Midterm Exam II
CIS 341: Foundations of Computer Science II - Fall 2005, day section
Prof. Marvin K. Nakayama

Print family (or last) name: \qquad

Print given (or first) name: \qquad

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

Signature and Date: \qquad

- This exam has 6 pages in total, numbered 1 to 6 . Make sure your exam has all the pages.
- This exam will be 1 hour and 25 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:

1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area or the backs of the sheets to work out your answers before filling in the answer space.
2. DFA stands for deterministic finite automaton; NFA stands for nondeterministic finite automaton; CFG stands for context-free grammar; PDA stands for pushdown automaton.
3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step. Unless you are specifically asked to prove a theorem from the book, you may assume that the theorems in the textbook hold; i.e., you do not have to reprove the theorems in the textbook. When using a theorem from the textbook, make sure you provide enough detail so that it is clear which result you are using; e.g., say something like, "By the theorem that shows every NFA has an equivalent DFA, it follows that ..."

Problem	1	2	3	4	5	Total
Points						

1. [20 points] For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
(a) TRUE FALSE - If language A has a CFG, then A has a regular expression.
(b) TRUE FALSE - If language A has a regular expression, then A has a CFG.
(c) TRUE FALSE - A Turing machine $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$ will either accept or reject any string $w \in \Sigma^{*}$.
(d) TRUE FALSE - There is a language A that is recognized by a 3 -tape Turing machine but is not recognized by any 1-tape Turing machine.
(e) TRUE FALSE - Every Turing-recognizable language is also Turingdecidable.
(f) TRUE FALSE - If language A has a PDA, then A has a CFG in Chomsky normal form.
(g) TRUE FALSE - The language $A=\left\{w w \mid w \in \Sigma^{*}\right\}$ with $\Sigma=\{0,1\}$ is context-free.
(h) TRUE FALSE - If a language is Turing-decidable, then it is also context-free.
(i) TRUE FALSE - There is an algorithm to determine if a regular expression R generates a string w.
(j) TRUE FALSE - Every nondeterministic Turing machine has an equivalent deterministic Turing machine.
2. [24 points] Give a short answer (at most two sentences) for each part below. No proofs are required, but be sure to define any notation that you use.
(a) What is a configuration of a Turing machine?
(b) Give the language corresponding to the DFA acceptance problem.
(c) Give a CFG for the language $L=\left\{b^{n} a^{n} \mid n \geq 1\right\}$.
(d) What is the Church-Turing Thesis?
3. [10 points] Show that the collection of Turing-decidable languages is closed under union.
4. [26 points] Consider the following CFG $G=(V, \Sigma, R, S)$, where $V=\{S, T, X\}$, $\Sigma=\{a, b\}$, the start variable is S, and the rules R are

$$
\begin{aligned}
S & \rightarrow T X \\
T & \rightarrow T S S \mid a \\
X & \rightarrow b \mid \varepsilon
\end{aligned}
$$

Give a PDA that recognizes the language $L(G)$.

Give PDA here.

Scratch-work area

5. [20 points] Let $A \varepsilon_{\mathrm{CFG}}=\{\langle G\rangle \mid G$ is a CFG that generates $\varepsilon\}$. Show that $A \varepsilon_{\mathrm{CFG}}$ is decidable.
