Midterm Exam
CIS 341-451: Foundations of Computer Science II - Fall 2005, eLearning section Prof. Marvin K. Nakayama

Print family (or last) name: \qquad

Print given (or first) name: \qquad

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

Signature and Date

- This exam has 8 pages in total, numbered 1 to 8 . Make sure your exam has all the pages.
- The exam is to be given on Saturday, October 22, 2005, 12:30-3:00pm, EST.
- This is a closed-book, closed-note exam. No calculators are allowed.
- For all problems, follow these instructions:

1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area or the backs of the sheets to work out your answers before filling in the answer space.
2. DFA stands for deterministic finite automaton; NFA stands for nondeterministic finite automaton; CFG stands for context-free grammar; PDA stands for pushdown automaton; TM stands for Turing machine.
3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step.

Problem	1	2	3	4	5	6	7	Total
Points								

1. [20 points] For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
(a) TRUE FALSE - If A is recognized by an NFA, then A is a context-free language.
(b) TRUE FALSE - Every context-free language is regular.
(c) TRUE FALSE - Every context-free language is not regular.
(d) TRUE FALSE - A language L has a CFG if and only if L is recognized by a PDA.
(e) TRUE FALSE - If a language A is not context-free, then it must be infinite.
(f) TRUE FALSE - The class of Turing-decidable languages is closed under union.
(g) TRUE FALSE - If A is a nonregular language, then A is recognized by an NFA.
(h) TRUE FALSE - A regular expression for the language $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is $\varepsilon \cup 01 \cup 0011 \cup 000111 \cup \cdots$.
(i) TRUE FALSE - \emptyset is a context-free language.
(j) TRUE FALSE - Every DFA is also an NFA.
2. [20 points] Give definitions or meanings of the following terms and phrases. Each answer should be at most two sentences. Be sure to define any notation that you use.
(a) The complement of a language A defined over alphabet Σ.
(b) Chomsky normal form.
(c) The difference between a Turing-decidable language and a Turing-recognizable language.
(d) The class of context-free languages is closed under concatenation.
3. [10 points] Let A be the language over the alphabet $\Sigma=\{a, b\}$ defined by regular expression $(a \cup b a)^{*}(a b)^{*}$. Give an NFA that recognizes A.

Draw an NFA for A here.

Scratch-work area
4. [10 points] Convert the following NFA N into an equivalent DFA.

Answer:

Scratch-work area

5. [20 points] Consider the language $A=\left\{w \in \Sigma^{*} \mid w=w^{\mathcal{R}}\right\}$, where $\Sigma=\{a, b\}$ and $w^{\mathcal{R}}$ denotes the reverse of string w.
(a) Give a context-free grammar that describes A.
(b) Give a pushdown automaton that recognizes A.

Scratch-work area

6. [10 points] Show that the collection of Turing-recognizable languages is closed under union.
7. [10 points] Recall the pumping lemma for context-free languages:

Theorem: For every context-free language L, there exists a pumping length p such that, if $s \in L$ with $|s| \geq p$, then we can write $s=u v x y z$ with
(i) $u v^{i} x y^{i} z \in L$ for each $i \geq 0$,
(ii) $|v y|>0$, and
(iii) $|v x y| \leq p$.

Prove that $A=\left\{a^{3 n} b^{n} c^{2 n} \mid n \geq 0\right\}$ is not a context-free language.

