Midterm Exam I

CIS 341: Introduction to Logic and Automata - Fall 2004, day
Prof. Marvin K. Nakayama

Print Family (i.e., Last) Name: \qquad

Print Given (i.e., First) Name: \qquad

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

Signature and Date

- This exam has 6 pages in total, numbered 1 to 6 . Make sure your exam has all the pages.
- This exam will be 1 hour and 25 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:

1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area or the backs of the sheets to work out your answers before filling in the answer space.
2. FA stands for finite automaton; TG stands for transition graph.
3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step.

Problem	1	2	3	4	Total
Points					

1. [30 points] For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
(a) TRUE FALSE - All finite automata are deterministic.
(b) TRUE FALSE - All transition graphs are nondeterministic.
(c) TRUE FALSE - A finite automaton must have exactly one initial state.
(d) TRUE FALSE - The language $L=\left\{a^{n} b^{n}: n \geq 0\right\}$ has regular expression $\mathbf{a}^{*} \mathbf{b}^{*}$.
(e) TRUE FALSE - A transition graph $M=(K, \Sigma, \Pi, S, F)$ accepts a string $w \in \Sigma^{*}$ if and only if every possible way of processing w on M results in ending in a final state with no unread letters left and without crashing.
(f) TRUE FALSE $-\Lambda \in\{\Lambda\}$.
(g) TRUE FALSE - L has a regular expression only if L is finite.
(h) TRUE FALSE - If L has regular expression \mathbf{a}^{*}, then $\{a\} \in L$.
(i) TRUE FALSE - If two sets A and B satisfy $A=B$, then $A \subset B$.
(j) TRUE FALSE - A transition graph may have no final states.
2. [20 points] For each of the following languages L over the alphabet $\Sigma=\{0,1\}$, give a regular expression for L.
(a) $L=\left\{w \in \Sigma^{*}: w=s 1\right.$ for some $\left.s \in \Sigma^{*}\right\}$.

Regular Expression:

(b) L consists of all strings over Σ that contain neither 00 nor 11 as a substring.

Regular Expression:

Scratch-work area

3. [30 points] For each of the following languages L over the alphabet $\Sigma=\{a, b\}$, give a finite automaton that accepts exactly L. For each part below, give two representations of the finite automaton: first as a picture and then the formal definition of the finite automaton as (K, Σ, π, s, F); i.e., specify each of K, Σ, π, s, and F for each of your finite automata.
(a) $L=\left\{w \in \Sigma^{*}:|w| \leq 3\right\}$.

Draw picture of finite automaton here:

Give formal specification of finite automaton as (K, Σ, π, s, F) here:
(b) L exactly consists of all strings w with $|w| \geq 2$ and whose second-to-last letter is b.

Draw picture of finite automaton here:

Give formal specification of finite automaton as (K, Σ, π, s, F) here:

Scratch-work area

4. [20 points] Prove that $S^{++}=S^{+}$for any set of strings S.
