CS 341, Fall 2006

Solutions for Midterm, eLearning Section

1. (a) False. $A=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is a context-free language, but it is nonregular. Hence, A cannot have an NFA.
(b) True. Homework 5, problem 3(b).
(c) True. Homework 5, problem 3(a).
(d) True. Theorem 2.20.
(e) True. If A is finite, then it must be regular (page 1-81 of notes).
(f) False. $\{0,1\}^{*}$ is a regular language that is infinite.
(g) True, by Kleene's Theorem.
(h) False. $0^{*} 1^{*}$ generates $00111 \notin\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.
(i) False. $A \times B$ contains pairs of strings, whereas $A \circ B$ contains just strings.
(j) True. page 1-50 of notes.
2. (a) Lexicographic order means that shorter strings appear before longer strings, and strings of the same length are in alphabetical order.
(b) The difference is in the transition function δ. For a DFA, $\delta: Q \times \Sigma \rightarrow Q$, where Q is the set of states and Σ is the alphabet. For an NFA, $\delta: Q \times \Sigma_{\varepsilon} \rightarrow P(Q)$, where $\Sigma_{\varepsilon}=\Sigma \cup\{\varepsilon\}$ and $P(Q)$ is the power set of Q.
(c) $b \cup b(a \cup b)^{*} b$
(d) DFA

3. NFA

4. $\left(a \cup b a^{*} b\right)\left(b a \cup(b b \cup a) a^{*} b\right)$
5. (a) $G=(V, \Sigma, R, S)$, where $V=\{S, X\}, \Sigma=\{a, b, c\}$, and the rules are $S \rightarrow b S a \mid X$, $X \rightarrow c X a \mid \varepsilon$.
(b) PDA

6. No, the class of context-free languages is not closed under intersection. Consider the languages $A=\left\{a^{n} b^{n} c^{k} \mid n, k \geq 0\right\}$ and $B=\left\{a^{n} b^{k} c^{n} \mid n, k \geq 0\right\}$. A CFG for A is $G_{1}=\left(V_{1}, \Sigma, R_{1}, S_{1}\right)$, with $V_{1}=\left\{S_{1}, X, Y\right\}, \Sigma=\{a, b, c\}$, and rules $S_{1} \rightarrow X Y$, $X \rightarrow a X b|\varepsilon, Y \rightarrow c Y| \varepsilon$. A CFG for B is $G_{2}=\left(V_{2}, \Sigma, R_{2}, S_{2}\right)$, with $V_{2}=\left\{S_{2}, Z\right\}$, $\Sigma=\{a, b, c\}$, and rules $S_{2} \rightarrow a S_{2} c|Z, Z \rightarrow b Z| \varepsilon$. Then $A \cap B=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$, which is not context-free (see page 2-105 of the notes).
7. Suppose that $A=\left\{a^{3 n} b^{n} c^{2 n} \mid n \geq 0\right\}$ is a regular language. Let p be the pumping length, and consider the string $s=a^{3 p} b^{p} c^{2 p} \in A$. Note that $|s|=6 p \geq p$, so the pumping lemma implies we can write $s=x y z$ with $x y^{i} z \in A$ for all $i \geq 0,|y|>0$, and $|x y| \leq p$. Now, $|x y| \leq p$ implies that x and y have only a 's (together up to p
in total) and z has the rest of the a 's followed by $b^{p} c^{2 p}$. Hence, we can write $x=a^{j}$ for some $j \geq 0, y=a^{k}$ for some $k \geq 0$, and $z=a^{\ell} b^{p} c^{2 p}$, where $j+k+\ell=3 p$ since $x y z=s=a^{3 p} b^{p} c^{2 p}$. Also, $|y|>0$ implies $k>0$. Now consider the string $x y y z=a^{j} a^{k} a^{k} a^{\ell} b^{p} c^{2 p}=a^{3 p+k} b^{p} c^{2 p}$ since $j+k+\ell=3 p$. Note that $x y y z \notin A$, which is a contradiction, so A is not a regular language.
