Midterm Exam II CIS 341: Foundations of Computer Science II — Fall 2006, day section Prof. Marvin K. Nakayama

Print family (or last) name:

Print given (or first) name: _____

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

Signature and Date: _____

- This exam has 7 pages in total, numbered 1 to 7. Make sure your exam has all the pages.
- This exam will be 1 hour and 25 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:
 - 1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area or the backs of the sheets to work out your answers before filling in the answer space.
 - 2. DFA stands for deterministic finite automaton; NFA stands for nondeterministic finite automaton; CFG stands for context-free grammar; PDA stands for pushdown automaton.
 - 3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step. Unless you are specifically asked to prove a theorem from the book, you may assume that the theorems in the textbook hold; i.e., you do not have to reprove the theorems in the textbook. When using a theorem from the textbook, make sure you provide enough detail so that it is clear which result you are using; e.g., say something like, "By the theorem that states $S^{**} = S^*$, it follows that ..."

Problem	1	2	3	4	5	Total
Points						

1. **[20 points]** For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE

(a)	TRUE	FALSE —	If $A = L(N)$ for some NFA N, then A is nonregular.
(b)	TRUE	FALSE —	If a language A has a DFA, then A is context-free.
(c)	TRUE	FALSE —	The class of context-free languages is closed under con- catenation.
(d)	TRUE	FALSE —	If a language B is regular, then B cannot be context-free.
(e)	TRUE	FALSE —	The language { $0^n 1^n \mid n \ge 0$ } has a regular expression.
(f)	TRUE	FALSE —	If a language L is regular, then L is finite.
(g)	TRUE	FALSE —	If A and B are context-free languages, then $A \cap B$ is a context-free language.
(h)	TRUE	FALSE —	For the alphabet $\Sigma = \{0, 1\}$, the language $A = \{ w \in \Sigma^* \mid w = w^{\mathcal{R}}, w \le 100 \}$
			is not regular.
(i)	TRUE	FALSE —	If a language A is regular and a language B is context-free, then $A\cup B^*$ is context-free.

(j) TRUE FALSE — Every language is regular or context-free.

- 2. [30 points] Give a short answer (at most three sentences) for each part below. Be sure to define any notation that you use.
 - (a) What does it mean for a context-free grammar to be in Chomsky normal form?

(b) Give the formal definition of the transition function δ of a PDA.

(c) Suppose that language A_1 has CFG $G_1 = (V_1, \Sigma, R_1, S_1)$, and language A_2 has CFG $G_2 = (V_2, \Sigma, R_2, S_2)$. Give a CFG G_3 for $A_1 \cup A_2$ in terms of G_1 and G_2 . You do not have to prove the correctness of your CFG G_3 .

(d) Suppose that language A_1 is recognized by NFA N_1 below, and language A_2 is recognized by NFA N_2 below. Note that the transitions are not drawn in N_1 and N_2 . Draw a picture of an NFA for $A_1 \circ A_2$.

(e) Suppose that language A is recognized by the NFA N below. Note that the transitions are not drawn in N. Draw a picture of an NFA for A^* .

3. **[20 points]** Consider the alphabet $\Sigma = \{a, b\}$ and the language

$$L = \{ w \in \Sigma^* \mid w = w^{\mathcal{R}} \text{ and } |w| \text{ is odd } \}.$$

(a) Give a context-free grammar G for L. Be sure to specify G as a 4-tuple $G = (V, \Sigma, R, S)$.

(b) Give a PDA for L. You only need to draw the graph.

Scratch-work area

4. **[15 points]** For the DFA M below, give a regular expression for L(M).

Answer:

Scratch-work area

5. **[15 points]** Recall the pumping lemma for context-free languages:

Theorem: For every context-free language L, there exists a pumping length p such that, if $s \in L$ with $|s| \ge p$, then we can write s = uvxyz with

- (i) $uv^i xy^i z \in L$ for each $i \ge 0$,
- (ii) $|vy| \ge 1$, and
- (iii) $|vxy| \leq p$.

Prove that $A = \{ c^n a^n b^n \mid n \ge 0 \}$ is not a context-free language.