CS 341, Fall 2011

Solutions for Quiz 2, Day Section

1. (a) There are two different approaches one can use to show that CLIQUE \in NP:

- Show that CLIQUE has a nondeterministic Turing machine that runs in polynomial time, or
- Show that CLIQUE has a polynomial-time verifier.

We will use the second approach.
To do this, let the certificate c for the verifier be a list of the nodes in the graph G forming a k-clique. Below is a verifier for CLIQUE:
$V=$ "On input $\langle\langle G, k\rangle, c\rangle$:

1. Test whether c is a set of k different nodes in G.
2. Test whether G contains all edges connecting nodes in c.
3. If both tests pass, accept; otherwise, reject."

We now have to show V runs in polynomial time; i.e., if the graph G has m nodes and a k-clique, the time V needs to verify $\langle G, k\rangle \in C L I Q U E$ is a polynomial function of m and k. Stage 1 of V requires checking if c consists of k different nodes from G, and this takes $O(k) O(n)=O(k n)$ time. Stage 2 needs to check G has an edge connecting each pair of nodes in c; since there are $O\left(k^{2}\right)$ pairs and $O\left(m^{2}\right)$ edges in G, this stage requires $O\left(k^{2}\right) O\left(m^{2}\right)=O\left(k^{2} m^{2}\right)$ time. Stage 3 takes constant time. Thus, the overall complexity of V is $O\left(k^{2} m^{2}\right)$, which is polynomial in m and k, so V is a polynomial-time verifier.
(b) We need to show that $3 S A T \leq_{\mathrm{P}} C L I Q U E$, where we will show in the next part that the complexity of the reduction is polynomial. Consider a 3cnf-function ϕ, and we will show how to convert ϕ into a graph G such that $\phi \in 3 S A T$ if and only if $G \in C L I Q U E$. To construct G from ϕ, suppose that ϕ has k clauses, which each consist of 3 literals. Then do the following:

- For each clause i in ϕ, define a triple t_{i} of 3 nodes for G, with one node for each literal in clause i.
- Add an edge between each pair of nodes, except
- within the same triple
- between contradictory literals, e.g., x and \bar{x}.

We now show that $\phi \in 3 S A T$ iff $\langle G, k\rangle \in C L I Q U E$. To show that $\phi \in 3 S A T$ implies $G \in C L I Q U E$, suppose that ϕ has m variables and k clauses, and suppose that $\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in\{0,1\}^{m}$ satisfies ϕ. This assignment thus ensures that each clause has (at least) one literal that evaluates to true. Then choose the nodes in G that correspond to those k literals. This set of k nodes are from k different triples. Moreover, the k literals don't contradict each other since ϕ is satisfied. Thus, the k nodes form a k-clique since G included all edges except between pairs of nodes in the same triple and between contradictory pairs of nodes. Hence, $\langle G, k\rangle \in C L I Q U E$.

We now show that $\langle G, k\rangle \in C L I Q U E$ implies $\phi \in 3 S A T$. Consider the k nodes in G forming the k-clique. Since G includes all edges except between pairs of nodes in the same triple and between contradictory pairs of nodes, the k-clique must contain k nodes from k different triples and the literals corresponding to those nodes are not contradicting. Thus, in each clause i of ϕ, set the literal corresponding to the chosen node in the k-clique to 1 . This then gives a satisfying assignment for ϕ, so $\phi \in 3 S A T$.
(c) We now show that converting the 3cnf-function ϕ into the graph G takes polynomial time. Suppose that ϕ has m variables and k clauses. We need to show that the size of G is polynomial in k and m. Since G has a triple of nodes for each clause, G then has $3 k$ nodes. Edges connect every pair of nodes except nodes in the same triple and contradictory literals. Thus, the number of edges in G is less than $\binom{3 k}{2}=O\left((3 k)^{2}\right)=O\left(k^{2}\right)$, which is polynomial in the size of ϕ, so the size of G is polynomial in k.

