Midterm Exam II CIS 341: Introduction to Logic and Automata — Fall 2003, day Prof. Marvin K. Nakayama

Print family (or last) name: _____

Print given (or first) name: _____

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

Signature and Date

- This exam has 5 pages in total, numbered 1 to 5. Make sure your exam has all the pages.
- This exam will be 1 hour and 25 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:
 - 1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area or the backs of the sheets to work out your answers before filling in the answer space.
 - 2. FA stands for finite automaton; TG stands for transition graph.
 - 3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step.

Problem	1	2	3	4	Total
Points					

- 1. **[30 points]** For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
 - (a) TRUE FALSE If L is an infinite language, then L must be nonregular.
 - (b) TRUE FALSE If L_1 and L_2 are nonregular languages then $L_1 \cap L_2$ must be nonregular.
 - (c) TRUE FALSE If L_1 and L_2 are regular languages then $L_1 \cap L_2$ must be regular.
 - (d) TRUE FALSE If language L is accepted by a nondeterministic finite automaton, then L must have a regular expression.
 - (e) TRUE FALSE Suppose a language L over an alphabet Σ is accepted by a finite automaton. Then an effective procedure to decide if $L = \emptyset$ is to test every string in Σ^* to see if any are accepted by the FA.
 - (f) TRUE FALSE There is an effective procedure to decide if a transition graph accepts an infinite language.
 - (g) TRUE FALSE If L is the language Palindrome over $\Sigma = \{a, b\}$, then L^* has regular expression $(\mathbf{a} + \mathbf{b}^*)^*$.
 - (h) TRUE FALSE If a language L is accepted by a transition graph, then there must exist a regular expression for L'.
 - (i) TRUE FALSE If L is a nonregular language, then there is a nondeterministic finite automaton for L.
 - (j) TRUE FALSE A regular expression for the language $L = \{a^m b^m : m \ge 0\}$ is $\Lambda + \mathbf{ab} + \mathbf{aa} + \mathbf{bb} + \mathbf{aaabbb} + \cdots$.

2. [30 points] For the language L of the finite automaton below, construct a finite automaton for L^* .

Draw FA for L^* here:

Scratch-work area

3. [20 points] Suppose that a language L_1 is accepted by a finite automaton $FA_1 = (K_1, \Sigma, \pi_1, s_1, F_1)$, and a language L_2 is accepted by a finite automaton $FA_2 = (K_2, \Sigma, \pi_2, s_2, F_2)$, where for FA_i , $i = 1, 2, K_i$ is the set of states, Σ is the input alphabet, $\pi_i : K_i \times \Sigma \to K_i$ is the transition function, s_i is the initial state, and F_i is the set of final states. Define the language $L_3 = L_1 \cap L_2$, and for this question, you are to define a finite automaton $FA_3 = (K_3, \Sigma, \pi_3, s_3, F_3)$ for L_3 in terms of FA_1 and FA_2 , as we covered in class.

(a) Define the set K_3 of states of FA_3 in terms of FA_1 and FA_2 .

(b) Define the transition function π_3 of FA_3 in terms of FA_1 and FA_2 .

(c) Define the initial state s_3 of FA_3 in terms of FA_1 and FA_2 .

(d) Define the set F_3 of final states of FA_3 in terms of FA_1 and FA_2 .

4. [20 points] Recall the pumping lemma:

Theorem 14 Let L be a language accepted by a finite automaton having N states, and let $w \in L$ with length $(w) \ge N$. Then there exists strings x, y, and z such that

- (i) w = xyz,
- (*ii*) $y \neq \Lambda$,
- (iii) $length(x) + length(y) \le N$,
- (iv) $xy^k z \in L$ for all k = 0, 1, 2, ...

For a string w over the alphabet $\Sigma = \{a, b\}$, define $n_a(w)$ to be the number of a's in w, and define $n_b(w)$ to be the number of b's in w. For example, if w = abaa, then $n_a(w) = 3$ and $n_b(w) = 1$. Prove that $L = \{w \in \Sigma^* : n_a(w) \ge n_b(w)\}$ is nonregular.