Midterm Exam I

CIS 341: Introduction to Logic and Automata - Spring 2001
Prof. Marvin K. Nakayama

Instructions:

- Write all of your answers in a Microsoft Word document, which you are to e-mail as an attachment to cis341DL@cis.njit.edu when you are done. Be sure to include your full name and student ID at the top of the document.
- The name of the Word file must be your last name followed by a dash and followed by your first name. For example, if your name is Joe Smith, then name your file Smith-Joe.doc .
- Right below your name and student ID, type in the following: "I have read and understand all of the instructions, and I will obey the Academic Honor Code. I will not discuss the exam with anyone other than possibly the course instructor." If you do not do this, then you will get a 0 on the exam.
- This exam has 4 pages in total, numbered 1 to 4 . Make sure your exam has all the pages.
- This exam will be 2 hour and 30 minutes in length. You must e-mail as an attachment your Microsoft Word document containing your answers to cis341DL@cis.njit.edu by the end of the exam period. If you do not e-mail your solutions by the end of the exam period, you will receive a 0 on the exam.
- Send any questions you have during the exam to cis341DL@cis.njit.edu .
- This is an open-book, open-note exam.
- For all problems, follow these instructions:

1. FA stands for finite automaton; TG stands for transition graph.
2. For any proofs, be sure to provide a step-by-step argument, with justifications for every step. You may assume that the theorems in the textbook hold; i.e., you do not have to reprove the theorems in the textbook. When using a theorem from the textbook, make sure you refer to it by number (e.g., Theorem 3).
3. [20 points] For each of the following, specify TRUE if the statement is always correct. Otherwise, specify FALSE
(a) TRUE FALSE - A transition graph accepts Λ if and only if an initial state is also a final state.
(b) TRUE FALSE - If $S^{* *}$ is infinite, then S must be infinite.
(c) TRUE FALSE - If S^{*} is infinite, then $S^{* *}$ must be infinite.
(d) TRUE FALSE - If S^{*} is finite, then S must be infinite.
(e) TRUE FALSE - The regular expression $(a+\Lambda)(b+b a)^{*} a^{*}$ can generate the string $b a b b$.
(f) TRUE FALSE - If L is a non-regular language, then there is a nondeterministic finite automaton that accepts L.
(g) TRUE FALSE - A finite automaton may accept infinitely many different strings.
(h) TRUE FALSE - Every finite automaton is also a transition graph.
(i) TRUE FALSE - A non-deterministic finite automaton may accept infinitely many different strings.
(j) TRUE FALSE - A finite automaton can crash when processing a string.
4. [30 points] Let L be the language generated by the regular expression

$$
(a+b)(a a+b b)(a+b)^{*}
$$

with alphabet $\Sigma=\{a, b\}$. Consider the following 6 machines, labeled M1, M2, \ldots M6, where M1, M2, and M3 are finite automata, and M4, M5, and M6 are transition graphs:

For each machine above, indicate if it accepts exactly L or not. For each machine that does not accept exactly L, do the following:

- Show that it does not accept exactly L by giving either an example of a string $w \notin L$ that is accepted by the machine, or an example of a string $w \in L$ that is not accepted by the machine. Explain your example.
- Give a regular expression for the language exactly accepted by the machine.

3. [20 points] For each of the following languages L over the alphabet $\Sigma=\{a, b\}$, give a regular expression for L.
(a) L exactly consists of all non-empty strings whose first letter is different from its last letter.
(b) L exactly consists of all strings that do not contain the substring $a b$.
4. [15 points] Suppose that L is a non-regular language. Is it necessarily the case that L has infinitely many words?

YES NO

If your answer is YES, give a proof. If your answer is NO, give a counterexample. Explain your answer, and be sure to provide all details.
5. [15 points] Let L_{1} and L_{2} be languages, each having the same finite alphabet Σ. Suppose that

- L_{1} consists of all strings w such that $50<\operatorname{length}(w)<100$.
- L_{2} is exactly accepted by some transition graph.

Prove that $L_{1}^{*}+L_{2}$ is a regular language.

