CS 341, Fall 2011

Solutions for Quiz 2, Day Section

1. (a) There are two different approaches one can use to show that $I L P \in N P$:

- Show that ILP has a nondeterministic Turing machine that runs in polynomial time, or
- Show that ILP has a polynomial-time verifier.

We will use the second approach. We now give a polynomial-time verifier using as a certificate an integer vector c such that $A c \leq b$. Here is a verifier for $I L P$:
$V=$ "On input $\langle\langle A, b\rangle, c\rangle$:

1. Test whether c is a vector of all integers.
2. Test whether $A c \leq b$.
3. If both tests pass, accept; otherwise, reject."

If $A y \leq b$ has m inequalities and n variables, then Stage 1 takes $O(n)$ time, and Stage 2 takes $O(m n)$ time. Hence, verifier V has $O(m n)$ running time, which is polynomial in size of problem.
(b) Now we show $3 S A T \leq_{\mathrm{m}} I L P$. (We later show the reduction takes polynomial time.) To do this, we need an algorithm that takes any instance ϕ of the $3 S A T$ problem and converts it into an instance of the ILP problem such that $\langle\phi\rangle \in 3 S A T$ if and only if the construct integer linear program has an integer solution. Suppose that ϕ has k clauses and m variables $x_{1}, x_{2}, \ldots, x_{m}$. For the integer linear program, define $2 m$ variables $y_{1}, y_{1}^{\prime}, y_{2}, y_{2}^{\prime}, \ldots, y_{m}, y_{m}^{\prime}$. Each y_{i} corresponds to x_{i}, and each y_{i}^{\prime} corresponds to $\overline{x_{i}}$. For each $i=1,2, \ldots, m$, define the following inequality and equality relations to be satisfied in the integer linear program:

$$
\begin{equation*}
0 \leq y_{i} \leq 1, \quad 0 \leq y_{i}^{\prime} \leq 1, \quad y_{i}+y_{i}^{\prime}=1 \tag{1}
\end{equation*}
$$

If y_{i} must be integer-valued and $0 \leq y_{i} \leq 1$, then we must have y_{i} can only take on the value 0 or 1 . Similarly, y_{i}^{\prime} can only take on the value 0 or 1 . Hence, $y_{i}+y_{i}^{\prime}=1$ ensures exactly one of y_{i}, y_{i}^{\prime} is 1 and the other is 0 . This corresponds exactly to what x_{i} and $\overline{x_{i}}$ must satisfy.
Each clause in ϕ has the form $\left(x_{i} \vee \overline{x_{j}} \vee x_{k}\right)$. For each such clause, create a corresponding inequality

$$
\begin{equation*}
y_{i}+y_{j}^{\prime}+y_{k} \geq 1 \tag{2}
\end{equation*}
$$

to be included in the integer linear program. This ensures that each clause at least one true literal. By construction, ϕ is satisfiable if and only if the constructed integer linear program with m sets of relations in display (1) and k inequations as in display (2) has an integer solution. Hence, we have shown $3 S A T \leq_{\mathrm{m}} I L P$.
(c) Now we have to show that the time to construct the integer linear program from a 3cnf-function ϕ is polynomial in the size of $\langle\phi\rangle$, which we can measure in terms of the number m of variables and the number k of clauses in ϕ. For each $i=$ $1,2, \ldots, m$, display (1) comprises 6 inequalities $y_{i} \geq 0$ (rewritten as $-y_{i} \leq 0$),
$y_{i} \leq 1, y_{i}^{\prime} \geq 0$ (rewritten as $-y_{i}^{\prime} \leq 0$), $y_{i}^{\prime} \leq 1, y_{i}+y_{i}^{\prime} \leq 1$, and $y_{i}+y_{i}^{\prime} \geq 1$ (rewritten as $-y_{i}-y_{i}^{\prime} \leq-1$), where the last two together are equivalent to $y_{i}+y_{i}^{\prime}=1$. Thus, we have $6 m$ inequalities corresponding to display (1). The k clauses in ϕ leads to k more inequalities, each of the form in display (2). Thus, the constructed integer linear program has $2 m$ variables and $6 m+k$ linear inequalities, so the size of the resulting integer linear program is polynomial in m and k. Hence, the reduction takes polynomial time.

