Midterm Exam CIS 341-451: Foundations of Computer Science II — Fall 2005, eLearning section Prof. Marvin K. Nakayama

Print family (or last) name: _____

Print given (or first) name: _____

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

Signature and Date

- This exam has 8 pages in total, numbered 1 to 8. Make sure your exam has all the pages.
- The exam is to be given on Saturday, October 22, 2005, 12:30-3:00pm, EST.
- This is a closed-book, closed-note exam. No calculators are allowed.
- For all problems, follow these instructions:
 - 1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area or the backs of the sheets to work out your answers before filling in the answer space.
 - 2. DFA stands for deterministic finite automaton; NFA stands for nondeterministic finite automaton; CFG stands for context-free grammar; PDA stands for pushdown automaton; TM stands for Turing machine.
 - 3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step.

Problem	1	2	3	4	5	6	7	Total
Points								

- 1. **[20 points]** For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
 - (a) TRUE FALSE If A is recognized by an NFA, then A is a context-free language.
 - (b) TRUE FALSE Every context-free language is regular.
 - (c) TRUE FALSE Every context-free language is not regular.
 - (d) TRUE FALSE A language L has a CFG if and only if L is recognized by a PDA.
 - (e) TRUE FALSE If a language A is not context-free, then it must be infinite.
 - (f) TRUE FALSE The class of Turing-decidable languages is closed under union.
 - (g) TRUE FALSE If A is a nonregular language, then A is recognized by an NFA.
 - (h) TRUE FALSE A regular expression for the language $\{0^n 1^n \mid n \ge 0\}$ is $\varepsilon \cup 01 \cup 0011 \cup 000111 \cup \cdots$.
 - (i) TRUE FALSE \emptyset is a context-free language.
 - (j) TRUE FALSE Every DFA is also an NFA.

- 2. [20 points] Give definitions or meanings of the following terms and phrases. Each answer should be at most two sentences. Be sure to define any notation that you use.
 - (a) The complement of a language A defined over alphabet Σ .

(b) Chomsky normal form.

(c) The difference between a Turing-decidable language and a Turing-recognizable language.

(d) The class of context-free languages is closed under concatenation.

3. **[10 points]** Let A be the language over the alphabet $\Sigma = \{a, b\}$ defined by regular expression $(a \cup ba)^*(ab)^*$. Give an NFA that recognizes A.

Draw an NFA for A here.

Scratch-work area

4. [10 points] Convert the following NFA N into an equivalent DFA.

Answer:

Scratch-work area

- 5. [20 points] Consider the language $A = \{ w \in \Sigma^* \mid w = w^{\mathcal{R}} \}$, where $\Sigma = \{a, b\}$ and $w^{\mathcal{R}}$ denotes the reverse of string w.
 - (a) Give a context-free grammar that describes A.

(b) Give a pushdown automaton that recognizes A.

Scratch-work area

6. **[10 points]** Show that the collection of Turing-recognizable languages is closed under union.

7. **[10 points]** Recall the pumping lemma for context-free languages:

Theorem: For every context-free language L, there exists a pumping length p such that, if $s \in L$ with $|s| \ge p$, then we can write s = uvxyz with

- (i) $uv^i xy^i z \in L$ for each $i \ge 0$,
- (ii) |vy| > 0, and
- (iii) $|vxy| \leq p$.

Prove that $A = \{ a^{3n}b^nc^{2n} \mid n \ge 0 \}$ is not a context-free language.