Midterm Exam I CIS 341: Introduction to Logic and Automata — Spring 2002, evening Prof. Marvin K. Nakayama

Print Name (last name first): _____

Student Number: _____

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

Signature and Date

- This exam has 8 pages in total, numbered 1 to 8. Make sure your exam has all the pages.
- This exam will be 3 hour and 5 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:
 - 1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area to work out your answers before filling in the answer space.
 - 2. FA stands for finite automaton; TG stands for transition graph.
 - 3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step.

Problem	1	2	3	4	5	6	7	Total
Points								

1. **[10 points]** For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE

(a)	TRUE	FALSE —	All languages are infinite.
(b)	TRUE	FALSE —	All regular languages are infinite.
(c)	TRUE	FALSE —	All nonregular languages are infinite.
(d)	TRUE	FALSE —	All regular languages are finite.
(e)	TRUE	FALSE —	If a transition graph accepts some language L , then there exists some nondeterministic finite automaton for the language L' .
(f)	TRUE	FALSE —	If M is a finite automaton, then M is also a transition graph.
(g)	TRUE	FALSE —	If L_1 is a regular language, then so is L_1^* .
(h)	TRUE	FALSE —	If L is a nonregular language, then there exists a non- deterministic finite automaton that accepts L .
(i)	TRUE	FALSE —	If L_1 and L_2 are languages such that $L_1 \subset L_2$ and L_2 is nonregular, then L_1 must be nonregular.
(j)	TRUE	FALSE —	The regular expressions $(\mathbf{a} + \mathbf{b})^*$ and $(\mathbf{a}^*\mathbf{b}^*)$ generate the same language.

- 2. **[15 points]** For each of the following languages L over the alphabet $\Sigma = \{a, b\}$, give a regular expression for L.
 - (a) L exactly consists of all strings containing exactly 2 a's.

	Regular Expression:
(b)	L exactly consists of all strings with an even number of a 's or an even number of b 's. (Note that this says " or ", not " and ".)
	Regular Expression:

- 3. **[15 points]** For each of the following languages L over the alphabet $\Sigma = \{a, b\}$, give a finite automaton that accepts exactly L.
 - (a) L exactly consists of all strings whose first letter is a.

Draw finite automaton here:

(b) L exactly consists of all strings that do not end in bbb.

Draw finite automaton here:

- 4. **[15 points]** Suppose that T is a transition graph with language L defined over an alphabet Σ . Suppose that a friend claims that you can create a transition graph T' for the language L' as follows:
 - T' has alphabet Σ .
 - The states and arcs in T' are the same as those in T, and the arcs have the same labels.
 - The start states of T' are the same as the start states of T.
 - Every final state in T is a non-final state in T', and every non-final state in T is a final state in T'.

Show that your friend is wrong by giving an example of a transition graph T having a language L such that if we construct T' using the above rules, the language of T' is not L'. Be sure to explain your answer.

- 5. **[15 points]** For each of the following parts, provide an example satisfying the given conditions. Give a brief explanation for each of your examples.
 - (a) Give an example of a set S such that $S = S^+$.

(b) Give an example of sets S and T such that ST = S.

(c) Give an example of sets S and T such that $ST = \emptyset$.

- 6. **[15 points]** Assume the following hold:
 - Σ is an alphabet consisting of t letters.
 - L_1 and L_2 are languages defined over Σ .
 - There is a finite automaton FA_1 that accepts L_1 , and FA_1 has m states.
 - There is a finite automaton FA_2 that accepts L_2 , and FA_2 has n states.

In class, we went over an algorithm to construct a finite automaton FA_3 for language L_1L_2 from FA_1 and FA_2 . What is the maximum number of states in FA_3 constructed using this algorithm? Show your work.

Answer:

7. **[15 points]** Recall the pumping lemma:

Theorem 14 Let L be a language accepted by a finite automaton having N states, and let $w \in L$ with $length(w) \ge N$. Then there exists strings x, y, and z such that

- (i) w = xyz(ii) $y \neq \Lambda$
- (iii) $length(x) + length(y) \le N$
- (iv) $xy^k z \in L$ for all k = 0, 1, 2, ...

Prove that the language $L = \{b^m a b^m : m = 0, 1, 2, ...\}$ is nonregular.