($r=\#$ rules $=$ constant $)$
- Thus, stage 8 runs $O\left(n^{2}\right)$ times, and stage 11 runs $O\left(n^{3}\right)$ times

Grand total: $O\left(n^{3}\right)$

Hamiltonian Path

- Definition: A Hamiltonian path in a directed graph G visits each node exactly once, e.g., $1 \rightarrow 3 \rightarrow 5 \rightarrow 4 \rightarrow 2 \rightarrow 6 \rightarrow 7 \rightarrow 8$.
- Decision problem: Given a directed graph G with nodes s and t, does G have a Hamiltonian path from s to t ?
- Universe $\Omega=\{\langle G, s, t\rangle \mid$ directed graph G with nodes $s, t\}$, and language is

$$
\begin{aligned}
\text { HAMPATH }=\{\langle G, s, t\rangle \mid & G \text { is a directed graph with a } \\
& \text { Hamiltonian path from } s \text { to } t\} \subseteq \Omega .
\end{aligned}
$$

- If G is above graph, $\langle G, 1,8\rangle \in$ HAMPATH, $\langle G, 2,8\rangle \notin$ HAMPATH.

Hamiltonian Path

- But HAMPATH has feature known as polynomial verifiability.
- A claimed Hamiltonian path can be verified in polynomial time.
- Consider $\langle G, s, t\rangle \in$ HAMPATH, where graph G has m nodes.
- Then $(\#$ edges in $G) \leq m(m-1)=O\left(m^{2}\right)$.
- Suppose G encoded as 〈list of nodes, list of edges〉.
- Suppose given list $p_{1}, p_{2}, \ldots, p_{m}$ of nodes that is claimed to be Hamiltonian path in G from s to t.
- Can verify claim by checking

1. if each node in G appears exactly once in claimed path, which takes $O\left(m^{2}\right)$ time,
2. if each pair $\left(p_{i}, p_{i+1}\right)$ is edge in G, which takes $O\left(m^{3}\right)$ time.

- So verification takes time $O\left(m^{3}\right)$, which is polynomial in m.
- Thus, verifying a given path is Hamiltonian may be easier than determining its existence.

Composite Numbers

Definition: A natural number is composite if it is the product of two integers greater than one

- a composite number is not prime.
- Decision problem: Given natural number x, is x composite?
- Universe $\Omega=\{\langle x\rangle \mid$ natural number $x\}$, and language is COMPOSITES $=\{\langle x\rangle \mid x=p q$, for integers $p, q>1\} \subseteq \Omega$.

Remarks:

- Can easily verify that a number is composite.
- If someone claims a number x is composite and provides a divisor p, just need to verify that x is divisible by p.
- In 2002, Agrawal, Kayal and Sexena proved that PRIMES \in P.
- But COMPOSITES $=\overline{\text { PRIMES }}$, so $C O M P O S I T E S ~ \in P$.

Verifiability

- Some problems may not be polynomially verifiable.
- Consider HAMPATH, which is complement of HAMPATH.
- No known way to verify $\langle G, s, t\rangle \in \overline{\text { HAMPATH }}$ in polynomial time.
- Definition: Verifier for language A is (deterministic) algorithm V, where

$$
A=\{w \mid V \text { accepts }\langle w, c\rangle \text { for some string } c\}
$$

- String c used to verify string $w \in A$
- c is called a certificate, or proof, of membership in A.
- Certificate is only for YES instance, not for NO instance.
- We measure verifier runtime only in terms of length of w.
- A polynomial-time verifier runs in (deterministic) time that is polynomial in $|w|$.
- Language is polynomially verifiable if it has polynomial-time verifier.

Examples of Verifiers and Certificates

- For HAMPATH, a certificate for

$$
\langle G, s, t\rangle \in H A M P A T H
$$

is simply the Hamiltonian path from s to t.

- Can verify in time polynomial in $|\langle G, s, t\rangle|$ if path is Hamiltonian.
- For COMPOSITES, a certificate for

$$
\langle x\rangle \in \text { COMPOSITES }
$$

is simply one of its divisors.

- Can verify in time polynomial in $|\langle x\rangle|$ that the given divisor actually divides x
- Remark: Certificate c is only for YES instance, not for NO instance.

CS 341: Chapter 7

NTM N_{1} for HAMPATH

$N_{1}=$ "On input $\langle G, s, t\rangle \in \Omega$, for directed graph G with nodes s, t :

1. Write list of m numbers $p_{1}, p_{2}, \ldots, p_{m}$, where m is $\#$ of nodes in G. Each number in list selected nondeterministically between 1 and m.
2. Check for repetitions in list. If any found, reject.
3. Check whether $p_{1}=s$ and $p_{m}=t$. If either fails, reject.
4. For $i=1$ to $m-1$, check whether $\left(p_{i}, p_{i+1}\right)$ is an edge of G. If any is not, reject. Otherwise, accept."

Complexity of N_{1} (when G encoded as 〈list of nodes, list of edges \rangle):

- Stage 1 takes nondeterministic polynomial time: $O(m)$.
- Stages 2 and 3 are simple deterministic poly-time checks: $O\left(m^{2}\right)$.
- Stage 4 runs in deterministic polynomial time: $O\left(m^{3}\right)$.
- Overall: $O\left(m^{3}\right)$ nondeterministic running time.

Equivalent Definition of NP

Theorem 7.20

A language is in NP if and only if it is decided by some polynomial-time nondeterministic TM.

Proof Idea:

- Recall language in NP has (deterministic) poly-time verifier.
- Given a poly-time verifier, build NTM that on input w, guesses the certificate c and then runs verifier on input $\langle w, c\rangle$.
- NTM runs in nondeterministic polynomial time.
- Given a poly-time NTM, build verifier with input $\langle w, c\rangle$, where certificate c tells NTM on input w which is accepting branch.
- Verifier runs in deterministic polynomial time.

Proof: " $A \in \mathbf{N P}$ " \Rightarrow " A Decided by Poly-time NTM"

- Let V be polynomial-time verifier for A.
- Assume V is DTM with n^{k} runtime, where n is length of input w.
- Using V as subroutine, construct NTM N as follows:
$N=$ "On input w of length n :

1. Nondeterministically select string c of length at most n^{k}.
2. Run V on input $\langle w, c\rangle$.
3. If V accepts, accept;
otherwise, reject."

- NTM N runs in nondeterministic polynomial time.
- Verifier V runs in time n^{k}, so certificate c must have length $\leq n^{k}$; otherwise, V can't even read entire certificate.
- Stage 1 of NTM N takes $O\left(n^{k}\right)$ nondeterministic time.

$\operatorname{NTIME}(t(n))$ and NP

Definition:

$$
\begin{aligned}
& \operatorname{NTIME}(t(n))=\{L \mid L \text { is a language decided } \\
& \\
& \text { by an } O(t(n)) \text {-time NTM }\}
\end{aligned}
$$

Corollary 7.22

$$
\mathrm{NP}=\bigcup_{k \geq 0} \operatorname{NTIME}\left(n^{k}\right)
$$

Remark:

- NP is insensitive to choice of "reasonable" nondeterministic computational model.
- This is because all such models are polynomially equivalent.

Example: CLIQUE

- Definition: A clique in a graph is a subgraph in which every two nodes are connected by an edge, i.e., clique is complete subgraph.
- Definition: A k-clique is a clique of size k.
- Decision problem: Given graph G and integer k, does G have k-clique?
- Universe $\Omega=\{\langle G, k\rangle \mid G$ is undirected graph, k integer $\}$
- Language of decision problem

CLIQUE $=\{\langle G, k\rangle \mid G$ is undirected graph with k-clique $\} \subseteq \Omega$.

- For graph G above, $\langle G, 5\rangle \in C L I Q U E$, but $\langle G, 6\rangle \notin C L I Q U E$.

Theorem 7.24

$C L I Q U E \in N P$.

Proof.

- The clique is the certificate c.
- Here is a verifier for CLIQUE:

$$
V=\text { "On input }\langle\langle G, k\rangle, c\rangle:
$$

1. Test whether c is a set of k different nodes in G.
2. Test whether G contains all edges connecting nodes in c.
3. If both tests pass, accept; otherwise, reject."

- If graph G (encoded as 〈list of nodes, list of edges〉) has m nodes, then
- Stage 1 takes $O(k) O(m)=O(k m)$ time.
- Stage 2 takes $O\left(k^{2}\right) O\left(m^{2}\right)=O\left(k^{2} m^{2}\right)$ time.

Example: SUBSET-SUM

- Decision problem: Given
- collection S of numbers x_{1}, \ldots, x_{k}
- target number t
does some subcollection of S add up to t ?
- Universe $\Omega=\left\{\langle S, t\rangle \mid\right.$ collection $S=\left\{x_{1}, \ldots, x_{k}\right\}$, target $\left.t\right\}$.
- Language

$$
\begin{aligned}
\text { SUBSET-SUM }=\{\langle S, t\rangle \mid & S=\left\{x_{1}, \ldots, x_{k}\right\} \text { and } \exists \\
& \left\{y_{1}, \ldots, y_{\ell}\right\} \subseteq\left\{x_{1}, \ldots, x_{k}\right\} \\
& \text { with } \left.\Sigma_{i=1}^{\ell} y_{i}=t\right\} \subseteq \Omega
\end{aligned}
$$

Example:

$\cdot\langle\{4,11,16,21,27\}, 32\rangle \in$ SUBSET-SUM as $11+21=32$.

- $\langle\{4,11,16,21,27\}, 17\rangle \notin$ SUBSET-SUM.

Remark: Collections are multisets: repetitions allowed.
If number x appears r times in S, then sum can include $\leq r$ copies of x.

Class coNP

- The complements $\overline{C L I Q U E}$ and $\overline{S U B S E T-S U M}$ are not obviously members of NP.
- $\overline{\text { CLIQUE }}=\{\langle G, k\rangle \mid$ undirected graph G does not have k-clique $\}$
- Not clear how to define certificates so that we can verify in polynomial time.
- It seems harder to verify that something does not exist.

Definition: The class coNP consists of languages whose complements belong to NP.

- Language $A \in$ coNP iff $\bar{A} \in$ NP.

Remark: Currently not known if coNP is different from NP.

Remarks on P vs. NP Question

- If $\mathrm{P} \neq \mathrm{NP}$, then
- languages in P are tractable (i.e., solvable in polynomial time)
- languages in NP - P are intractable (i.e., polynomial-time solution doesn't exist).

- If any NP language $A \notin \mathrm{P}$, then $\mathrm{P} \neq \mathrm{NP}$.
- Nobody has been able to (dis)prove \exists language $\in N P-P$.

P vs. NP Question

- Language in P has polynomial-time decider.
- Language in NP has polynomial-time verifier (or poly-time NTM).
- $\mathrm{P} \subseteq$ NP because each poly-time DTM is also poly-time NTM.

- Answering question whether $\mathrm{P}=\mathrm{NP}$ or not is one of the great unsolved mysteries in computer science and mathematics.
- Most computer scientists believe $\mathrm{P} \neq \mathrm{NP}$; e.g., jigsaw puzzle.
- Clay Math Institute (www.claymath.org) has $\$ 1,000,000$ prize to anyone who can prove either $\mathrm{P}=\mathrm{NP}$ or $\mathrm{P} \neq \mathrm{NP}$.

NP-Complete

Informally, the class NP-Complete comprise languages that are

- "hardest" languages in NP
- "least likely" to be in P
- If any NP-Complete language $A \in \mathrm{P}$, then $\mathrm{P}=\mathrm{NP}$.
- If $\mathrm{P} \neq \mathrm{NP}$, then every NP-Complete language $A \notin \mathrm{P}$.
- Because NP-Complete \subseteq NP,
- if any NP-Complete language $A \notin \mathrm{P}$, then $\mathrm{P} \neq \mathrm{NP}$.

We will give a formal definition of NP-Complete later.

Satisfiability Problem

- A Boolean variable is a variable that can take on only the values TRUE (1) and FALSE (0).
- Boolean operations
- AND: \wedge
- OR: V
- NOT: \neg or overbar $(\bar{x}=\neg x)$
- Examples

$$
\begin{array}{r}
0 \wedge 1=0 \\
0 \vee 1=1 \\
\overline{0}=1
\end{array}
$$

Satisfiability Problem

- A Boolean formula (or function) is an expression involving Boolean variables and operations, e.g.,

$$
\phi_{1}=(\bar{x} \wedge y) \vee(x \wedge \bar{z})
$$

- Definition: A formula is satisfiable if some assignment of 0 s and 1 s to the variables makes the formula evaluate to 1 .
- Example: ϕ_{1} above is satisfiable by $(x, y, z)=(0,1,0)$. This assignment satisfies ϕ_{1}.
- Example: The following formula is not satisfiable:

$$
\phi_{2}=(\bar{x} \vee y) \wedge(z \wedge \bar{z}) \wedge(y \vee x)
$$

- Decision problem SAT: Given Boolean fon ϕ, is ϕ satisfiable?
- Universe $\Omega=\{\langle\phi\rangle \mid \phi$ is a Boolean fon $\}$
- Language of satisfiability problem:
$S A T=\{\langle\phi\rangle \mid \phi$ is a satisfiable Boolean function $\} \subseteq \Omega$
so $\left\langle\phi_{1}\right\rangle \in S A T$ and $\left\langle\phi_{2}\right\rangle \notin S A T$.

More Definitions Related to Satisfiability

- A literal is a variable or negated variable: x or \bar{x}
- A clause is several literals joined by ORs $(\vee):\left(x_{1} \vee \overline{x_{3}} \vee \overline{x_{7}}\right)$
- Clause is TRUE iff at least one of its literals is TRUE.
- A Boolean function is in conjunctive normal form, called a cnf-formula, if it comprises several clauses connected with ANDs (\wedge) :

$$
\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}} \vee x_{4}\right) \wedge\left(x_{3} \vee \overline{x_{5}} \vee x_{6}\right) \wedge\left(x_{3} \vee \overline{x_{6}}\right)
$$

- 3cnf-formula has all clauses with 3 literals: $\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(x_{3} \vee \overline{x_{5}} \vee x_{6}\right) \wedge\left(x_{3} \vee \overline{x_{6}} \vee x_{4}\right) \wedge\left(x_{2} \vee x_{1} \vee x_{5}\right)$
- Decision problem 3SAT: Given a 3cnf-formula ϕ, is ϕ satisfiable?
- Universe $\Omega=\{\langle\phi\rangle \mid \phi$ is 3cnf-formula $\}$
- Language of decision problem:

$$
3 S A T=\{\langle\phi\rangle \mid \phi \text { is a satisfiable 3cnf-function }\} \subseteq \Omega
$$

- $\langle\phi\rangle \in 3 S A T$ iff each clause in ϕ has at least one literal assigned 1.

Polynomial-Time Mapping Reducible: $A \leq_{\mathbf{p}} B$
Consider
\bullet language A defined over alphabet Σ_{1}; i.e., universe $\Omega_{1}=\Sigma_{1}^{*}$.

- language B defined over alphabet Σ_{2}; i.e., universe $\Omega_{2}=\Sigma_{2}^{*}$.

Definition: A is polynomial-time mapping reducible to B, written

$$
A \leq_{\mathrm{p}} B
$$

if there is a polynomial-time computable function

$$
f: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}
$$

such that, for every string $w \in \Sigma_{1}^{*}$,

$$
w \in A \Longleftrightarrow f(w) \in B
$$

Polynomial-Time Mapping Reducible: $A \leq_{\mathbf{p}} B$

$$
w \in A \quad \Longleftrightarrow \quad f(w) \in B
$$

YES instance for problem $A \quad \Longleftrightarrow \quad$ YES instance for problem B

- converts questions about membership in A to membership in B
- conversion is done efficiently (i.e., in polynomial time).

Polynomial-Time Mapping Reducible

Theorem 7.31

If $A \leq_{\mathrm{p}} B$ and $B \in \mathrm{P}$, then $A \in \mathrm{P}$.
Proof.

$\bullet B \in \mathrm{P} \Rightarrow \exists \mathrm{TM} M$ that is polynomial-time decider for B.

- $A \leq_{\mathrm{p}} B \Rightarrow \exists$ function f that reduces A to B in polynomial time.
- Define TM N that decides $A \subseteq \Omega_{1}$ as follows:
$N=$ "On input $w \in \Omega_{1}$,

1. Compute $f(w) \in \Omega_{2}$.
2. Run M on input $f(w)$ and output whatever M outputs."

- Analysis of Time Complexity of TM N :
- Each stage runs once.
- Stage 1 is polynomial because f is polynomial-time function.
- Stage 2 is polynomial because M is polynomial-time decider for B.

3SAT \leq_{p} CLIQUE

Theorem 7.32

3SAT is polynomial-time mapping reducible to CLIQUE.
Proof Idea: Convert instance ϕ of $3 S A T$ problem with k clauses into instance $\langle G, k\rangle$ of clique problem: $\langle\phi\rangle \in 3 S A T$ iff $\langle G, k\rangle \in C L I Q U E$.

- Recall

$$
\begin{aligned}
3 S A T & =\{\langle\phi\rangle \mid 3 \mathrm{cnf}-\mathrm{fcn} \phi \text { is satisfiable }\} \\
& \subseteq\{\langle\phi\rangle \mid 3 \mathrm{cnf}-\mathrm{fcn} \phi\} \equiv \Omega_{3}, \\
\text { CLIQUE } & =\{\langle G, k\rangle \mid \text { undirected graph } G \text { has } k \text {-clique }\} \\
& \subseteq\{\langle G, k\rangle \mid \text { undirected graph } G, \text { integer } k\} \equiv \Omega_{C} .
\end{aligned}
$$

- Need poly-time reducing function $f: \Omega_{3} \rightarrow \Omega_{C}$

3SAT is Mapping Reducible to CLIQUE

Proof Idea: Map instance $\langle\phi\rangle \in \Omega_{3}$ of $3 S A T$ problem with k clauses into instance $\langle G, k\rangle \in \Omega_{C}$ of clique problem:

$$
\langle\phi\rangle \in 3 S A T \quad \text { iff } \quad\langle G, k\rangle \in C L I Q U E
$$

- Suppose ϕ is a 3 cnf -function with k clauses, e.g.,

$$
\phi=\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(x_{3} \vee \overline{x_{5}} \vee x_{6}\right) \wedge\left(x_{3} \vee \overline{x_{6}} \vee x_{4}\right) \wedge\left(x_{2} \vee x_{1} \vee x_{5}\right)
$$

- Convert ϕ into a graph G as follows:
- Each literal in ϕ corresponds to a node in G.
- Nodes in G are organized into k triples $t_{1}, t_{2}, \ldots, t_{k}$.
- Triple t_{i} corresponds to the i th clause in ϕ.
- Add edges between each pair of nodes, except
- within same triple
Δ between contradictory literals, e.g., x_{1} and $\overline{x_{1}}$

3SAT is Mapping Reducible to CLIQUE

Example: 3cnf-function with $k=3$ clauses and $m=2$ variables:

$$
\phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right)
$$

Corresponding Graph:

Clause 1

3SAT is Mapping Reducible to CLIQUE

- 3cnf-formula with $k=3$ clauses and $m=2$ variables

$$
\phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right)
$$

is satisfiable by assignment $x_{1}=0, x_{2}=1$.

- Resulting graph has k-clique based on true literal from each clause:

Clause 1

3SAT is Mapping Reducible to CLIQUE

Need to show 3cnf-fcn ϕ with k clauses is satisfiable iff G has a k-clique.

- Key Idea: $\langle\phi\rangle \in 3 S A T$ iff each clause in ϕ has ≥ 1 true literal.
- Recall: G has node triples corresponding to clauses in ϕ.
- Add edges between each pair of nodes, except
- within same triple
- between contradictory literals, e.g., x_{1} and $\overline{x_{1}}$
- k-clique in G
- must have 1 node from each triple
- cannot include contradictory literals
- If $\langle\phi\rangle \in 3 S A T$, then choose node corresponding to satisfied literal in each clause to get k-clique in G.
- If $\langle G, k\rangle \in C L I Q U E$, then literals corresponding to k-clique satisfy ϕ.

Conclusion: $\langle\phi\rangle \in 3 S A T$ iff $\langle G, k\rangle \in C L I Q U E$, so

$$
3 S A T \leq_{m} C L I Q U E
$$

Reducing 3SAT to CLIQUE Takes Polynomial Time

Claim: The mapping $\phi \rightarrow\langle G, k\rangle$ is polynomial-time computable.

Proof.

- Size of given 3cnf-function ϕ
- k clauses
- m variables.
- Constructing graph G
- G has $3 k$ nodes
- Adding edges entails considering each pair of nodes in G :

$$
\binom{3 k}{2}=\frac{3 k(3 k-1)}{2}=O\left(k^{2}\right)
$$

- Time to construct G is polynomial in size of 3 cnf-function ϕ.

NP-Complete and P vs. NP Question

Theorem 7.35

If there is an NP-Complete language B and $B \in \mathrm{P}$, then $\mathrm{P}=\mathrm{NP}$.

Proof.

- Consider any language $A \in$ NP.
- As $A \in$ NP, defn of NP-completeness implies $A \leq{ }_{\mathrm{p}} B$.

- Recall Theorem 7.31: If $A \leq \mathrm{p} B$ and $B \in \mathrm{P}$, then $A \in \mathrm{P}$.
- Because $B \in \mathrm{P}$, it follows that also $A \in \mathrm{P}$ by Theorem 7.31.

NP-Complete

Definition: Language B is NP-Complete if

1. $B \in \mathrm{NP}$, and
2. B is NP-Hard: For every language $A \in \mathrm{NP}$, we have $A \leq \mathrm{p} B$.

Remarks:

- NP-Complete problems are the most difficult problems in NP.
- Definition: Language B is NP-Hard if B satisfies part 2 of NP-Complete.

Identifying New NP-Complete Problems from Known Ones

Theorem 7.36

If B is NP-Complete and $B \leq_{\mathrm{p}} C$ for $C \in \mathrm{NP}$, then C is NP-Complete.

Identifying New NP-Complete Problems from Known Ones

Recall Theorem 7.36:

If B is NP-Complete and $B \leq_{\mathrm{p}} C$ for $C \in \mathrm{NP}$, then C is NP-Complete.

Proof.

- Assume that $C \in \mathrm{NP}$.
- Must show that every $A \in$ NP satisfies $A \leq_{\mathrm{p}} C$.
- Because B is NP-Complete,
- every language in NP is polynomial-time reducible to B.
- Thus, $A \leq \mathrm{p} B$ when $A \in \mathrm{NP}$.
- By assumption, B is polynomial-time reducible to C.
- Hence, $B \leq \mathrm{p} C$.
- But polynomial-time reductions compose.
- So $A \leq_{\mathrm{p}} B$ and $B \leq_{\mathrm{p}} C$ imply $A \leq_{\mathrm{p}} C$.

Cook-Levin Theorem

- Once we have one NP-Complete problem,
can identify others by using polynomial-time reduction (Theorem 7.36)
- But identifying the first NP-Complete problem requires some effort.
- Recall satisfiability problem:

$$
S A T=\{\langle\phi\rangle \mid \phi \text { is a satisfiable Boolean function }\}
$$

Theorem 7.37

SAT is NP-Complete.

Proof Idea:

- SAT \in NP because a polynomial-time NTM can guess assignment to formula ϕ and accept if assignment satisfies ϕ.
- Show that $S A T$ is NP-Hard: $A \leq_{p} S A T$ for every language $A \in$ NP.

Proof Outline of Cook-Levin Theorem

- Let $A \subseteq \Sigma_{1}^{*}$ be a language in NP.
- Need to show that $A \leq_{\mathrm{p}} S A T$.
- For every $w \in \Sigma_{1}^{*}$, we want a (CNF) formula ϕ such that
- $w \in A$ iff $\langle\phi\rangle \in S A T$
- polynomial-time reduction that constructs ϕ from w.
- Let N be poly-time NTM that decides A in time at most n^{k} for input w with $|w|=n$.

- Basic approach:

$$
\begin{aligned}
w \in A & \Longleftrightarrow \text { NTM } N \text { accepts input } w \\
& \Longleftrightarrow \exists \text { accepting computation history of } N \text { on } w \\
& \Longleftrightarrow \exists \text { Boolean function } \phi \text { and variables } x_{1}, \ldots, x_{m} \\
& \text { with } \phi\left(x_{1}, \ldots, x_{m}\right)=\text { TRUE }
\end{aligned}
$$

Proof Outline of Cook-Levin Theorem

Idea: "Satisfying assignments of ϕ "
\leftrightarrow "accepting computation history of NTM N on w "
Step 1: Describe computations of NTM N on w by Boolean variables.

- Any computation history of $N=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{A}, q_{R}\right)$ on w with $|w|=n$ has $\leq n^{k}$ configurations since assumed N runs in time n^{k}.
- Each configuration is an element of $C^{\left(n^{k}\right)}$, where $C=Q \cup \Gamma \cup\{\#\}$ (mark left and right ends with $\#$, where $\# \notin \Gamma$).
- Computation described by $n^{k} \times n^{k}$ "tableau"
- Each row of tableau represents one configuration.
- Each cell in tableau contains one element of C.
- Represent contents of cell (i, j) by $|C|$ Boolean variables $\left\{x_{i, j, s} \mid s \in C\right\}$
- $x_{i, j, s}=1$ means "cell (i, j) contains s " (variable is "on")

Tableau is an $n^{k} \times n^{k}$ table of configurations

Proof Outline of Cook-Levin Theorem

Step 2: Express conditions for an accepting sequence of configurations of NTM N on w by Boolean formulas:
$\phi_{\text {cell }}=$ "for each cell (i, j), exactly one $s \in C$ with $x_{i, j, s}=1$ ",
$\phi_{\text {start }}=$ "first row of tableau is the starting configuration of N on w ",
$\phi_{\text {accept }}=$ "last row of tableau is an accepting configuration of N on w ", $\phi_{\text {move }}=$ "every 2×3 window is consistent with N 's transition fcn".

For example,

Step 3: Show that each of the above formulas can be

- expressed by a formula of size $O\left(\left(n^{k}\right)^{2}\right)=O\left(n^{2 k}\right)$
- constructed from w in time polynomial in $n=|w|$.

3SAT is NP-Complete

Recall

$$
3 S A T=\{\langle\phi\rangle \mid \phi \text { is a satisfiable 3cnf-function }\}
$$

Corollary 7.42

3SAT is NP-Complete.

Proof Idea:

Can modify proof that SAT is NP-Complete (Theorem 7.37) so that resulting Boolean function is a 3 cnf -function.

Because construction holds for every $A \in$ NP, SAT is then NP-Complete.

Proving NP-Completeness

- Tedious to prove a language C is NP-Complete using definition:

1. $C \in \mathrm{NP}$, and
2. C is NP-Hard: For every language $A \in \mathrm{NP}$, we have $A \leq \mathrm{p} C$.

- Recall Theorem 7.36:

If B is NP-Complete and $B \leq_{\mathrm{p}} C$ for $C \in \mathrm{NP}$, then C is NP-Complete.

- Typically prove a language C is NP-Complete by applying Thm 7.36

1. Prove that language $C \in \mathrm{NP}$
2. Reduce a known NP-Complete problem B to C.

- At this point, have shown that SAT and $3 S A T$ are NP-Complete.

3. Show that reduction takes polynomial time.

CLIQUE is NP-Complete

Integer Linear Programming

Definition: An integer linear program (ILP) is

- set of variables $y_{1}, y_{2}, \ldots, y_{n}$, which must take integer values.
- set of m linear inequalities:

$$
\begin{gathered}
a_{11} y_{1}+a_{12} y_{2}+\cdots+a_{1 n} y_{n} \leq b_{1} \\
a_{21} y_{1}+a_{22} y_{2}+\cdots+a_{2 n} y_{n} \leq b_{2} \\
\vdots \\
\vdots \\
a_{m 1} y_{1}+a_{m 2} y_{2}+\cdots+a_{m n} y_{n} \leq b_{m}
\end{gathered}
$$

where the $a_{i j}$ and b_{i} are given constants.

- In matrix notation, $A y \leq b$, with matrix A and vectors y, b :

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right), \quad y=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right), \quad b=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right)
$$

CLIQUE $=\{\langle G, k\rangle \mid G$ is an undirected graph with a k-clique $\}$

Corollary 7.43

CLIQUE is NP-Complete.

Proof.

- Theorem 7.24: CLIQUE \in NP.
- Corollary 7.42: 3SAT is NP-Complete.
- Theorem 7.32: 3 SAT \leq_{p} CLIQUE.
- Thus, Theorem 7.36 implies CLIQUE is NP-Complete.

Integer Linear Programming

Example: Can transform \geq and $=$ relations into \leq relations:

$$
\begin{aligned}
& 5 y_{1}-2 y_{2}+y_{3} \leq 7 \\
& y_{1} \geq 2 \quad \longleftrightarrow \quad-y_{1} \leq-2 \\
& y_{2}+2 y_{3}=8 \quad \longleftrightarrow \quad y_{2}+2 y_{3} \leq 8 \quad \& \quad y_{2}+2 y_{3} \geq 8
\end{aligned}
$$

becomes ILP

$$
\begin{array}{lr}
5 y_{1}-2 y_{2}+1 y_{3} \leq & 7 \\
-1 y_{1}+0 y_{2}+0 y_{3} \leq & -2 \\
0 y_{1}+1 y_{2}+2 y_{3} \leq \\
0 y_{1}-1 y_{2}-2 y_{3} \leq & -8
\end{array}
$$

so

$$
A=\left(\begin{array}{rrr}
5 & -2 & 1 \\
-1 & 0 & 0 \\
0 & 1 & 2 \\
0 & -1 & -2
\end{array}\right), \quad y=\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right), \quad b=\left(\begin{array}{r}
7 \\
-2 \\
8 \\
-8
\end{array}\right)
$$

ILP is NP-Complete

- Decision problem: Given matrix A and vector b,
is there an integer vector y such that $A y \leq b$?

$$
\begin{aligned}
& I L P=\{\langle A, b\rangle \mid \text { matrix } A \text { and vector } b \text { satisfy } A y \leq b \\
&\text { with } y \text { an integer vector }\} \\
& \subseteq\{\langle A, b\rangle \mid \text { matrix } A, \text { vector } b\} \equiv \Omega_{I}
\end{aligned}
$$

- Example: The instance $\langle A, b\rangle \in \Omega_{I}$, where

$$
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right), \quad b=\binom{3}{7}
$$

satisfies $A y \leq b$ for $y=(1,1)^{\top}$, so $\langle A, b\rangle \in I L P$.

- Example: The instance $\langle C, d\rangle \in \Omega_{I}$, where

$$
C=\left(\begin{array}{rr}
2 & 0 \\
-2 & 0
\end{array}\right), \quad d=\binom{3}{-3}
$$

requires $2 y_{1} \leq 3 \&-2 y_{1} \leq-3$, which means $2 y_{1}=3$, so only non-integer solutions $y=\left(3 / 2, y_{2}\right)^{\top}$ for any y_{2}; thus, $\langle C, d\rangle \notin I L P$.

- Theorem: ILP is NP-Complete.

$$
3 S A T \leq_{m} \text { ILP }
$$

- Reducing fcn $f: \Omega_{3} \rightarrow \Omega_{I}$
- $\langle\phi\rangle \in 3 S A T$ iff $f(\langle\phi\rangle)=\langle A, b\rangle \in I L P$

- Consider 3cnf-formula with $m=4$ variables and $k=3$ clauses:

$$
\phi=\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{4}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{4}} \vee \overline{x_{3}}\right)
$$

- Define integer linear program with
- $2 m=8$ variables $y_{1}, y_{1}^{\prime}, y_{2}, y_{2}^{\prime}, y_{3}, y_{3}^{\prime}, y_{4}, y_{4}^{\prime}$
^ y_{i} corresponds to x_{i}
- y_{i}^{\prime} corresponds to $\overline{x_{i}}$
- 3 sets of inequalities for each pair $\left(y_{i}, y_{i}^{\prime}\right)$, which must be integers:

$$
\begin{array}{lll}
0 \leq y_{1} \leq 1, & 0 \leq y_{1}^{\prime} \leq 1, & y_{1}+y_{1}^{\prime}=1 \\
0 \leq y_{2} \leq 1, & 0 \leq y_{2}^{\prime} \leq 1, & y_{2}+y_{2}^{\prime}=1 \\
0 \leq y_{3} \leq 1, & 0 \leq y_{3}^{\prime} \leq 1, & y_{3}+y_{3}^{\prime}=1 \\
0 \leq y_{4} \leq 1, & 0 \leq y_{4}^{\prime} \leq 1, & y_{4}+y_{4}^{\prime}=1
\end{array}
$$

Δ Exactly one of y_{i} and y_{i}^{\prime} is 1 , and other is 0 .

7-120

$3 S A T \leq_{m}$ ILP

- Recall 3cnf-formula with $m=4$ variables and $k=3$ clauses:

$$
\phi=\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{4}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{4}} \vee \overline{x_{3}}\right)
$$

- ϕ satisfiable iff each clause evaluates to 1.
- A clause evaluates to 1 iff at least one literal in the clause equals 1 .
- For each clause $\left(x_{i} \vee \overline{x_{j}} \vee x_{\ell}\right)$, create inequality $y_{i}+y_{j}^{\prime}+y_{\ell} \geq 1$.
- For our example, ILP has $k=3$ inequalities of this type:

$$
\begin{aligned}
& y_{1}+y_{2}+y_{3}^{\prime} \geq 1 \\
& y_{1}^{\prime}+y_{2}^{\prime}+y_{4} \geq 1 \\
& y_{2}^{\prime}+y_{4}^{\prime}+y_{3}^{\prime} \geq 1
\end{aligned}
$$

© All true for binary variables iff 3cnf-function is satisfiable.

$$
3 S A T \leq_{m} \text { ILP }
$$

- Given 3cnf-formula:

$$
\phi=\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{4}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{4}} \vee \overline{x_{3}}\right)
$$

- Constructed ILP:

$$
\begin{array}{ll}
0 \leq y_{1} \leq 1, & 0 \leq y_{1}^{\prime} \leq 1, \quad \\
0 \leq y_{2} \leq 1, & 0 \leq y_{2}^{\prime} \leq 1, \quad y_{1}^{\prime}=1 \\
0 \leq y_{3} \leq 1, & 0 \leq y_{3}^{\prime} \leq 1, \quad y_{3}+y_{3}^{\prime}=1 \\
0 \leq y_{4} \leq 1, & 0 \leq y_{4}^{\prime} \leq 1, \quad y_{4}+y_{4}^{\prime}=1 \\
& y_{1}+y_{2}+y_{3}^{\prime} \geq 1 \\
& y_{1}^{\prime}+y_{2}^{\prime}+y_{4} \geq 1 \\
& y_{2}^{\prime}+y_{4}^{\prime}+y_{3}^{\prime} \geq 1
\end{array}
$$

- Note that:

$$
\begin{aligned}
\phi \text { satisfiable } \Longleftrightarrow \quad & \text { constructed ILP has solution } \\
& \text { (with values of variables } \in\{0,1\})
\end{aligned}
$$

Reducing 3SAT to ILP Takes Polynomial Time

- Given 3cnf-formula ϕ with
- m variables: $x_{1}, x_{2}, \ldots, x_{m}$
- k clauses
- Constructed ILP has
- $2 m$ (integer) variables: $y_{1}, y_{1}^{\prime}, y_{2}, y_{2}^{\prime}, \ldots, y_{m}, y_{m}^{\prime}$
- $6 m+k$ inequalities:
$\Delta 3$ sets of inequalities for each pair y_{i}, y_{i}^{\prime} :

$$
0 \leq y_{i} \leq 1, \quad 0 \leq y_{i}^{\prime} \leq 1, \quad y_{i}+y_{i}^{\prime}=1
$$

so total of 6 m inequalities of this type (convert $=$ into $\leq \& \geq$)
Δ For each clause in ϕ, ILP has corresponding inequality, e.g.,

$$
\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \quad \longleftrightarrow \quad y_{1}+y_{2}+y_{3}^{\prime} \geq 1
$$

so total of k inequalities of this type.

- Thus, size of ILP is polynomial in m and k.

Many Other NP-Complete Problems

- HAMPATH, SUBSET-SUM, ...
- Travelling Salesman Problem (TSP): Given a graph G with weighted edges and a threshold value d, is there a tour that visits each node once and has total length at most d ?
- Long-Path Problem: Given a graph G with weighted edges, two nodes s and t in G, and a threshold value d, is there path (with no cycles) from s to t with length at least d ?
- Scheduling Final Exams: Is there a way to schedule final exams in a d-day period so no student is scheduled to take 2 exams at same time?
- Minesweeper, Sudoku, Tetris
- See Garey and Johnson (1979), Computers and Intractability: A Guide to the Theory of NP-Completeness, for many reductions.

Why are NP-Complete and NP-Hard Important?

- Suppose you are faced with a problem and you can't come up with an efficient algorithm for it.
- If you can prove the problem is NP-Complete or NP-Hard, then there is no known efficient algorithm to solve it.
- No known polynomial-time algorithms for NP-Complete and NP-Hard problems.
- How to deal with an NP-Complete or NP-Hard problem?
- Approximation algorithm
- Probabilistic algorithm
- Special cases
- Heuristic

Summary of Chapter 7

- Time complexity: In terms of size n of input w, how many time steps are required by TM to solve problem?
- Big-O notation: $f(n)=O(g(n))$
- $f(n) \leq c \cdot g(n)$ for all $n \geq n_{0}$.
- $g(n)$ is an asymptotic upper bound on $f(n)$.
- Polynomials $a_{k} n^{k}+a_{k-1} n^{k-1}+\cdots=O\left(n^{k}\right)$.
- Polynomial $=O\left(n^{c}\right)$ for constant $c \geq 0$
- Exponential $=O\left(2^{n^{\delta}}\right)$ for constant $\delta>0$
- Exponentials are asymptotically much bigger than any polynomial
- $t(n)$-time k-tape TM has equivalent $O\left(t^{2}(n)\right.$)-time 1 -tape TM.
- $t(n)$-time NTM has equivalent $2^{O(t(n))}$-time 1 -tape DTM.
- Strong Church-Turing Thesis: all reasonable variants of DTM are polynomial-time equivalent.
- Polynomial-time mapping reducible: $A \leq \mathrm{p} B$ if \exists polynomial-time computable function f such that

$$
w \in A \quad \Longleftrightarrow \quad f(w) \in B
$$

- Defn: language B is NP-Complete if $B \in \mathrm{NP}$ and $A \leq \mathrm{p} B$ for all $A \in \mathrm{NP}$.
- If any NP-Complete language B is in P , then $\mathrm{P}=\mathrm{NP}$.
- If any NP language B is not in P , then $\mathrm{P} \neq \mathrm{NP}$.
- If B is NP-Complete and $B \leq_{\mathrm{P}} C$ for $C \in \mathrm{NP}$, then C is NP-Complete.
- Cook-Levin Theorem: SAT is NP-Complete.
- 3SAT, CLIQUE, ILP, SUBSET-SUM, HAMPATH, etc. are all NP-Complete

