Midterm Exam CIS 341-451: Introduction to Logic and Automata — Fall 2004, eLearning Prof. Marvin K. Nakayama

Print Family (i.e., Last) Name:

Print Given (i.e., First) Name:

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

Signature and Date

- This exam has 7 pages in total, numbered 1 to 7. Make sure your exam has all the pages.
- The exam is to be given on Saturday, October 23, 2004, 12:30–3:00pm.
- This is a closed-book, closed-note exam. No calculators are allowed.
- For all problems, follow these instructions:
 - 1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area or the backs of the sheets to work out your answers before filling in the answer space.
 - 2. FA stands for finite automaton; TG stands for transition graph.
 - 3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step.

Problem	1	2	3	4	5	6	Total
Points							

- 1. **[20 points]** For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
 - (a) TRUE FALSE If L is accepted by a transition graph, then there must be a regular expression for L.
 - (b) TRUE FALSE All finite automata are also transition graphs.
 - (c) TRUE FALSE A transition graph must have exactly one initial state.
 - (d) TRUE FALSE The regular expressions $\mathbf{b}^* \mathbf{a}^*$ and $(\mathbf{b}\mathbf{a})^*$ generate the same language.
 - (e) TRUE FALSE If L is any language, then $\Lambda \in L^*$.
 - (f) TRUE FALSE A finite automaton may have no final states.
 - (g) TRUE FALSE L has a regular expression only if L is finite.
 - (h) TRUE FALSE If L_1 is a regular language and L_2 is a nonregular language, then $L_1 + L_2$ must be a nonregular language.
 - (i) TRUE FALSE If L_1 is a nonregular language, then there must exist a regular language L_2 such that $L_2 \subset L_1$.
 - (j) TRUE FALSE There is an effective procedure to determine if two transition graphs accept the same language.

- 2. [20 points] For each of the following languages L over the alphabet $\Sigma = \{0, 1\}$, give a regular expression for L.
 - (a) L consists of exactly those strings over Σ that begin and end with 1.

Regular Expression:	

(b) L consists of exactly those strings over Σ that have an odd number of 1's.

 Regular Expression:

- 3. [20 points] For each of the following languages L over the alphabet $\Sigma = \{a, b\}$, give a finite automaton that accepts exactly L.
 - (a) L exactly consists of all strings over Σ with length at least 2.

Draw finite automaton here:

(b) L exactly consists of all strings over Σ that end in *aab*.

Draw finite automaton here:

4. **[13 points]** Let L be the language accepted by the transition graph below. Give a regular expression for L.

Regular Expression:

5. **[12 points]** Let L_1 be the language accepted by the finite automaton FA_1 below, and L_2 be the language accepted by the finite automaton FA_2 below.

 FA_2

Draw a finite automaton for $L'_1 \cap L_2$ here:

6. **[15 points]** Recall the pumping lemma:

Theorem 14 Let L be a language accepted by a finite automaton having N states, and let $w \in L$ with $length(w) \ge N$. Then there exists strings x, y, and z such that

- (i) w = xyz,
- (*ii*) $y \neq \Lambda$,
- (iii) $length(x) + length(y) \le N$,
- (iv) $xy^k z \in L$ for all k = 0, 1, 2, ...

Prove that $L = \{b^{3m}a^{2m}b^m : m \ge 0\}$ is a nonregular language.