CS 341, Fall 2011 Solutions for Quiz 2, Day Section

- 1. (a) There are two different approaches one can use to show that $ILP \in NP$:
 - Show that *ILP* has a nondeterministic Turing machine that runs in polynomial time, or
 - Show that *ILP* has a polynomial-time verifier.

We will use the second approach. We now give a polynomial-time verifier using as a certificate an integer vector c such that $Ac \leq b$. Here is a verifier for *ILP*:

- V = "On input $\langle \langle A, b \rangle, c \rangle$:
 - 1. Test whether c is a vector of all integers.
 - 2. Test whether $Ac \leq b$.
 - 3. If both tests pass, *accept*; otherwise, *reject*."

If $Ay \leq b$ has *m* inequalities and *n* variables, then Stage 1 takes O(n) time, and Stage 2 takes O(mn) time. Hence, verifier *V* has O(mn) running time, which is polynomial in size of problem.

(b) Now we show $3SAT \leq_m ILP$. (We later show the reduction takes polynomial time.) To do this, we need an algorithm that takes any instance ϕ of the 3SAT problem and converts it into an instance of the ILP problem such that $\langle \phi \rangle \in 3SAT$ if and only if the construct integer linear program has an integer solution. Suppose that ϕ has k clauses and m variables x_1, x_2, \ldots, x_m . For the integer linear program, define 2m variables $y_1, y'_1, y_2, y'_2, \ldots, y_m, y'_m$. Each y_i corresponds to x_i , and each y'_i corresponds to $\overline{x_i}$. For each $i = 1, 2, \ldots, m$, define the following inequality and equality relations to be satisfied in the integer linear program:

$$0 \le y_i \le 1, \quad 0 \le y'_i \le 1, \quad y_i + y'_i = 1.$$
 (1)

If y_i must be integer-valued and $0 \le y_i \le 1$, then we must have y_i can only take on the value 0 or 1. Similarly, y'_i can only take on the value 0 or 1. Hence, $y_i + y'_i = 1$ ensures exactly one of y_i, y'_i is 1 and the other is 0. This corresponds exactly to what x_i and $\overline{x_i}$ must satisfy.

Each clause in ϕ has the form $(x_i \vee \overline{x_j} \vee x_k)$. For each such clause, create a corresponding inequality

$$y_i + y'_j + y_k \ge 1 \tag{2}$$

to be included in the integer linear program. This ensures that each clause at least one true literal. By construction, ϕ is satisfiable if and only if the constructed integer linear program with m sets of relations in display (1) and k inequations as in display (2) has an integer solution. Hence, we have shown $3SAT \leq_m ILP$.

(c) Now we have to show that the time to construct the integer linear program from a 3cnf-function ϕ is polynomial in the size of $\langle \phi \rangle$, which we can measure in terms of the number *m* of variables and the number *k* of clauses in ϕ . For each i = $1, 2, \ldots, m$, display (1) comprises 6 inequalities $y_i \geq 0$ (rewritten as $-y_i \leq 0$), $y_i \leq 1, y'_i \geq 0$ (rewritten as $-y'_i \leq 0$), $y'_i \leq 1, y_i + y'_i \leq 1$, and $y_i + y'_i \geq 1$ (rewritten as $-y_i - y'_i \leq -1$), where the last two together are equivalent to $y_i + y'_i = 1$. Thus, we have 6m inequalities corresponding to display (1). The k clauses in ϕ leads to k more inequalities, each of the form in display (2). Thus, the constructed integer linear program has 2m variables and 6m + k linear inequalities, so the size of the resulting integer linear program is polynomial in m and k. Hence, the reduction takes polynomial time.