Midterm Exam I CIS 341: Introduction to Logic and Automata — Fall 2000 Prof. Marvin K. Nakayama

Print Name (last name first): _____

Student Number: _____

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

Signature and Date

- This exam has 6 pages in total, numbered 1 to 6. Make sure your exam has all the pages.
- This exam will be 1 hour and 25 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:
 - 1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area to work out your answers before filling in the answer space.
 - 2. FA stands for finite automaton; TG stands for transition graph.
 - 3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step.

Problem	1	2	3	4	5	Total
Points						

- 1. **[20 points]** For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
 - (a) TRUE FALSE A finite automaton accepts Λ if and only if the initial state is also a final state.
 - (b) TRUE FALSE If S^* is infinite, then S must be infinite.
 - (c) TRUE FALSE If S^* is infinite, then S must be finite.
 - (d) TRUE FALSE If S is finite, then S^* must be infinite.
 - (e) TRUE FALSE If S is infinite, then S^* must be finite.
 - (f) TRUE FALSE The string *abaab* can be generated by the regular expression $(\mathbf{\Lambda} + \mathbf{b})(\mathbf{b}^*\mathbf{a}^*\mathbf{b}^*)^*\mathbf{a}^*$.
 - (g) TRUE FALSE If a finite automaton has at least one final state, then the FA must accept at least one word.
 - (h) TRUE FALSE If a transition graph has at least one final state, then the TG must accept at least one word.
 - (i) TRUE FALSE A finite automaton may have more than one initial state.
 - (j) TRUE FALSE A finite automaton may have no final states.

- 2. [20 points] For each of the following languages L over the alphabet $\Sigma = \{a, b\}$, give a regular expression for L.
 - (a) L exactly consists of all non-empty strings whose first letter and last letter are the same.

Regular Expression:

(b) L exactly consists of all strings that do not contain the substring bb.

Regular Expression:

Scratch-work area

- 3. [20 points] For each of the following languages L over the alphabet $\Sigma = \{a, b\}$, give a finite automaton that accepts exactly L.
 - (a) L exactly consists of all strings that have length exactly 3.

Draw finite automaton here:

(b) L exactly consists of all strings that do not contain the substring *aaa*.

Draw finite automaton here:

Scratch-work area

- 4. [20 points] Suppose that S and T are two sets of strings such that $S^{**} = T^*$. Is it necessarily the case that S = T?
 - YES NO (Circle one)

If your answer is YES, give a proof. If your answer is NO, give a counterexample. Explain your answer, and be sure to provide all details.

5. **[20 points]**

Let *L* be any language. Define the transpose of *L*, denoted by L^t , to be the language of exactly those strings that are words in *L* spelled backward; i.e., $L^t = \{\text{reverse}(w) : w \in L\}$. For example, if $L = \{a, abb, bbaab, bbbaa\}$, then $L^t = \{a, bba, baabb, aabbb\}$. Prove that $(L_1L_2)^t = L_2^t L_1^t$ for any languages L_1 and L_2 .