Midterm Exam II
CIS 341: Introduction to Logic and Automata - Fall 2004, day
Prof. Marvin K. Nakayama

Print family (or last) name: $\qquad$

Print given (or first) name: $\qquad$

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

Signature and Date

- This exam has 5 pages in total, numbered 1 to 5 . Make sure your exam has all the pages.
- This exam will be 1 hour and 25 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:

1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area or the backs of the sheets to work out your answers before filling in the answer space.
2. FA stands for finite automaton; TG stands for transition graph.
3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step.

| Problem | 1 | 2 | 3 | 4 | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Points |  |  |  |  |  |

1. [30 points] For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
(a) TRUE FALSE - Determining if a regular expression generates an infinite language is a decidable problem.
(b) TRUE FALSE - If $L$ is a regular language, then $L^{\prime}$ is regular.
(c) TRUE FALSE - If $L$ is a nonregular language, then $L^{\prime}$ is nonregular.
(d) TRUE FALSE - If $L_{1}$ is a regular language and $L_{2}$ is another language such that $L_{1} \subset L_{2}$, then $L_{2}$ must be regular.
(e) TRUE FALSE - There is an effective procedure to determine if a transition graph accepts the empty language.
(f) TRUE FALSE - If $L_{1}$ has a finite automaton and $L_{2}$ has a regular expression, then $\left(L_{1} L_{2}\right)^{\prime}$ has a transition graph.
(g) TRUE FALSE - The language $\left\{a^{2 n}: n \geq 0\right\}$ is a nonregular language.
(h) TRUE FALSE - If $L$ has a context-free grammar, then $L$ is a nonregular language.
(i) TRUE FALSE - An effective procedures to determine if the language $L$ of a transition graph $T$ contains $\Lambda$ is to conclude that $\Lambda \in L$ if and only if an initial state of $T$ is also a final state.
(j) TRUE FALSE - Every regular language has a nondeterministic finite automaton.
2. [30 points] Let $L_{1}$ be the language of finite automata $M_{1}$ below, and let $L_{2}$ be the language of finite automata $M_{2}$ below.

FA $M_{1}$


FA $M_{2}$


Give a finite automaton for $L_{1}^{\prime} \cap L_{2}$.

## Scratch-work area

3. [20 points] Let $\Sigma=\{a, b\}$. Give context-free grammars for each of the languages below. Be sure to define the set of nonterminals, the set of terminals, and the productions.
(a) $\left\{w \in \Sigma^{*}: w\right.$ begins with $\left.a a\right\}$.
(b) EVEN-EVEN, which is the set of strings over $\Sigma$ that have an even number of $a$ 's and an even number of $b$ 's.
(c) $\left\{w \in \Sigma^{*}: w=w^{R},|w|\right.$ is even $\}$, where $w^{R}$ is the reverse of the string $w$.

## Scratch-work area

4. [20 points] Recall the pumping lemma:

Theorem 14 Let $L$ be a language accepted by a finite automaton having $N$ states, and let $w \in L$ with length $(w) \geq N$. Then there exists strings $x, y$, and $z$ such that
(i) $w=x y z$,
(ii) $y \neq \Lambda$,
(iii) length $(x)+$ length $(y) \leq N$,
(iv) $x y^{k} z \in L$ for all $k=0,1,2, \ldots$.

Let $\Sigma=\{a, b\}$, and define language $L=\left\{w \in \Sigma^{*}: w=w^{R},|w|\right.$ is even $\}$, where $w^{R}$ denotes the reverse of the string $w$. Prove that $L$ is a nonregular language.

