Midterm Exam I

CIS 341: Foundations of Computer Science II - Spring 2006, day section
Prof. Marvin K. Nakayama

Print family (or last) name: \qquad

Print given (or first) name: \qquad

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

Signature and Date

- This exam has 6 pages in total, numbered 1 to 6 . Make sure your exam has all the pages.
- This exam will be 1 hour and 25 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:

1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area or the backs of the sheets to work out your answers before filling in the answer space.
2. DFA stands for deterministic finite automaton; NFA stands for nondeterministic finite automaton.
3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step.

Problem	1	2	3	4	5	Total
Points						

1. [20 points] For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
(a) TRUE FALSE - If A is a regular language, then A is finite.
(b) TRUE FALSE - If R is any regular expression, then $L(R \cup \varepsilon)=L(R)$.
(c) TRUE FALSE - If R is any regular expression, then $L(R \circ \emptyset)=L(R)$.
(d) TRUE FALSE - A regular expression for the language $\left\{b^{n} a^{n} \mid n \geq 0\right\}$ is $\varepsilon \cup b a \cup b b a a \cup b b b a a a \cup \cdots$.
(e) TRUE FALSE - If language A has a regular expression, then \bar{A} is recognized by some NFA.
(f) TRUE FALSE - If A is a nonregular language and B is a finite language, then $A \cup B$ must be nonregular.
(g) TRUE FALSE - If A is a nonregular language, then there exists a regular language B with $B \subseteq A$.
(h) TRUE FALSE - A DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ may have $F=Q$.
(i) TRUE FALSE - A DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ may have $F=\emptyset$.
(j) TRUE FALSE - If A is a regular language, then A^{*} must be nonregular.
2. [20 points] Give definitions or meanings of the following terms and phrases. Each answer should be at most two sentences. Be sure to define any notation that you use.
(a) For a machine M, what is $L(M)$?
(b) What does Kleene's Theorem say?
(c) Define the following statement: "The class of regular languages is closed under concatenation."
(d) Explain the difference between a DFA and an NFA.
3. [20 points] Let A be the language over the alphabet $\Sigma=\{a, b\}$ defined by the following NFA:

Draw here a DFA that recognizes A.

Scratch-work area
4. [20 points] Let B be the language recognized by the following NFA:

Give a regular expression for B.

Answer:

Scratch-work area
5. [20 points] Recall the pumping lemma:

Theorem: If A is a regular language, then \exists number p (pumping length) where, if $s \in A$ with $|s| \geq p$, then \exists strings x, y, z such that $s=x y z$ and
(i) $x y^{i} z \in A$ for each $i \geq 0$,
(ii) $|y|>0$, and
(iii) $|x y| \leq p$.

Prove that $C=\left\{b^{2 n} a^{2 n} b^{3 n} \mid n \geq 0\right\}$ is a nonregular language.

