Midterm Exam II

CIS 341: Foundations of Computer Science II - Fall 2006, day section
Prof. Marvin K. Nakayama

Print family (or last) name: \qquad

Print given (or first) name: \qquad

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

Signature and Date:

- This exam has 7 pages in total, numbered 1 to 7 . Make sure your exam has all the pages.
- This exam will be 1 hour and 25 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:

1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area or the backs of the sheets to work out your answers before filling in the answer space.
2. DFA stands for deterministic finite automaton; NFA stands for nondeterministic finite automaton; CFG stands for context-free grammar; PDA stands for pushdown automaton.
3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step. Unless you are specifically asked to prove a theorem from the book, you may assume that the theorems in the textbook hold; i.e., you do not have to reprove the theorems in the textbook. When using a theorem from the textbook, make sure you provide enough detail so that it is clear which result you are using; e.g., say something like, "By the theorem that states $S^{* *}=S^{*}$, it follows that ..."

Problem	1	2	3	4	5	Total
Points						

1. [20 points] For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
(a) TRUE FALSE - If $A=L(N)$ for some NFA N, then A is nonregular.
(b) TRUE FALSE - If a language A has a DFA, then A is context-free.
(c) TRUE FALSE - The class of context-free languages is closed under concatenation.
(d) TRUE FALSE - If a language B is regular, then B cannot be contextfree.
(e) TRUE FALSE - The language $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ has a regular expression.
(f) TRUE FALSE - If a language L is regular, then L is finite.
(g) TRUE FALSE - If A and B are context-free languages, then $A \cap B$ is a context-free language.
(h) TRUE FALSE - For the alphabet $\Sigma=\{0,1\}$, the language

$$
A=\left\{w \in \Sigma^{*}\left|w=w^{\mathcal{R}},|w| \leq 100\right\}\right.
$$

is not regular.
(i) TRUE FALSE - If a language A is regular and a language B is contextfree, then $A \cup B^{*}$ is context-free.
(j) TRUE FALSE - Every language is regular or context-free.
2. [30 points] Give a short answer (at most three sentences) for each part below. Be sure to define any notation that you use.
(a) What does it mean for a context-free grammar to be in Chomsky normal form?
(b) Give the formal definition of the transition function δ of a PDA.
(c) Suppose that language A_{1} has CFG $G_{1}=\left(V_{1}, \Sigma, R_{1}, S_{1}\right)$, and language A_{2} has CFG $G_{2}=\left(V_{2}, \Sigma, R_{2}, S_{2}\right)$. Give a CFG G_{3} for $A_{1} \cup A_{2}$ in terms of G_{1} and G_{2}. You do not have to prove the correctness of your CFG G_{3}.
(d) Suppose that language A_{1} is recognized by NFA N_{1} below, and language A_{2} is recognized by NFA N_{2} below. Note that the transitions are not drawn in N_{1} and N_{2}. Draw a picture of an NFA for $A_{1} \circ A_{2}$.

(e) Suppose that language A is recognized by the NFA N below. Note that the transitions are not drawn in N. Draw a picture of an NFA for A^{*}.

3. [20 points] Consider the alphabet $\Sigma=\{a, b\}$ and the language

$$
L=\left\{w \in \Sigma^{*} \mid w=w^{\mathcal{R}} \text { and }|w| \text { is odd }\right\} .
$$

(a) Give a context-free grammar G for L. Be sure to specify G as a 4-tuple $G=(V, \Sigma, R, S)$.
(b) Give a PDA for L. You only need to draw the graph.

Scratch-work area

4. [15 points] For the DFA M below, give a regular expression for $L(M)$.

Answer:

Scratch-work area

5. [15 points] Recall the pumping lemma for context-free languages:

Theorem: For every context-free language L, there exists a pumping length p such that, if $s \in L$ with $|s| \geq p$, then we can write $s=u v x y z$ with
(i) $u v^{i} x y^{i} z \in L$ for each $i \geq 0$,
(ii) $|v y| \geq 1$, and
(iii) $|v x y| \leq p$.

Prove that $A=\left\{c^{n} a^{n} b^{n} \mid n \geq 0\right\}$ is not a context-free language.

