Midterm Exam II
CIS 341: Introduction to Logic and Automata - Spring 2004, day
Prof. Marvin K. Nakayama

Print family (or last) name: \qquad

Print given (or first) name: \qquad

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

Signature and Date

- This exam has 5 pages in total, numbered 1 to 5 . Make sure your exam has all the pages.
- This exam will be 1 hour and 25 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:

1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area or the backs of the sheets to work out your answers before filling in the answer space.
2. FA stands for finite automaton; TG stands for transition graph.
3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step.

Problem	1	2	3	4	Total
Points					

1. [30 points] For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
(a) TRUE FALSE - If a language L has a finite automaton, then L has a regular expression.
(b) TRUE FALSE - If L_{1} is accepted by a transition graph and L_{2} has a regular expression, then $L_{1}^{\prime} \cap L_{2}$ is a regular language.
(c) TRUE FALSE - If L has a regular expression, the L has a nondeterministic finite automaton.
(d) TRUE FALSE - If L_{1} and L_{2} are languages such that $L_{1} \subset L_{2}$ and L_{2} is regular, then L_{1} must be regular.
(e) TRUE FALSE - If L_{1} and L_{2} are languages such that $L_{1} \subset L_{2}$ and L_{2} is nonregular, then L_{1} must be nonregular.
(f) TRUE FALSE - There is an effective procedure to decide if a nondeterministic finite automaton accepts an infinite language.
(g) TRUE FALSE - If L has a context-free grammar, then L is a nonregular language.
(h) TRUE FALSE - If L is a regular language, then its complement is a nonregular language.
(i) TRUE FALSE - If L_{1} and L_{2} are nonregular languages, then $L_{1} \cap L_{2}$ must be nonregular.
(j) TRUE FALSE - An effective procedure to decide if a finite automaton with N states accepts any strings over an alphabet Σ is to keep testing strings over Σ on the FA until a string is accepted.
2. [30 points] Let L_{1} be the language of finite automata FA_{1} below, and let L_{2} be the language of finite automata FA_{2} below.

Show that $L_{1}=L_{2}$ using the method discussed in class.

Scratch-work area
3. [20 points] Suppose that a language L_{1} is accepted by a finite automaton $F A_{1}=\left(K_{1}, \Sigma, \pi_{1}, s_{1}, F_{1}\right)$, and a language L_{2} is accepted by a finite automaton $F A_{2}=\left(K_{2}, \Sigma, \pi_{2}, s_{2}, F_{2}\right)$, where for $F A_{i}, i=1,2, K_{i}$ is the set of states, Σ is the input alphabet, $\pi_{i}: K_{i} \times \Sigma \rightarrow K_{i}$ is the transition function, s_{i} is the initial state, and F_{i} is the set of final states. Define the language $L_{3}=L_{1}+L_{2}$, and for this question, you are to define a finite automaton $F A_{3}=\left(K_{3}, \Sigma, \pi_{3}, s_{3}, F_{3}\right)$ for L_{3} in terms of $F A_{1}$ and $F A_{2}$, as we covered in class.
(a) Define the set K_{3} of states of $F A_{3}$ in terms of $F A_{1}$ and $F A_{2}$.
(b) Define the transition function π_{3} of $F A_{3}$ in terms of $F A_{1}$ and $F A_{2}$.
(c) Define the initial state s_{3} of $F A_{3}$ in terms of $F A_{1}$ and $F A_{2}$.
(d) Define the set F_{3} of final states of $F A_{3}$ in terms of $F A_{1}$ and $F A_{2}$.
4. [20 points] Recall the pumping lemma:

Theorem 14 Let L be a language accepted by a finite automaton having N states, and let $w \in L$ with length $(w) \geq N$. Then there exists strings x, y, and z such that
(i) $w=x y z$,
(ii) $y \neq \Lambda$,
(iii) length $(x)+$ length $(y) \leq N$,
(iv) $x y^{k} z \in L$ for all $k=0,1,2, \ldots$.

Let L be the language defined by the context-free grammar with $\Omega=\{S\}, \Sigma=$ $\{2,4,6,+,-, *, /,()$,$\} , and productions$

$$
S \rightarrow S+S|S-S| S * S|S / S|(S)|2| 4 \mid 6
$$

Prove that L is a nonregular language.

