Midterm Exam I

CIS 341: Introduction to Logic and Automata - Spring 2004, day
Prof. Marvin K. Nakayama

Print Family (i.e., Last) Name: \qquad

Print Given (i.e., First) Name: \qquad

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

Signature and Date

- This exam has 5 pages in total, numbered 1 to 5 . Make sure your exam has all the pages.
- This exam will be 1 hour and 25 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:

1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area or the backs of the sheets to work out your answers before filling in the answer space.
2. FA stands for finite automaton; TG stands for transition graph.
3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step.

Problem	1	2	3	4	Total
Points					

1. [30 points] For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
(a) TRUE FALSE - A finite automaton may crash when processing an input string.
(b) TRUE FALSE - The regular expressions $(\mathbf{a}+\mathbf{b})^{*}$ and $\left(\mathbf{a}^{*} \mathbf{b}^{*}\right)^{*}$ generate the same language.
(c) TRUE FALSE - If there is at least one way of processing a string w on a transition graph T such that T crashes on w, then w is not in the language of T.
(d) TRUE FALSE - If L is any language, then $L \subset L^{*}$.
(e) TRUE FALSE - Some finite automata are nondeterministic.
(f) TRUE FALSE - If L is any language, then $L^{*}=L^{+}+\{\Lambda\}$.
(g) TRUE FALSE - If L has a regular expression, then L is finite.
(h) TRUE FALSE $-L^{*+}=L^{*}$ for any language L.
(i) TRUE FALSE - If $L=\emptyset$, then $\Lambda \in L$.
(j) TRUE FALSE - If the initial state in a finite automaton M is not also a final state, then M rejects Λ.
2. [25 points] For each of the following languages L over the alphabet $\Sigma=\{0,1\}$, give a regular expression for L.
(a) L exactly consists of all strings that have at least two 0 's.

Regular Expression:

(b) L exactly consists of all strings that have an even number of 0 's or an even number of 1's. (Note that this says or, not and.)

Regular Expression:

Scratch-work area

3. [25 points] For each of the following languages L over the alphabet $\Sigma=\{a, b\}$, give a finite automaton that accepts exactly L.
(a) L exactly consists of all strings that have at least one a.

Draw finite automaton here:

(b) L exactly consists of all strings that end in $b a b$.

Draw finite automaton here:

Scratch-work area
4. [20 points] Recall that Theorem 1 states that $S^{* *}=S^{*}$ for any set of strings S. You may assume that this holds; i.e., you do not have to reprove it.
(a) For any set of strings S, is $S^{* * *}=S^{*}$ always true? If this is always true, give a proof. If it is not true in general, give a counterexample. Be sure to explain your answer.
(b) For any set of strings S, is $S^{* * *}=S$ always true? If this is always true, give a proof. If it is not true in general, give a counterexample. Be sure to explain your answer.

