Midterm Exam I CIS 341: Introduction to Logic and Automata — Fall 2003, day Prof. Marvin K. Nakayama

Print Name (family name first): _____

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

Signature and Date

- This exam has 5 pages in total, numbered 1 to 5. Make sure your exam has all the pages.
- This exam will be 1 hour and 25 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:
 - 1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area to work out your answers before filling in the answer space.
 - 2. FA stands for finite automaton; TG stands for transition graph.
 - 3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step.

Problem	1	2	3	4	Total
Points					

- 1. **[30 points]** For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
 - (a) TRUE FALSE If $L = \{x^n : n \ge 0\}$, then a regular expression for L is $\Lambda + \mathbf{x} + \mathbf{x}\mathbf{x} + \mathbf{x}\mathbf{x} + \cdots$.
 - (b) TRUE FALSE If T is a transition graph in which none of the initial states is also a final state, then T cannot accept Λ .
 - (c) TRUE FALSE A finite automaton can have more than one initial state.
 - (d) TRUE FALSE All finite automata are deterministic.
 - (e) TRUE FALSE All transition graphs are nondeterministic.
 - (f) TRUE FALSE For any language L, there is exactly one finite automaton that accepts L.
 - (g) TRUE FALSE If L is the language Palindrome over $\Sigma = \{a, b\}$, then L^* has regular expression $(\mathbf{a}^* + \mathbf{b}^*)^*$.
 - (h) TRUE FALSE A finite automaton may crash while processing a string.
 - (i) TRUE FALSE If a transition graph T accepts Λ , then the language of T is \emptyset .
 - (j) TRUE FALSE For any language L, L^* is infinite.

- 2. **[25 points]** For each of the following languages L over the alphabet $\Sigma = \{0, 1\}$, give a regular expression for L.
 - (a) L exactly consists of all non-empty strings whose first letter and last letter are not the same.

Regular Expression:

(b) L exactly consists of all strings that have at most three 1's.

Regular Expression:

Scratch-work area

- 3. **[25 points]** For each of the following languages L over the alphabet $\Sigma = \{a, b\}$, give a finite automaton that accepts exactly L.
 - (a) L exactly consists of all strings with an odd number of a's and an even number of b's.

Draw finite automaton here:

(b) L exactly consists of all strings that have both ab and ba as substrings.

Draw finite automaton here:

Scratch-work area

4. [20 points] Let S be any set of strings. Prove that $S^* = S^+$ if and only if $\Lambda \in S$.