Midterm Exam II
CIS 341: Introduction to Logic and Automata - Fall 2003, day
Prof. Marvin K. Nakayama

Print family (or last) name: \qquad

Print given (or first) name: \qquad

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

Signature and Date

- This exam has 5 pages in total, numbered 1 to 5 . Make sure your exam has all the pages.
- This exam will be 1 hour and 25 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:

1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area or the backs of the sheets to work out your answers before filling in the answer space.
2. FA stands for finite automaton; TG stands for transition graph.
3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step.

Problem	1	2	3	4	Total
Points					

1. [30 points] For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
(a) TRUE FALSE - If L is an infinite language, then L must be nonregular.
(b) TRUE FALSE - If L_{1} and L_{2} are nonregular languages then $L_{1} \cap L_{2}$ must be nonregular.
(c) TRUE FALSE - If L_{1} and L_{2} are regular languages then $L_{1} \cap L_{2}$ must be regular.
(d) TRUE FALSE - If language L is accepted by a nondeterministic finite automaton, then L must have a regular expression.
(e) TRUE FALSE - Suppose a language L over an alphabet Σ is accepted by a finite automaton. Then an effective procedure to decide if $L=\emptyset$ is to test every string in Σ^{*} to see if any are accepted by the FA.
(f) TRUE FALSE - There is an effective procedure to decide if a transition graph accepts an infinite language.
(g) TRUE FALSE - If L is the language Palindrome over $\Sigma=\{a, b\}$, then L^{*} has regular expression $\left(\mathbf{a}+\mathbf{b}^{*}\right)^{*}$.
(h) TRUE FALSE - If a language L is accepted by a transition graph, then there must exist a regular expression for L^{\prime}.
(i) TRUE FALSE - If L is a nonregular language, then there is a nondeterministic finite automaton for L.
(j) TRUE FALSE - A regular expression for the language $L=\left\{a^{m} b^{m}\right.$: $m \geq 0\}$ is $\Lambda+\mathbf{a b}+\mathbf{a a}+\mathbf{b b}+\mathbf{a} \mathbf{a} \mathbf{a b b} \mathbf{b}+\cdots$.
2. [30 points] For the language L of the finite automaton below, construct a finite automaton for L^{*}.

Draw FA for L^{*} here:

Scratch-work area
3. [20 points] Suppose that a language L_{1} is accepted by a finite automaton $F A_{1}=\left(K_{1}, \Sigma, \pi_{1}, s_{1}, F_{1}\right)$, and a language L_{2} is accepted by a finite automaton $F A_{2}=\left(K_{2}, \Sigma, \pi_{2}, s_{2}, F_{2}\right)$, where for $F A_{i}, i=1,2, K_{i}$ is the set of states, Σ is the input alphabet, $\pi_{i}: K_{i} \times \Sigma \rightarrow K_{i}$ is the transition function, s_{i} is the initial state, and F_{i} is the set of final states. Define the language $L_{3}=L_{1} \cap L_{2}$, and for this question, you are to define a finite automaton $F A_{3}=\left(K_{3}, \Sigma, \pi_{3}, s_{3}, F_{3}\right)$ for L_{3} in terms of $F A_{1}$ and $F A_{2}$, as we covered in class.
(a) Define the set K_{3} of states of $F A_{3}$ in terms of $F A_{1}$ and $F A_{2}$.
(b) Define the transition function π_{3} of $F A_{3}$ in terms of $F A_{1}$ and $F A_{2}$.
(c) Define the initial state s_{3} of $F A_{3}$ in terms of $F A_{1}$ and $F A_{2}$.
(d) Define the set F_{3} of final states of $F A_{3}$ in terms of $F A_{1}$ and $F A_{2}$.
4. [20 points] Recall the pumping lemma:

Theorem 14 Let L be a language accepted by a finite automaton having N states, and let $w \in L$ with length $(w) \geq N$. Then there exists strings x, y, and z such that
(i) $w=x y z$,
(ii) $y \neq \Lambda$,
(iii) length $(x)+$ length $(y) \leq N$,
(iv) $x y^{k} z \in L$ for all $k=0,1,2, \ldots$.

For a string w over the alphabet $\Sigma=\{a, b\}$, define $n_{a}(w)$ to be the number of a 's in w, and define $n_{b}(w)$ to be the number of b 's in w. For example, if $w=a b a a$, then $n_{a}(w)=3$ and $n_{b}(w)=1$. Prove that $L=\left\{w \in \Sigma^{*}: n_{a}(w) \geq n_{b}(w)\right\}$ is nonregular.

