CS 341, Fall 2006 Solutions for Midterm, eLearning Section

- 1. (a) False. $A = \{0^n 1^n \mid n \ge 0\}$ is a context-free language, but it is nonregular. Hence, A cannot have an NFA.
 - (b) True. Homework 5, problem 3(b).
 - (c) True. Homework 5, problem 3(a).
 - (d) True. Theorem 2.20.
 - (e) True. If A is finite, then it must be regular (page 1-81 of notes).
 - (f) False. $\{0,1\}^*$ is a regular language that is infinite.
 - (g) True, by Kleene's Theorem.
 - (h) False. 0^*1^* generates $00111 \notin \{0^n 1^n \mid n \ge 0\}$.
 - (i) False. $A \times B$ contains pairs of strings, whereas $A \circ B$ contains just strings.
 - (j) True. page 1-50 of notes.
- 2. (a) Lexicographic order means that shorter strings appear before longer strings, and strings of the same length are in alphabetical order.
 - (b) The difference is in the transition function δ . For a DFA, $\delta : Q \times \Sigma \to Q$, where Q is the set of states and Σ is the alphabet. For an NFA, $\delta : Q \times \Sigma_{\varepsilon} \to P(Q)$, where $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$ and P(Q) is the power set of Q.
 - (c) $b \cup b(a \cup b)^*b$
 - (d) DFA

3. NFA

- 4. $(a \cup ba^*b)(ba \cup (bb \cup a)a^*b)$
- 5. (a) $G = (V, \Sigma, R, S)$, where $V = \{S, X\}$, $\Sigma = \{a, b, c\}$, and the rules are $S \to bSa \mid X$, $X \to cXa \mid \varepsilon$.
 - (b) PDA

- 6. No, the class of context-free languages is not closed under intersection. Consider the languages $A = \{a^n b^n c^k \mid n, k \ge 0\}$ and $B = \{a^n b^k c^n \mid n, k \ge 0\}$. A CFG for A is $G_1 = (V_1, \Sigma, R_1, S_1)$, with $V_1 = \{S_1, X, Y\}$, $\Sigma = \{a, b, c\}$, and rules $S_1 \to XY$, $X \to aXb \mid \varepsilon, Y \to cY \mid \varepsilon$. A CFG for B is $G_2 = (V_2, \Sigma, R_2, S_2)$, with $V_2 = \{S_2, Z\}$, $\Sigma = \{a, b, c\}$, and rules $S_2 \to aS_2c \mid Z, Z \to bZ \mid \varepsilon$. Then $A \cap B = \{a^n b^n c^n \mid n \ge 0\}$, which is not context-free (see page 2-105 of the notes).
- 7. Suppose that $A = \{a^{3n}b^nc^{2n} \mid n \ge 0\}$ is a regular language. Let p be the pumping length, and consider the string $s = a^{3p}b^pc^{2p} \in A$. Note that $|s| = 6p \ge p$, so the pumping lemma implies we can write s = xyz with $xy^iz \in A$ for all $i \ge 0$, |y| > 0, and $|xy| \le p$. Now, $|xy| \le p$ implies that x and y have only a's (together up to p)

in total) and z has the rest of the a's followed by $b^p c^{2p}$. Hence, we can write $x = a^j$ for some $j \ge 0$, $y = a^k$ for some $k \ge 0$, and $z = a^\ell b^p c^{2p}$, where $j + k + \ell = 3p$ since $xyz = s = a^{3p} b^p c^{2p}$. Also, |y| > 0 implies k > 0. Now consider the string $xyyz = a^j a^k a^k a^\ell b^p c^{2p} = a^{3p+k} b^p c^{2p}$ since $j + k + \ell = 3p$. Note that $xyyz \notin A$, which is a contradiction, so A is not a regular language.