Midterm Exam I

CIS 341: Introduction to Logic and Automata - Spring 2002
Prof. Marvin K. Nakayama

Print Name (last name first): \qquad

Student Number: \qquad

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

Signature and Date

- This exam has 6 pages in total, numbered 1 to 6 . Make sure your exam has all the pages.
- This exam will be 1 hour and 25 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:

1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area to work out your answers before filling in the answer space.
2. FA stands for finite automaton; TG stands for transition graph.
3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step.

Problem	1	2	3	4	5	Total
Points						

1. [20 points] For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
(a) TRUE FALSE - If L is any language, then L^{*} must be infinite.
(b) TRUE FALSE - If L is any language, then L^{*} must be finite.
(c) TRUE FALSE - If L_{1} and L_{2} are languages such that $L_{1}^{*}=L_{2}^{*}$, then $L_{1}=L_{2}$.
(d) TRUE FALSE - A regular expression for the language $L=\left\{a^{n}: n=\right.$ $1,2,3, \ldots\}$ is $\mathbf{a}+\mathbf{a a}+\mathbf{a a a}+\cdots$.
(e) TRUE FALSE - If L_{1} is language having regular expression r_{1} and L_{2} is language having regular expression r_{2}, then the language $L_{1}+L_{2}$ has regular expression $r_{1}+r_{2}$.
(f) TRUE FALSE - Let L be the language over $\Sigma=\{a, b\}$ consisting of exactly all words that have either an even number of a 's or an even number of b 's. Then a regular expression for L is $\left(\mathbf{a a}+\mathbf{b b}+(\mathbf{a b}+\mathbf{b a})(\mathbf{a a}+\mathbf{b b})^{*}(\mathbf{a b}+\mathbf{b a})\right)^{*}$.
(g) TRUE FALSE - All transition graphs are non-deterministic.
(h) TRUE FALSE - If a transition graph accepts the string Λ, then some start state must also be a final state.
(i) TRUE FALSE - If a finite automaton accepts the string Λ, then the start state must also be a final state.
(j) TRUE FALSE - If $L_{1}=\{\Lambda\}$ and $L_{2}=\emptyset$, then $L_{1}=L_{2}$.
2. [20 points] For each of the following languages L over the alphabet $\Sigma=\{a, b\}$, give a regular expression for L.
(a) L exactly consists of all strings that begin with a and end with b.

Regular Expression:

(b) L exactly consists of all strings that have an odd number of a 's.

Regular Expression:

Scratch-work area

3. [20 points] For each of the following languages L over the alphabet $\Sigma=\{a, b\}$, give a finite automaton that accepts exactly L.
(a) exactly consists of all strings that have length of either 1 or 2 .

Draw finite automaton here:

(b) L exactly consists of all strings that do not contain the substring $a b a$.

Draw finite automaton here:

Scratch-work area
4. [20 points] For each of the following parts, provide an example satisfying the given conditions. Give a brief explanation for each of your examples.
(a) Give an example of a set S such that $S^{*}=S^{+}$.
(b) Give an example of a set S such that $S=S^{*}$.
(c) Give an example of a set S such that $S \neq S^{+}$.
(d) Give an example of a set S such that S^{*} is finite.
5. [20 points] Suppose we define a restricted version of the C++ programming language in which variable names must satisfy all of the following conditions:
(i) A variable name can only use Roman letters (i.e., a, b, .., z, A, B, .., Z) or Arabic numerals (i.e., $0,1,2, \ldots, 9$); i.e., underscore is not allowed.
(ii) A variable name must start with a Roman letter: $\mathrm{a}, \mathrm{b}, \ldots, \mathrm{z}, \mathrm{A}, \mathrm{B}, \ldots, \mathrm{Z}$
(iii) The length of a variable name must be no greater than 8 .
(iv) A variable name cannot be a keyword (e.g., if). The set of keywords is finite.

Let L be the set of all valid variable names in our restricted version of $\mathrm{C}++$.
(a) Let L_{0} be the set of strings satisfying conditions (i), (ii), and (iii) above; i.e., we do not require condition (iv). How many strings are in L_{0} ?
(b) Prove that L has a regular expression.

