CS 341, Fall 2011 Solutions for Quiz 2, Day Section

- 1. (a) There are two different approaches one can use to show that $CLIQUE \in NP$:
 - Show that *CLIQUE* has a nondeterministic Turing machine that runs in polynomial time, or
 - Show that *CLIQUE* has a polynomial-time verifier.

We will use the second approach.

To do this, let the certificate c for the verifier be a list of the nodes in the graph G forming a k-clique. Below is a verifier for CLIQUE:

V = "On input $\langle \langle G, k \rangle, c \rangle$:

- 1. Test whether c is a set of k different nodes in G.
- 2. Test whether G contains all edges connecting nodes in c.
- 3. If both tests pass, *accept*; otherwise, *reject*."

We now have to show V runs in polynomial time; i.e., if the graph G has m nodes and a k-clique, the time V needs to verify $\langle G, k \rangle \in CLIQUE$ is a polynomial function of m and k. Stage 1 of V requires checking if c consists of k different nodes from G, and this takes O(k)O(n) = O(kn) time. Stage 2 needs to check G has an edge connecting each pair of nodes in c; since there are $O(k^2)$ pairs and $O(m^2)$ edges in G, this stage requires $O(k^2)O(m^2) = O(k^2m^2)$ time. Stage 3 takes constant time. Thus, the overall complexity of V is $O(k^2m^2)$, which is polynomial in m and k, so V is a polynomial-time verifier.

- (b) We need to show that $3SAT \leq_{\mathbf{P}} CLIQUE$, where we will show in the next part that the complexity of the reduction is polynomial. Consider a 3cnf-function ϕ , and we will show how to convert ϕ into a graph G such that $\phi \in 3SAT$ if and only if $G \in CLIQUE$. To construct G from ϕ , suppose that ϕ has k clauses, which each consist of 3 literals. Then do the following:
 - For each clause i in ϕ , define a triple t_i of 3 nodes for G, with one node for each literal in clause i.
 - Add an edge between each pair of nodes, except
 - within the same triple
 - between contradictory literals, e.g., x and \overline{x} .

We now show that $\phi \in 3SAT$ iff $\langle G, k \rangle \in CLIQUE$. To show that $\phi \in 3SAT$ implies $G \in CLIQUE$, suppose that ϕ has m variables and k clauses, and suppose that $(x_1, x_2, \ldots, x_m) \in \{0, 1\}^m$ satisfies ϕ . This assignment thus ensures that each clause has (at least) one literal that evaluates to true. Then choose the nodes in G that correspond to those k literals. This set of k nodes are from k different triples. Moreover, the k literals don't contradict each other since ϕ is satisfied. Thus, the k nodes form a k-clique since G included all edges except between pairs of nodes in the same triple and between contradictory pairs of nodes. Hence, $\langle G, k \rangle \in CLIQUE$. We now show that $\langle G, k \rangle \in CLIQUE$ implies $\phi \in 3SAT$. Consider the k nodes in G forming the k-clique. Since G includes all edges except between pairs of nodes in the same triple and between contradictory pairs of nodes, the k-clique must contain k nodes from k different triples and the literals corresponding to those nodes are not contradicting. Thus, in each clause i of ϕ , set the literal corresponding to the chosen node in the k-clique to 1. This then gives a satisfying assignment for ϕ , so $\phi \in 3SAT$.

(c) We now show that converting the 3cnf-function ϕ into the graph G takes polynomial time. Suppose that ϕ has m variables and k clauses. We need to show that the size of G is polynomial in k and m. Since G has a triple of nodes for each clause, G then has 3k nodes. Edges connect every pair of nodes except nodes in the same triple and contradictory literals. Thus, the number of edges in G is less than $\binom{3k}{2} = O((3k)^2) = O(k^2)$, which is polynomial in the size of ϕ , so the size of G is polynomial in k.