Midterm Exam I

CIS 341: Introduction to Logic and Automata - Spring 2002, evening Prof. Marvin K. Nakayama

Print Name (last name first): \qquad

Student Number: \qquad

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

Signature and Date

- This exam has 8 pages in total, numbered 1 to 8 . Make sure your exam has all the pages.
- This exam will be 3 hour and 5 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:

1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area to work out your answers before filling in the answer space.
2. FA stands for finite automaton; TG stands for transition graph.
3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step.

Problem	1	2	3	4	5	6	7	Total
Points								

1. [10 points] For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
(a) TRUE FALSE - All languages are infinite.
(b) TRUE FALSE - All regular languages are infinite.
(c) TRUE FALSE - All nonregular languages are infinite.
(d) TRUE FALSE - All regular languages are finite.
(e) TRUE FALSE - If a transition graph accepts some language L, then there exists some nondeterministic finite automaton for the language L^{\prime}.
(f) TRUE FALSE - If M is a finite automaton, then M is also a transition graph.
(g) TRUE FALSE - If L_{1} is a regular language, then so is L_{1}^{*}.
(h) TRUE FALSE - If L is a nonregular language, then there exists a nondeterministic finite automaton that accepts L.
(i) TRUE FALSE - If L_{1} and L_{2} are languages such that $L_{1} \subset L_{2}$ and L_{2} is nonregular, then L_{1} must be nonregular.
(j) TRUE FALSE - The regular expressions $(\mathbf{a}+\mathbf{b})^{*}$ and $\left(\mathbf{a}^{*} \mathbf{b}^{*}\right)$ generate the same language.
2. [15 points] For each of the following languages L over the alphabet $\Sigma=\{a, b\}$, give a regular expression for L.
(a) L exactly consists of all strings containing exactly $2 a$'s.

Regular Expression:

(b) L exactly consists of all strings with an even number of a 's or an even number of b 's. (Note that this says "or", not "and".)

Regular Expression:

Scratch-work area

3. [15 points] For each of the following languages L over the alphabet $\Sigma=\{a, b\}$, give a finite automaton that accepts exactly L.
(a) L exactly consists of all strings whose first letter is a.

Draw finite automaton here:

(b) L exactly consists of all strings that do not end in $b b b$.

Draw finite automaton here:

Scratch-work area
4. [15 points] Suppose that T is a transition graph with language L defined over an alphabet Σ. Suppose that a friend claims that you can create a transition graph T^{\prime} for the language L^{\prime} as follows:

- T^{\prime} has alphabet Σ.
- The states and arcs in T^{\prime} are the same as those in T, and the arcs have the same labels.
- The start states of T^{\prime} are the same as the start states of T.
- Every final state in T is a non-final state in T^{\prime}, and every non-final state in T is a final state in T^{\prime}.

Show that your friend is wrong by giving an example of a transition graph T having a language L such that if we construct T^{\prime} using the above rules, the language of T^{\prime} is not L^{\prime}. Be sure to explain your answer.

Scratch-work area

5. [15 points] For each of the following parts, provide an example satisfying the given conditions. Give a brief explanation for each of your examples.
(a) Give an example of a set S such that $S=S^{+}$.
(b) Give an example of sets S and T such that $S T=S$.
(c) Give an example of sets S and T such that $S T=\emptyset$.

Scratch-work area

6. [15 points] Assume the following hold:

- Σ is an alphabet consisting of t letters.
- L_{1} and L_{2} are languages defined over Σ.
- There is a finite automaton $F A_{1}$ that accepts L_{1}, and $F A_{1}$ has m states.
- There is a finite automaton $F A_{2}$ that accepts L_{2}, and $F A_{2}$ has n states.

In class, we went over an algorithm to construct a finite automaton $F A_{3}$ for language $L_{1} L_{2}$ from $F A_{1}$ and $F A_{2}$. What is the maximum number of states in $F A_{3}$ constructed using this algorithm? Show your work.

Answer:

7. [15 points] Recall the pumping lemma:

Theorem 14 Let L be a language accepted by a finite automaton having N states, and let $w \in L$ with length $(w) \geq N$. Then there exists strings x, y, and z such that
(i) $w=x y z$
(ii) $y \neq \Lambda$
(iii) length $(x)+$ length $(y) \leq N$
(iv) $x y^{k} z \in L$ for all $k=0,1,2, \ldots$.

Prove that the language $L=\left\{b^{m} a b^{m}: m=0,1,2, \ldots\right\}$ is nonregular.

