Midterm Exam II CIS 341: Introduction to Logic and Automata — Fall 2003, evening Prof. Marvin K. Nakayama

Print family (or last) name:

Print given (or first) name: _____

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

Signature and Date

- This exam has 5 pages in total, numbered 1 to 5. Make sure your exam has all the pages.
- This exam will be 1 hour and 25 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:
 - 1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area or the backs of the sheets to work out your answers before filling in the answer space.
 - 2. FA stands for finite automaton; TG stands for transition graph.
 - 3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step.

Problem	1	2	3	4	Total
Points					

1. **[30 points]** For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE

(a)	TRUE	FALSE –	- Some nonregular languages are finite.
(b)	TRUE	FALSE –	- There is an effective procedure to determine if a tran- sition graph accepts an infinite language.
(c)	TRUE	FALSE –	- The language $L = \{a^i b^j : i \ge 0, j \ge 0\}$ is a regular language.
(d)	TRUE	FALSE –	- If L_1 is a regular language and L_2 is a nonregular language, then $L_1 \cap L_2$ must be nonregular.
(e)	TRUE	FALSE –	- If L_1 is a regular language and L_2 is a nonregular language, then $L_1 \cap L_2$ must be regular.
(f)	TRUE	FALSE –	- If a language L is accepted by a nondeterministic finite automaton, then there is a regular expression for L' .
(g)	TRUE	FALSE –	- If L is the language Palindrome over $\Sigma = \{a, b\}$, then L^* has regular expression $(\mathbf{a} + \mathbf{b}^*)^*$.
(h)	TRUE	FALSE –	- If L is accepted by a transition graph T , the language L' is accepted by the transition T' formed by swapping all final and non-final states of T , and using the same transitions and initial states.
(i)	TRUE	FALSE –	- Some regular languages are infinite.
(j)	TRUE	FALSE –	- It is impossible to determine if a regular expression generates an infinite language.

2. [30 points] Give a regular expression for the language L of the transition graph below.

Regular expression: _

Scratch-work area

- 3. **[25 points]** For each of the following parts, provide an example satisfying the given conditions. Give a brief explanation for each of your examples.
 - (a) Give an example of a nonregular language L_1 and a regular language L_2 such that $L_1 \subset L_2$.

(b) Give an example of nonregular languages L_1 and L_2 such that $L_1 \cap L_2$ is regular.

(c) Give an example of infinitely many regular languages L_1, L_2, L_3, \ldots such that $L_1 + L_2 + L_3 + \cdots$ is nonregular.

4. **[15 points]** Prove that if we remove a finite set of words from a regular language, the result is a regular language. (For this question, you may assume that all theorems from the book and the notes hold; i.e., you do not have to reprove any of those theorems.)