CS 341, Fall 2006

Solutions for Midterm I

1. (a) False. The empty language \emptyset has no strings at all, not even the empty string ε.
(b) False. \emptyset is a language and ε is a string, so they can't be equal.
(c) False. $L(R \circ \emptyset)=\emptyset \neq L(R)$ if $R \neq \emptyset$.
(d) True, by Corollary 1.40.
(e) True, by Corollary 1.40.
(f) False. The language $\{a, b\}^{*}$ is infinite and has a DFA (see lecture notes 1-18), so it is regular.
(g) False. The string 0 begins and ends with 0 but cannot be generated by R.
(h) True, by Homework 2, problem 5.
(i) False. $\emptyset^{*}=\{\varepsilon\} \neq \emptyset$.
(j) False. $R \circ \varepsilon=R$ by lecture notes $1-62$, so $L(R \circ \varepsilon) \neq \emptyset$ when $L(R) \neq \emptyset$.
2. (a) $A \times B=\{(11, \varepsilon),(11,1),(111, \varepsilon),(111,1)\}$ and $A \circ B=\{11,111,1111\}$.
(b) There are many sets S for which $S^{*}=S^{+}$, e.g., $S=\{\varepsilon\}$. In fact, $S^{*}=S^{+}$if and only if $\varepsilon \in S$.
(c) There are many sets S for which $S^{*}=S$, e.g., $S=\{\varepsilon\}$.
(d) The difference between a DFA and an NFA is in the transition function δ. For a DFA, $\delta: Q \times \Sigma \rightarrow Q$. For an NFA, $\delta: Q \times \Sigma_{\varepsilon} \rightarrow P(Q)$, where $P(Q)$ is the power set of Q.
3. (a) Strings that begin with b and end with a.

DFA

Regular expression: $b(a \cup b)^{*} a$
(b) Strings w such that $n_{b}(w) \bmod 3=2$

DFA

Regular expression: $a^{*} b a^{*} b\left(b a^{*} b a^{*} b \cup a\right)^{*}$
4. (a) $\varepsilon, a, a a, a a a, a b a, b b a, a a a a, a a b a, \ldots$
(b)

5. We prove this by contradiction. Suppose that \bar{M} is not a minimal DFA for \bar{A}. Then there exists another DFA D for \bar{A} such that D has strictly fewer states than \bar{M}. Now create another DFA D^{\prime} by swapping the accepting and non-accepting states of D. Then D^{\prime} recognizes the complement of \bar{A}. But the complement of \bar{A} is just A, so D^{\prime} recognizes A. Note that D^{\prime} has the same number of states as D, and \bar{M} has the same number of states as M. Thus, since we assumed that D has strictly fewer states than \bar{M}, then D^{\prime} has strictly fewer states than M. But since D^{\prime} recognizes A, this contradicts our assumption that M is a minimal DFA for A. Therefore, \bar{M} is a minimal DFA for \bar{A}.

