Midterm Exam I

CIS 341: Introduction to Logic and Automata - Fall 2000
Prof. Marvin K. Nakayama

Print Name (last name first): \qquad

Student Number: \qquad

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

Signature and Date

- This exam has 6 pages in total, numbered 1 to 6 . Make sure your exam has all the pages.
- This exam will be 1 hour and 25 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:

1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area to work out your answers before filling in the answer space.
2. FA stands for finite automaton; TG stands for transition graph.
3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step.

Problem	1	2	3	4	5	Total
Points						

1. [20 points] For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
(a) TRUE FALSE - A finite automaton accepts Λ if and only if the initial state is also a final state.
(b) TRUE FALSE - If S^{*} is infinite, then S must be infinite.
(c) TRUE FALSE - If S^{*} is infinite, then S must be finite.
(d) TRUE FALSE - If S is finite, then S^{*} must be infinite.
(e) TRUE FALSE - If S is infinite, then S^{*} must be finite.
(f) TRUE FALSE - The string abaab can be generated by the regular expression $(\boldsymbol{\Lambda}+\mathbf{b})\left(\mathbf{b}^{*} \mathbf{a}^{*} \mathbf{b}^{*}\right)^{*} \mathbf{a}^{*}$.
(g) TRUE FALSE - If a finite automaton has at least one final state, then the FA must accept at least one word.
(h) TRUE FALSE - If a transition graph has at least one final state, then the TG must accept at least one word.
(i) TRUE FALSE - A finite automaton may have more than one initial state.
(j) TRUE FALSE - A finite automaton may have no final states.
2. [20 points] For each of the following languages L over the alphabet $\Sigma=\{a, b\}$, give a regular expression for L.
(a) L exactly consists of all non-empty strings whose first letter and last letter are the same.

Regular Expression:
(b) L exactly consists of all strings that do not contain the substring $b b$.

Regular Expression:

Scratch-work area

3. [20 points] For each of the following languages L over the alphabet $\Sigma=\{a, b\}$, give a finite automaton that accepts exactly L.
(a) L exactly consists of all strings that have length exactly 3 .

Draw finite automaton here:

(b) L exactly consists of all strings that do not contain the substring aaa.

Draw finite automaton here:

Scratch-work area
4. [20 points] Suppose that S and T are two sets of strings such that $S^{* *}=T^{*}$. Is it necessarily the case that $S=T$?
YES NO (Circle one)

If your answer is YES, give a proof. If your answer is NO, give a counterexample. Explain your answer, and be sure to provide all details.

5. [20 points]

Let L be any language. Define the transpose of L, denoted by L^{t}, to be the language of exactly those strings that are words in L spelled backward; i.e., $L^{t}=$ $\{\operatorname{reverse}(w): w \in L\}$. For example, if $L=\{a, a b b, b b a a b, b b b a a\}$, then $L^{t}=$ $\{a, b b a, b a a b b, a a b b b\}$. Prove that $\left(L_{1} L_{2}\right)^{t}=L_{2}^{t} L_{1}^{t}$ for any languages L_{1} and L_{2}.

