Midterm Exam

CIS 341-451: Introduction to Logic and Automata - Fall 2004, eLearning Prof. Marvin K. Nakayama

Print Family (i.e., Last) Name: \qquad

Print Given (i.e., First) Name: \qquad

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

Signature and Date

- This exam has 7 pages in total, numbered 1 to 7 . Make sure your exam has all the pages.
- The exam is to be given on Saturday, October 23, 2004, 12:30-3:00pm.
- This is a closed-book, closed-note exam. No calculators are allowed.
- For all problems, follow these instructions:

1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area or the backs of the sheets to work out your answers before filling in the answer space.
2. FA stands for finite automaton; TG stands for transition graph.
3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step.

Problem	1	2	3	4	5	6	Total
Points							

1. [20 points] For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
(a) TRUE FALSE - If L is accepted by a transition graph, then there must be a regular expression for L.
(b) TRUE FALSE - All finite automata are also transition graphs.
(c) TRUE FALSE - A transition graph must have exactly one initial state.
(d) TRUE FALSE - The regular expressions $\mathbf{b}^{*} \mathbf{a}^{*}$ and (ba)* generate the same language.
(e) TRUE FALSE - If L is any language, then $\Lambda \in L^{*}$.
(f) TRUE FALSE - A finite automaton may have no final states.
(g) TRUE FALSE - L has a regular expression only if L is finite.
(h) TRUE FALSE - If L_{1} is a regular language and L_{2} is a nonregular language, then $L_{1}+L_{2}$ must be a nonregular language.
(i) TRUE FALSE - If L_{1} is a nonregular language, then there must exist a regular language L_{2} such that $L_{2} \subset L_{1}$.
(j) TRUE FALSE - There is an effective procedure to determine if two transition graphs accept the same language.
2. [20 points] For each of the following languages L over the alphabet $\Sigma=\{0,1\}$, give a regular expression for L.
(a) L consists of exactly those strings over Σ that begin and end with 1 .

Regular Expression:

(b) L consists of exactly those strings over Σ that have an odd number of 1 's.

Regular Expression:

Scratch-work area

3. [20 points] For each of the following languages L over the alphabet $\Sigma=\{a, b\}$, give a finite automaton that accepts exactly L.
(a) L exactly consists of all strings over Σ with length at least 2 .

Draw finite automaton here:

(b) L exactly consists of all strings over Σ that end in $a a b$.

Draw finite automaton here:

Scratch-work area
4. [13 points] Let L be the language accepted by the transition graph below. Give a regular expression for L.

Regular Expression:

Scratch-work area
5. [12 points] Let L_{1} be the language accepted by the finite automaton $F A_{1}$ below, and L_{2} be the language accepted by the finite automaton $F A_{2}$ below.

Draw a finite automaton for $L_{1}^{\prime} \cap L_{2}$ here:

Scratch-work area
6. [15 points] Recall the pumping lemma:

Theorem 14 Let L be a language accepted by a finite automaton having N states, and let $w \in L$ with length $(w) \geq N$. Then there exists strings x, y, and z such that
(i) $w=x y z$,
(ii) $y \neq \Lambda$,
(iii) length $(x)+$ length $(y) \leq N$,
(iv) $x y^{k} z \in L$ for all $k=0,1,2, \ldots$.

Prove that $L=\left\{b^{3 m} a^{2 m} b^{m}: m \geq 0\right\}$ is a nonregular language.

