Midterm Exam II
CIS 341: Introduction to Logic and Automata - Fall 2003, evening
Prof. Marvin K. Nakayama

Print family (or last) name: \qquad

Print given (or first) name: \qquad

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

Signature and Date

- This exam has 5 pages in total, numbered 1 to 5 . Make sure your exam has all the pages.
- This exam will be 1 hour and 25 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:

1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area or the backs of the sheets to work out your answers before filling in the answer space.
2. FA stands for finite automaton; TG stands for transition graph.
3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step.

Problem	1	2	3	4	Total
Points					

1. [30 points] For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
(a) TRUE FALSE - Some nonregular languages are finite.
(b) TRUE FALSE - There is an effective procedure to determine if a transition graph accepts an infinite language.
(c) TRUE FALSE - The language $L=\left\{a^{i} b^{j}: i \geq 0, j \geq 0\right\}$ is a regular language.
(d) TRUE FALSE - If L_{1} is a regular language and L_{2} is a nonregular language, then $L_{1} \cap L_{2}$ must be nonregular.
(e) TRUE FALSE - If L_{1} is a regular language and L_{2} is a nonregular language, then $L_{1} \cap L_{2}$ must be regular.
(f) TRUE FALSE - If a language L is accepted by a nondeterministic finite automaton, then there is a regular expression for L^{\prime}.
(g) TRUE FALSE - If L is the language Palindrome over $\Sigma=\{a, b\}$, then L^{*} has regular expression $\left(\mathbf{a}+\mathbf{b}^{*}\right)^{*}$.
(h) TRUE FALSE - If L is accepted by a transition graph T, the language L^{\prime} is accepted by the transition T^{\prime} formed by swapping all final and non-final states of T, and using the same transitions and initial states.
(i) TRUE FALSE - Some regular languages are infinite.
(j) TRUE FALSE - It is impossible to determine if a regular expression generates an infinite language.
2. [30 points] Give a regular expression for the language L of the transition graph below.

Regular expression:

Scratch-work area

3. [25 points] For each of the following parts, provide an example satisfying the given conditions. Give a brief explanation for each of your examples.
(a) Give an example of a nonregular language L_{1} and a regular language L_{2} such that $L_{1} \subset L_{2}$.
(b) Give an example of nonregular languages L_{1} and L_{2} such that $L_{1} \cap L_{2}$ is regular.
(c) Give an example of infinitely many regular languages $L_{1}, L_{2}, L_{3}, \ldots$ such that $L_{1}+L_{2}+L_{3}+\cdots$ is nonregular.
4. [15 points] Prove that if we remove a finite set of words from a regular language, the result is a regular language. (For this question, you may assume that all theorems from the book and the notes hold; i.e., you do not have to reprove any of those theorems.)
