CS 341, Fall 2006 Solutions for Midterm II, Day Section

- 1. (a) False. Corollary 1.40.
 - (b) True. Corollary 2.32.
 - (c) True. Homework 5, problem 3(b).
 - (d) False. All regular languages are also context-free by Corollary 2.32.
 - (e) False. It is nonregular (see notes 1-90), so it cannot have a regular expression by Kleene's Theorem.
 - (f) False. The language $\{a, b\}^*$ is infinite and has a DFA (see lecture notes 1-18), so it is regular.
 - (g) False. Homework 6, problem 2(a).
 - (h) False. A is finite, so it is regular by page 1-81 of the notes.
 - (i) True. B^* is context-free by Homework 5, problem 3(c). A is context-free by Corollary 2.32, so $A \cup B^*$ is context-free by Homework 5, problem 3(a).
 - (j) False. $\{a^n b^n c^n \mid n \ge 0\}$ is neither regular nor context-free.
- (a) A CFG is in Chomsky normal form if each of its rules has one of the following 3 forms: A → BC or A → x or S → ε, where A, B, C, S are variables; B and C are not the start variable S; and x is a terminal.
 - (b) $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to P(Q \times \Gamma_{\varepsilon})$, where Q is the set of states, Σ is the input alphabet, Γ is the stack alphabet, $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$, $\Gamma_{\varepsilon} = \Gamma \cup \{\varepsilon\}$, and $P(Q \times \Gamma_{\varepsilon})$ denotes the power set of $Q \times \Gamma_{\varepsilon}$.
 - (c) $G_3 = (V_3, \Sigma, R_3, S_3)$, where $V_3 = V_1 \cup V_2 \cup \{S_3\}$ and $R_3 = R_1 \cup R_2 \cup \{S_3 \to S_1 \mid S_2\}$.
 - (d) See page 1-66 of notes.
 - (e) See page 1-67 of notes.
- 3. (a) G = (V,Σ, R, S), where V = {S}, Σ = {a,b}, and the rules are S → aSa | bSb | a | b.
 (b) PDA

4. $(a \cup bb^*a)(ba \cup (a \cup bb)b^*a)^*$

- 5. Suppose A is context-free. Let $p \ge 1$ be the pumping length, and consider the string $s = c^p a^p b^p \in A$. Note that $|s| = 3p \ge p$, so the conclusions of the pumping lemma must hold; i.e., we can write s = uvxyz with $uv^i xy^i z \in A$ for all $i \ge 0$, $|vy| \ge 1$, and $|vxy| \le p$. Since $|vxy| \le p$, vxy can span at most 2 types of symbols. Let's consider all of the possibilities for vxy:
 - v and y are both uniform (i.e., v contains at most one type of symbol, and y contains at most one type of symbol). Since $|vy| \ge 1$, v and y cannot both be empty. Thus, for the string uv^2xy^2z , we have increased the number of symbols of at least one type and at most two types, so since there are 3 types of symbols, there must be more of one type of symbol than another type. Hence, uv^2xy^2z does not have the same number of c's, a's and b's, so $uv^2xy^2z \notin A$.
 - v and y are not both uniform (i.e., v contains two types of symbols, or y contains two types of symbols). Then uv^2xy^2z does not have all of the c's before all of the a's and all of the a's before all of the b's. Hence, $uv^2xy^2z \notin A$.

Thus, all possibilities lead to a contradiction, so A must not be context-free.