Midterm Exam II CIS 341: Introduction to Logic and Automata — Spring 2004, evening Prof. Marvin K. Nakayama

Print family (or last) name:

Print given (or first) name:

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

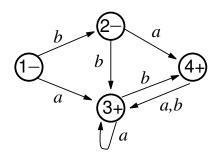
Signature and Date

- This exam has 5 pages in total, numbered 1 to 5. Make sure your exam has all the pages.
- This exam will be 1 hour and 25 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:
 - 1. Show your work and give reasons (except for question 1).
 - 2. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area or the backs of the sheets to work out your answers before filling in the answer space.
 - 3. FA stands for finite automaton; TG stands for transition graph.
 - 4. For any proofs, be sure to provide a step-by-step argument, with justifications for every step.

Problem	1	2	3	4	Total
Points					

- 1. **[30 points]** For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
 - (a) TRUE FALSE If L is a nonregular language, then L has a nondeterministic finite automaton.
 - (b) TRUE FALSE A regular expression for the language $L = \{a^n b^n : n \ge 0\}$ is $\mathbf{a}^* \mathbf{b}^*$.
 - (c) TRUE FALSE If L_1 and L_2 are languages such that $L_1 + L_2$ is regular, then L_1 and L_2 must be regular.
 - (d) TRUE FALSE If language L_1 has a regular expression and language L_2 has a transition graph, then $L_1 \cap L_2$ must be regular.
 - (e) TRUE FALSE If a language L has a nondeterministic finite automaton, then L' also does.
 - (f) TRUE FALSE If L is infinite, then L is a nonregular language.
 - (g) TRUE FALSE If L has a context-free grammar, then L is a nonregular language.
 - (h) TRUE FALSE If a language L has a transition graph, then L^* has a regular expression.
 - (i) TRUE FALSE If L_1 and L_2 are nonregular languages, then $L_1 \cap L_2$ must be nonregular.
 - (j) TRUE FALSE An effective procedure to decide if a finite automaton with N states accepts any strings over an alphabet Σ is to keep testing strings over Σ on the FA until a string is accepted.

2. [30 points] Let L be the language of finite automata below.



Give a regular expression for L.

Answer: ____

Scratch-work area

- 3. [20 points] Suppose that a language L_1 is accepted by a finite automaton $FA_1 = (K_1, \Sigma, \pi_1, s_1, F_1)$, and a language L_2 is accepted by a finite automaton $FA_2 = (K_2, \Sigma, \pi_2, s_2, F_2)$, where for FA_i , $i = 1, 2, K_i$ is the set of states, Σ is the input alphabet, $\pi_i : K_i \times \Sigma \to K_i$ is the transition function, s_i is the initial state, and F_i is the set of final states. Define the language $L_3 = L_1 \cap L_2$, and for this question, you are to define a finite automaton $FA_3 = (K_3, \Sigma, \pi_3, s_3, F_3)$ for L_3 in terms of FA_1 and FA_2 , as we covered in class.
 - (a) Define the set K_3 of states of FA_3 in terms of FA_1 and FA_2 .

(b) Define the transition function π_3 of FA_3 in terms of FA_1 and FA_2 .

(c) Define the initial state s_3 of FA_3 in terms of FA_1 and FA_2 .

(d) Define the set F_3 of final states of FA_3 in terms of FA_1 and FA_2 .

4. [20 points] Recall the pumping lemma:

Theorem 14 Let L be a language accepted by a finite automaton having N states, and let $w \in L$ with $length(w) \ge N$. Then there exists strings x, y, and z such that

- (i) w = xyz, (ii) $y \neq \Lambda$,
- (*iii*) $length(x) + length(y) \le N$,
- (iv) $xy^k z \in L$ for all $k = 0, 1, 2, \ldots$

Let L be the language defined by the context-free grammar with $\Omega = \{S\}, \Sigma = \{a, b\}$, and productions

 $S \rightarrow aSa \mid bSb \mid a \mid b$

Prove that L is a nonregular language.