Midterm Exam
CS 341-451: Foundations of Computer Science II - Fall 2007, eLearning section Prof. Marvin K. Nakayama

Print family (or last) name: \qquad

Print given (or first) name: \qquad

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

Signature and Date

- This exam has 8 pages in total, numbered 1 to 8 . Make sure your exam has all the pages.
- Unless other arrangements have been made with the professor, the exam is to be given on Sunday, October 21, 2007. The exam is to last 2.5 hours.
- This is a closed-book, closed-note exam. No calculators are allowed.
- For all problems, follow these instructions:

1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area or the backs of the sheets to work out your answers before filling in the answer space.
2. DFA stands for deterministic finite automaton; NFA stands for nondeterministic finite automaton; CFG stands for context-free grammar; PDA stands for pushdown automaton.
3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step.

Problem	1	2	3	4	5	6	7	Total
Points								

1. [20 points] For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
(a) TRUE FALSE - The language $\left\{a^{n} b^{n} a^{n} \mid n \geq 0\right\}$ has regular expression $a^{*} b^{*} a^{*}$.
(b) TRUE FALSE - If $A=\{\varepsilon\}$ and $B=\{01,00\}$, then $A \times B=A \circ B$.
(c) TRUE FALSE - Every regular language is also context-free.
(d) TRUE FALSE - Every context-free language is also regular.
(e) TRUE FALSE - Every context-free language is finite.
(f) TRUE FALSE - Every context-free language is infinite.
(g) TRUE FALSE - The class of regular languages is closed under concatenation.
(h) TRUE FALSE - If a language is regular, then it must have a regular expression.
(i) TRUE FALSE - If a language is recognized by a PDA, then the language has a CFG.
(j) TRUE FALSE - NFAs recognize nonregular languages.
2. [20 points] Give short answers to each of the following parts. Each answer should be at most three sentences. Be sure to define any notation that you use.
(a) What does it mean for a list of strings to be in lexicographic order?
(b) What does it mean for a context-free grammar $G=(V, \Sigma, R, S)$ to be in Chomsky normal form?
(c) Give a regular expression for the language L consisting of strings over the alphabet $\Sigma=\{a, b\}$ that begin with a and end with b.
(d) Give a DFA for the language consisting of strings over the alphabet $\Sigma=\{a, b\}$ that begin with a and end with b. You only need to draw the graph; do not specify the DFA as a 5 -tuple.
3. [10 points] Let A be the language over the alphabet $\Sigma=\{a, b\}$ defined by regular expression $(b \cup b a a)^{*} a b$. Give an NFA that recognizes A.

Draw an NFA for A here.

Scratch-work area
4. [10 points] Convert the following NFA into an equivalent DFA.

Answer:

[^0]5. [20 points] Let $\Sigma=\{a, b\}$, and consider the language $A=\left\{w \in \Sigma^{*} \mid w=w^{\mathcal{R}}\right\}$, where $w^{\mathcal{R}}$ denotes the reverse of w.
(a) Give a context-free grammar G that describes A. Be sure to specify G as a 4-tuple $G=(V, \Sigma, R, S)$.
(b) Give a pushdown automaton that recognizes A. You only need to draw the picture.

Scratch-work area

6. [10 points] Is the class of context-free languages closed under intersection?
Circle one: YES NO

- If YES, give a proof.
- If NO, give an example of two context-free languages A and B whose intersection is not context-free. Also, give the rules of the context-free grammars for A and B. You do not need to prove that the intersection of A and B is not context-free.

7. [10 points] Recall the pumping lemma for regular languages:

Theorem: For every regular language L, there exists a pumping length p such that, if $s \in L$ with $|s| \geq p$, then we can write $s=x y z$ with
(i) $x y^{i} z \in L$ for each $i \geq 0$,
(ii) $|y|>0$, and
(iii) $|x y| \leq p$.

Let $\Sigma=\{a, b\}$, and consider the language $A=\left\{w \in \Sigma^{*} \mid w=w^{\mathcal{R}}\right\}$, where $w^{\mathcal{R}}$ denotes the reverse of w. Prove that A is not a regular language.

[^0]: Scratch-work area

