Midterm Exam I
CIS 341: Introduction to Logic and Automata - Fall 2003, evening
Prof. Marvin K. Nakayama

Print Name (family name first):

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

Signature and Date

- This exam has 6 pages in total, numbered 1 to 6 . Make sure your exam has all the pages.
- This exam will be 1 hour and 25 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:

1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area to work out your answers before filling in the answer space.
2. FA stands for finite automaton; TG stands for transition graph.
3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step.

Problem	1	2	3	4	Total
Points					

1. [30 points] For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
(a) TRUE FALSE - If S is any set of strings, then S^{*} is infinite.
(b) TRUE FALSE - The language Palindrome over the alphabet $\Sigma=\{a, b\}$ is closed under concatenation.
(c) TRUE FALSE - The language $L=\left\{a^{n} b^{n}: n \geq 0\right\}$ has regular expression $\mathbf{a}^{*} \mathbf{b}^{*}$.
(d) TRUE FALSE - If a language L has a regular expression, then L must be finite.
(e) TRUE FALSE - If a finite automaton has exactly one final state, then the language of the FA consists of exactly one word.
(f) TRUE FALSE - Given a transition graph T and a string w, if there is at least one way of processing w on T such that T crashes, then T rejects w.
(g) TRUE FALSE - If a language L is infinite, then it does not have a regular expression.
(h) TRUE FALSE - Every transition graph is also a finite automaton.
(i) TRUE FALSE - The regular expression $(\mathbf{a}+\mathbf{b})^{*}$ generates every possible string over the alphabet $\Sigma=\{a, b, c\}$.
(j) TRUE FALSE - The regular expression $(\mathbf{a a}+\mathbf{b b})^{*}$ generates the language over the alphabet $\Sigma=\{a, b\}$ of strings having an even number of a 's and an even number of b 's.
2. [20 points] For each of the following languages L over the alphabet $\Sigma=\{a, b\}$, give a finite automaton that accepts exactly L.
(a) L exactly consists of all strings with an odd number of b 's.

Draw finite automaton here:

(b) L exactly consists of all strings that do not contain the substring $a a b$.

Draw finite automaton here:

Scratch-work area
3. [30 points] Suppose we define a restricted version of the C++ programming language in which variable names must satisfy all of the following conditions:

- A variable name can only use lower-case Roman letters (i.e., $\mathrm{a}, \mathrm{b}, \ldots, \mathrm{z}$) or Arabic numerals (i.e., $0,1,2, \ldots, 9)$. Underscore and upper-case Roman letters are not allowed.
- A variable name must start with a lower-case Roman letter.
- The length of a variable name must be no greater than 4.
- A variable name cannot be a keyword (e.g., if). The set of keywords is finite.

Let L be the set of all valid variable names in our restricted version of $\mathrm{C}++$. Let L_{0} be the set of strings satisfying the first 3 conditions above; i.e., we do not require the last condition.
(a) Give a regular expression for L_{0}.
(b) Give a formula for $\left|L_{0}\right|$. You do not need to give a single number.
(c) Prove that L has a regular expression, where L is the set of strings satisfying all four conditions. You do not have to give the regular expression.

Scratch-work area

4. [20 points] For a language L, define the transpose of L, denoted by L^{t}, to be the language of exactly those words in L spelled backwards; i.e., $L^{t}=\{\operatorname{reverse}(w)$: $w \in L\}$. For example, if $L=\{a, a b b, b b a a b\}$, then $L^{t}=\{a, b b a, b a a b b\}$. Prove that $\left(L_{1} L_{2}\right)^{t}=L_{2}^{t} L_{1}^{t}$ for any languages L_{1} and L_{2}.
