CS 341, Fall 2007 Solutions for Midterm, eLearning Section

1. (a) False. The regular expression $a^{*} b^{*} a^{*}$ generates the string aabaaa $\notin A$. Moreover, A is not a regular language, so it cannot have a regular expression.
(b) False. The conclusion doesn't make sense at all since $A \times B$ consists of pairs of strings but $A \circ B$ just consists of strings.
(c) True. Corollary 2.32.
(d) False. The language $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is context-free (see slide 2-5), but not regular (see slide 1-90).
(e) False. The language $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is context-free (see slide 2-5), but is infinite.
(f) False. The language $A=\{a b b\}$ is finite and has CFG with rule $S \rightarrow a b b$.
(g) True, by Theorem 1.47.
(h) True, by Kleene's Theorem (Theorem 1.54).
(i) True, by Theorem 2.20.
(j) False. If A is recognized by an NFA, then A must be regular by Corollary 1.40.
2. (a) Lexicographic order means that shorter strings appear before longer strings, and strings of the same length are in alphabetical order.
(b) For a CFG $G=(V, \Sigma, R, S)$ to be in Chomsky normal form, each of its rules must have one of three forms: $A \rightarrow B C, A \rightarrow x$, or $S \rightarrow \varepsilon$, where A, B, C are variables, B and C are not the start variable, x is a terminal, and S is the start variable.
(c) $a(a \cup b)^{*} b$
(d) DFA

3. NFA

4. DFA:

5. (a) $G=(V, \Sigma, R, S)$, where $V=\{S\}, \Sigma=\{a, b\}$, and the rules are $S \rightarrow a S a|b S b| a|b| \varepsilon$.
(b) PDA

$$
\begin{array}{lll}
a, \varepsilon \rightarrow a & & a, a \rightarrow \varepsilon \\
b, \varepsilon \rightarrow b & \varepsilon, \varepsilon \rightarrow \varepsilon & b, b \rightarrow \varepsilon
\end{array}
$$

6. No, the class of context-free languages is not closed under intersection. Consider the languages $A=\left\{a^{n} b^{n} c^{k} \mid n, k \geq 0\right\}$ and $B=\left\{a^{n} b^{k} c^{n} \mid n, k \geq 0\right\}$. A CFG for A is $G_{1}=\left(V_{1}, \Sigma, R_{1}, S_{1}\right)$, with $V_{1}=\left\{S_{1}, X, Y\right\}, \Sigma=\{a, b, c\}$, and rules $S_{1} \rightarrow X Y$, $X \rightarrow a X b|\varepsilon, Y \rightarrow c Y| \varepsilon$. A CFG for B is $G_{2}=\left(V_{2}, \Sigma, R_{2}, S_{2}\right)$, with $V_{2}=\left\{S_{2}, Z\right\}$, $\Sigma=\{a, b, c\}$, and rules $S_{2} \rightarrow a S_{2} c|Z, Z \rightarrow b Z| \varepsilon$. Then $A \cap B=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$, which is not context-free (see page 2-105 of the notes).
7. Suppose that $A=\left\{w \in \Sigma^{*} \mid w=w^{\mathcal{R}}\right\}$ is a regular language. Let p be the pumping length, and consider the string $s=a^{p} b a^{p} \in A$. Note that $|s|=2 p+1 \geq p$, so the pumping lemma implies we can write $s=x y z$ with $x y^{i} z \in A$ for all $i \geq 0,|y|>0$, and $|x y| \leq p$. Now, $|x y| \leq p$ implies that x and y have only a 's (together up to p in total) and z has the rest of the first set of a 's, followed by $b a^{p}$. Hence, we can write $x=a^{j}$ for some $j \geq 0, y=a^{k}$ for some $k \geq 0$, and $z=a^{\ell} b a^{p}$, where $j+k+\ell=p$ since $x y z=s=a^{p} b a^{p}$. Also, $|y|>0$ implies $k>0$. Now consider the string xyyz=$a^{j} a^{k} a^{k} a^{\ell} b a^{p}=a^{p+k} b a^{p}$ since $j+k+\ell=p$. Note that $x y y z \notin A$ since $w \neq w^{\mathcal{R}}$, which is a contradiction, so A is not a regular language.

