Midterm Exam II CIS 341: Introduction to Logic and Automata — Spring 2002, day sections Prof. Marvin K. Nakayama

Print Name (last name first): _____

Student Number: _____

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

Signature and Date

- This exam has 5 pages in total, numbered 1 to 5. Make sure your exam has all the pages.
- This exam will be 1 hour and 25 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:
 - 1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area to work out your answers before filling in the answer space. If you need extra space for scratch work, use the back of your exam.
 - 2. FA stands for finite automaton; TG stands for transition graph.
 - 3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step.

Problem	1	2	3	4	Total
Points					

1. **[20 points]** For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE

(a)	TRUE	FALSE	 If L is a finite language, then L^* is a regular language.
(b)	TRUE	FALSE	 Regular languages are not closed under intersection.
(c)	TRUE	FALSE	 An effective procedure to determine if two finite automata F_1 and F_2 accept the same language is to process strings one at a time on both machines until finding one string that is accepted by one machine but not by the other.
(d)	TRUE	FALSE	 If L is a nonregular language, then L' is a nonregular language.
(e)	TRUE	FALSE	 Given a regular expression r generating a language L , there is an effective procedure to convert r into a finite automaton for L .
(f)	TRUE	FALSE	 Removing a finite number of words from a regular lan- guage results in a regular language.
(g)	TRUE	FALSE	 Suppose L is a language defined over an alphabet Σ and that L is accepted by some transition graph T . Then the set of all of the strings over Σ not accepted by T is a nonregular language.
(h)	TRUE	FALSE	 Every regular expression containing a Kleene star gen- erates an infinite language.
(i)	TRUE	FALSE	 There is an effective procedure to determine if a tran- sition graph accepts an infinite language.
(j)	TRUE	FALSE	 If a finite automaton F has at least one final state, then F accepts at least one string.

2. [40 points] Let L be the language over the alphabet $\Sigma = \{a, b\}$ accepted by the following finite automaton:

(a) Give a regular expression for L.

(b) Give a finite automaton for the language L^* . Draw your finite automaton here:

Scratch-work area

- 3. [20 points] For each of the following parts, provide an example satisfying the given conditions. Give a brief explanation for each of your examples.
 - (a) Give an example of languages L_1 and L_2 such that $L_1 \subset L_2$, L_1 is regular, and L_2 is nonregular.

(b) Give an example of nonregular languages L_1 and L_2 such that $L_1 + L_2$ is regular.

Scratch-work area

4. [20 points] Recall the pumping lemma:

Theorem 14 Let L be a language accepted by a finite automaton having N states, and let $w \in L$ with $length(w) \geq N$. Then there exists strings x, y, and z such that

(i) w = xyz(ii) $y \neq \Lambda$

- (iii) $length(x) + length(y) \le N$
- (iv) $xy^k z \in L$ for all k = 0, 1, 2, ...

Prove that the language $L = \{b^{3m}a^{2m}b^{3m} : m = 0, 1, 2, ...\}$ is nonregular.