Midterm Exam I

CS 341: Foundations of Computer Science II - Fall 2006, day section
Prof. Marvin K. Nakayama

Print family (or last) name: \qquad

Print given (or first) name:

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

Signature and Date

- This exam has 6 pages in total, numbered 1 to 6 . Make sure your exam has all the pages.
- Note the number written on the upper right-hand corner of the first page. On the sign-up sheet being passed around, sign your name next to this number.
- This exam will be 1 hour and 25 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:

1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area or the backs of the sheets to work out your answers before filling in the answer space.
2. DFA stands for deterministic finite automaton; NFA stands for nondeterministic finite automaton.
3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step.

Problem	1	2	3	4	5	Total
Points						

1. [20 points] For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
(a) TRUE FALSE - $\emptyset=\{\varepsilon\}$.
(b) TRUE FALSE - $\emptyset=\varepsilon$.
(c) TRUE FALSE - If R is any regular expression, then $L(R \circ \emptyset)=L(R)$.
(d) TRUE FALSE - If A is recognized by an NFA, then A is regular.
(e) TRUE FALSE - If A is a regular language, then there is an NFA that recognizes A.
(f) TRUE FALSE - If A is a regular language, then $|A|<\infty$.
(g) TRUE FALSE - If regular expression $R=0(0 \cup 1)^{*} 0$, then $L(R)$ is the language of all strings over $\Sigma=\{0,1\}$ that begin and end with 0 .
(h) TRUE FALSE - The class of regular languages is closed under intersection.
(i) TRUE FALSE $-\emptyset^{*}=\emptyset$.
(j) TRUE FALSE - If R is any regular expression, then $L(R \circ \varepsilon)=\emptyset$.
2. [20 points] Give short answers to each of the following parts. Each answer should be at most three sentences. Be sure to define any notation that you use.
(a) For the sets $A=\{11,111\}$ and $B=\{\epsilon, 1\}$, what are $A \times B$ and $A \circ B$?
(b) Give an example of a set S such that $S^{*}=S^{+}$.
(c) Give an example of a set S such that $S^{*}=S$.
(d) Explain the difference between a DFA and an NFA.
3. [20 points] For each of the following languages over the alphabet $\Sigma=\{a, b\}$, give a DFA and a regular expression for it. For the DFA, you only need to draw the graph; you do not need to formally define it as a 5 -tuple. Also, for any string $w \in \Sigma^{*}$, define $n_{b}(w)$ to be the number of b 's in w.
(a) All strings that begin with b and end with a.

Draw DFA here:

Give regular expression here:
(b) All strings w such that $n_{b}(w) \bmod 3=2$.

Draw DFA here:

Give regular expression here:

Scratch-work area

4. [25 points] Let N be the following NFA with $\Sigma=\{a, b\}$, and let $C=L(N)$.

(a) List the strings in C in lexicographic order. If C has more than 8 strings, list only the first 8 strings in C, followed by 3 dots.
(b) Give a DFA for C.

Scratch-work area

5. [15 points] We say that a DFA M for a language A is minimal if there does not exist another DFA M^{\prime} for A such that M^{\prime} has strictly fewer states than M. Suppose that $M=\left(Q, \Sigma, \delta, q_{0}, \underline{F}\right)$ is a minimal DFA for A. Using M, we construct a DFA \bar{M} for the complement \bar{A} as $\bar{M}=\left(Q, \Sigma, \delta, q_{0}, Q-F\right)$. Prove that \bar{M} is a minimal DFA for \bar{A}.
