Midterm Exam CS 341-451: Foundations of Computer Science II — Fall 2007, eLearning section Prof. Marvin K. Nakayama

Print family (or last) name:

Print given (or first) name:

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

Signature and Date

- This exam has 8 pages in total, numbered 1 to 8. Make sure your exam has all the pages.
- Unless other arrangements have been made with the professor, the exam is to be given on Sunday, October 21, 2007. The exam is to last 2.5 hours.
- This is a closed-book, closed-note exam. No calculators are allowed.
- For all problems, follow these instructions:
 - 1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area or the backs of the sheets to work out your answers before filling in the answer space.
 - 2. DFA stands for deterministic finite automaton; NFA stands for nondeterministic finite automaton; CFG stands for context-free grammar; PDA stands for pushdown automaton.
 - 3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step.

Problem	1	2	3	4	5	6	7	Total
Points								

1. **[20 points]** For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE

(a)	TRUE	FALSE	 The language $\{ a^n b^n a^n \mid n \ge 0 \}$ has regular expression $a^* b^* a^*$.
(b)	TRUE	FALSE	 If $A = \{\varepsilon\}$ and $B = \{01, 00\}$, then $A \times B = A \circ B$.
(c)	TRUE	FALSE	 Every regular language is also context-free.
(d)	TRUE	FALSE	 Every context-free language is also regular.
(e)	TRUE	FALSE	 Every context-free language is finite.
(f)	TRUE	FALSE	 Every context-free language is infinite.
(g)	TRUE	FALSE	 The class of regular languages is closed under concate- nation.
(h)	TRUE	FALSE	 If a language is regular, then it must have a regular expression.
(i)	TRUE	FALSE	 If a language is recognized by a PDA, then the lan- guage has a CFG.
(j)	TRUE	FALSE	 NFAs recognize nonregular languages.

- 2. [20 points] Give short answers to each of the following parts. Each answer should be at most three sentences. Be sure to define any notation that you use.
 - (a) What does it mean for a list of strings to be in lexicographic order?

(b) What does it mean for a context-free grammar $G = (V, \Sigma, R, S)$ to be in Chomsky normal form?

- (c) Give a regular expression for the language L consisting of strings over the alphabet $\Sigma = \{a, b\}$ that begin with a and end with b.
- (d) Give a DFA for the language consisting of strings over the alphabet $\Sigma = \{a, b\}$ that begin with a and end with b. You only need to draw the graph; do not specify the DFA as a 5-tuple.

3. **[10 points]** Let A be the language over the alphabet $\Sigma = \{a, b\}$ defined by regular expression $(b \cup baa)^*ab$. Give an NFA that recognizes A.

Draw an NFA for A here.

Scratch-work area

4. **[10 points]** Convert the following NFA into an equivalent DFA.

Answer:

Scratch-work area

- 5. [20 points] Let $\Sigma = \{a, b\}$, and consider the language $A = \{w \in \Sigma^* \mid w = w^{\mathcal{R}}\}$, where $w^{\mathcal{R}}$ denotes the reverse of w.
 - (a) Give a context-free grammar G that describes A. Be sure to specify G as a 4-tuple $G = (V, \Sigma, R, S)$.

(b) Give a pushdown automaton that recognizes A. You only need to draw the picture.

Scratch-work area

6. **[10 points]** Is the class of context-free languages closed under intersection?

Circle one: YES NO

- If YES, give a proof.
- If NO, give an example of two context-free languages A and B whose intersection is not context-free. Also, give the rules of the context-free grammars for A and B. You do not need to prove that the intersection of A and B is not context-free.

7. [10 points] Recall the pumping lemma for regular languages:

Theorem: For every regular language L, there exists a pumping length p such that, if $s \in L$ with $|s| \ge p$, then we can write s = xyz with

- (i) $xy^i z \in L$ for each $i \ge 0$,
- (ii) |y| > 0, and
- (iii) $|xy| \leq p$.

Let $\Sigma = \{a, b\}$, and consider the language $A = \{w \in \Sigma^* \mid w = w^{\mathcal{R}}\}$, where $w^{\mathcal{R}}$ denotes the reverse of w. Prove that A is not a regular language.