Midterm Exam I
CIS 341: Introduction to Logic and Automata - Fall 2003, day
Prof. Marvin K. Nakayama

Print Name (family name first):

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

Signature and Date

- This exam has 5 pages in total, numbered 1 to 5 . Make sure your exam has all the pages.
- This exam will be 1 hour and 25 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:

1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area to work out your answers before filling in the answer space.
2. FA stands for finite automaton; TG stands for transition graph.
3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step.

Problem	1	2	3	4	Total
Points					

1. [30 points] For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
(a) TRUE FALSE - If $L=\left\{x^{n}: n \geq 0\right\}$, then a regular expression for L is $\Lambda+\mathbf{x}+\mathbf{x x}+\mathbf{x x x}+\cdots$.
(b) TRUE FALSE - If T is a transition graph in which none of the initial states is also a final state, then T cannot accept Λ.
(c) TRUE FALSE - A finite automaton can have more than one initial state.
(d) TRUE FALSE - All finite automata are deterministic.
(e) TRUE FALSE - All transition graphs are nondeterministic.
(f) TRUE FALSE - For any language L, there is exactly one finite automaton that accepts L.
(g) TRUE FALSE - If L is the language Palindrome over $\Sigma=\{a, b\}$, then L^{*} has regular expression $\left(\mathbf{a}^{*}+\mathbf{b}^{*}\right)^{*}$.
(h) TRUE FALSE - A finite automaton may crash while processing a string.
(i) TRUE FALSE - If a transition graph T accepts Λ, then the language of T is \emptyset.
(j) TRUE FALSE - For any language L, L^{*} is infinite.
2. [25 points] For each of the following languages L over the alphabet $\Sigma=\{0,1\}$, give a regular expression for L.
(a) L exactly consists of all non-empty strings whose first letter and last letter are not the same.

Regular Expression:
(b) L exactly consists of all strings that have at most three 1's.

Regular Expression:

Scratch-work area

3. [25 points] For each of the following languages L over the alphabet $\Sigma=\{a, b\}$, give a finite automaton that accepts exactly L.
(a) L exactly consists of all strings with an odd number of a 's and an even number of b 's.

Draw finite automaton here:

(b) L exactly consists of all strings that have both $a b$ and $b a$ as substrings.

Draw finite automaton here:

Scratch-work area

4. [20 points] Let S be any set of strings. Prove that $S^{*}=S^{+}$if and only if $\Lambda \in S$.
