Midterm Exam I

CIS 341: Introduction to Logic and Automata - Spring 2004, evening
Prof. Marvin K. Nakayama

Print Family (i.e., Last) Name: \qquad

Print Given (i.e., First) Name: \qquad

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

Signature and Date

- This exam has 5 pages in total, numbered 1 to 5 . Make sure your exam has all the pages.
- This exam will be 1 hour and 25 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:

1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area or the backs of the sheets to work out your answers before filling in the answer space.
2. FA stands for finite automaton; TG stands for transition graph.
3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step.

Problem	1	2	3	4	Total
Points					

1. [30 points] For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
(a) TRUE FALSE - Suppose that T is a transition graph defined with an alphabet Σ. If every state in T is a final state, then T accepts Σ^{*}.
(b) TRUE FALSE - A transition graph may crash when processing a string.
(c) TRUE FALSE - If L is an infinite language, then $L=L^{*}$.
(d) TRUE FALSE - The regular expressions $\mathbf{a}^{*} \mathbf{b}^{*}$ and ($\left.\mathbf{a b}\right)^{*}$ generate the same language.
(e) TRUE FALSE - If $\Lambda \in L$, then $L^{+}=L^{*}$.
(f) TRUE FALSE - For any language $L, \Lambda \in L^{+}$.
(g) TRUE FALSE - A transition graph may have no final states.
(h) TRUE FALSE - A finite automaton can have more than one final state.
(i) TRUE FALSE - If $L=\emptyset$, then $\Lambda \in L$.
(j) TRUE FALSE - A regular expression for the language $L=\left\{b^{n}: n \geq 0\right\}$ is $\boldsymbol{\Lambda}+\mathbf{b}+\mathbf{b b}+\mathbf{b b b}+\cdots$.
2. [25 points] For each of the following languages L over the alphabet $\Sigma=\{0,1\}$, give a regular expression for L.
(a) L exactly consists of all strings that end in 110 .

Regular Expression:

(b) L exactly consists of all strings that do not contain 00 as a substring.

Regular Expression:

Scratch-work area

3. [25 points] For each of the following languages L over the alphabet $\Sigma=\{a, b\}$, give a finite automaton that accepts exactly L.
(a) L exactly consists of all strings that begin with b.

Draw finite automaton here:

(b) L exactly consists of all strings in which the number of a 's is divisible by 3 ; i.e., the number of a 's in a string $w \in L$ is $3 n$ for some integer $n \geq 0$.

Draw finite automaton here:

Scratch-work area

4. [20 points] For any language L, define the transpose of L, denoted by L^{t}, to be the language of exactly those words that are words in L spelled backward; i.e., $L^{t}=\{\operatorname{reverse}(w): w \in L\}$. For example, if $L=\{a, a b b, b b a a b, b b b a a\}$, then $L^{t}=\{a, b b a, b a a b b, a a b b b\}$. Prove that $\left(L_{1} L_{2}\right)^{t}=L_{2}^{t} L_{1}^{t}$ for languages L_{1} and L_{2}.
