CS 341, Fall 2006 Solutions for Midterm I

- 1. (a) False. The empty language \emptyset has no strings at all, not even the empty string ε .
 - (b) False. \emptyset is a language and ε is a string, so they can't be equal.
 - (c) False. $L(R \circ \emptyset) = \emptyset \neq L(R)$ if $R \neq \emptyset$.
 - (d) True, by Corollary 1.40.
 - (e) True, by Corollary 1.40.
 - (f) False. The language $\{a, b\}^*$ is infinite and has a DFA (see lecture notes 1-18), so it is regular.
 - (g) False. The string 0 begins and ends with 0 but cannot be generated by R.
 - (h) True, by Homework 2, problem 5.
 - (i) False. $\emptyset^* = \{\varepsilon\} \neq \emptyset$.
 - (j) False. $R \circ \varepsilon = R$ by lecture notes 1-62, so $L(R \circ \varepsilon) \neq \emptyset$ when $L(R) \neq \emptyset$.
- 2. (a) $A \times B = \{(11, \varepsilon), (11, 1), (111, \varepsilon), (111, 1)\}$ and $A \circ B = \{11, 111, 1111\}$.
 - (b) There are many sets S for which $S^* = S^+$, e.g., $S = \{\varepsilon\}$. In fact, $S^* = S^+$ if and only if $\varepsilon \in S$.
 - (c) There are many sets S for which $S^* = S$, e.g., $S = \{\varepsilon\}$.
 - (d) The difference between a DFA and an NFA is in the transition function δ . For a DFA, $\delta : Q \times \Sigma \to Q$. For an NFA, $\delta : Q \times \Sigma_{\varepsilon} \to P(Q)$, where P(Q) is the power set of Q.
- 3. (a) Strings that begin with b and end with a. DFA

Regular expression: $b(a \cup b)^*a$

(b) Strings w such that $n_b(w) \mod 3 = 2$ DFA

Regular expression: $a^*ba^*b(ba^*ba^*b \cup a)^*$

4. (a) ε , *a*, *aa*, *aaa*, *aba*, *bba*, *aaaa*, *aaba*, ...

5. We prove this by contradiction. Suppose that \overline{M} is not a minimal DFA for \overline{A} . Then there exists another DFA D for \overline{A} such that D has strictly fewer states than \overline{M} . Now create another DFA D' by swapping the accepting and non-accepting states of D. Then D' recognizes the complement of \overline{A} . But the complement of \overline{A} is just A, so D' recognizes A. Note that D' has the same number of states as D, and \overline{M} has the same number of states as M. Thus, since we assumed that D has strictly fewer states than \overline{M} , then D' has strictly fewer states than M. But since D' recognizes A, this contradicts our assumption that M is a minimal DFA for A. Therefore, \overline{M} is a minimal DFA for A.