Midterm Exam I

CIS 341: Introduction to Logic and Automata - Spring 2000
Prof. Marvin K. Nakayama

Print Name (last name first): \qquad

Student Number: \qquad

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

Signature and Date

- This exam has 6 pages in total, numbered 1 to 6 . Make sure your exam has all the pages.
- This exam will be 1 hour and 25 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:

1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area to work out your answers before filling in the answer space.
2. FA stands for finite automaton; TG stands for transition graph.
3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step.

Problem	1	2	3	4	5	Total
Points						

1. [20 points] For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
(a) TRUE FALSE - If S is any set, then $S^{* * * *}=S^{* *}$ is always true.
(b) TRUE FALSE - If S is any set, then S^{*} is always infinite.
(c) TRUE FALSE - A finite automaton may crash when processing a string.
(d) TRUE FALSE - A transition graph may have no final states.
(e) TRUE FALSE - A transition graph may have no initial states.
(f) TRUE FALSE - If a finite automaton accepts Λ, then the initial state of the finite automaton must also be a final state.
(g) TRUE FALSE - All finite automata are non-deterministic.
(h) TRUE FALSE - All transition graphs are also finite automata.
(i) TRUE FALSE - The regular expressions $\left(\mathbf{a b}^{*}+\mathbf{b} \mathbf{a}^{*}\right)^{*}$ and $\left(\mathbf{a}^{*} \mathbf{b}^{*}\right)^{*}$ generate the same language.
(j) TRUE FALSE - If a finite automaton accepts no words, then the finite automaton must have no final states.
2. [20 points] For each of the following languages L over the alphabet $\Sigma=\{a, b\}$, give a regular expression for L.
(a) L exactly consists of all words whose first and third letters are different.

Regular Expression:

(b) L exactly consists of all words that have an odd number of a 's and an even number of b 's.

Regular Expression:

Scratch-work area

3. [20 points] For each of the following languages L over the alphabet $\Sigma=\{a, b\}$, give a finite automaton that accepts exactly L.
(a) L exactly consists of all words that have contain the substring $a b$.

Draw finite automaton here:

(b) L exactly consists of all words whose first and last letters are the same.

Draw finite automaton here:

Scratch-work area
4. [20 points] Let T be a transition graph, and suppose that T accepts Λ. Is it necessarily the case that an initial state of T is also a final state?
YES NO (Circle one)

If your answer is YES, give a proof. If your answer is NO, give a counterexample. Explain your answer.
5. [20 points]

Let S be any set of strings. Prove that $S^{* *}=S^{*}$.

