CS 341, Fall 2007 Solutions for Midterm 1

1. (a) False. If A has an NFA, then it is regular by Corollary 1.40.
(b) True.
(c) True. If A has a regular expression, then A is a regular language by Kleene's Theorem. Corollary 2.32 implies that A is CFL, so A has a CFG by definition.
(d) False. The language $A=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ has a PDA (see slide 2-54), but is not regular (slide 1-90), so A cannot have a DFA.
(e) False. The language $A=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ has a PDA (see slide 2-54), but is not regular (slide 1-90), so A cannot have a DFA. Thus, by Theorem 1.40, A cannot have an NFA either.
(f) False. Homework 6, problem 2(a).
(g) False. Homework 6, problem 2(b).
(h) False. Every CFL has a CFG in Chomsky normal form by Theorem 2.9. But not every CFL is regular, e.g., $\left\{a^{n} b^{n} \mid n \geq 0\right\}$.
(i) True, by Theorem 1.49.
(j) True. If A_{1} and A_{2} are regular, then $A_{1} \circ A_{2}$ is regular by Theorem 1.47. Corollary 2.32 then implies that $A_{1} \circ A_{2}$ is context-free.
2. (a) CFG $G=(V, \Sigma, R, S)$ is Chomsky normal form means that each rule in R has one of 3 forms:

$$
\begin{aligned}
A & \rightarrow B C \\
A & \rightarrow x \\
S & \rightarrow \varepsilon
\end{aligned}
$$

where $A \in V ; B, C \in V-\{S\} ; x \in \Sigma$, and S is the start variable.
(b) Here is an NFA with exactly 4 states:

(c) See page 1-53 of notes.
(d) Homework 5, problem 3(a).
3. (a) $a, b, a a, a b, a b a, \ldots$
(b) Here's a DFA for C.

4. (a) $G=(V, \Sigma, R, S)$ with set of variables $V=\{S, X\}$, where S is the start variable; set of terminals $\Sigma=\{a, b, c\}$; and rules

$$
\begin{aligned}
S & \rightarrow c S b \mid X \\
X & \rightarrow a X b \mid \varepsilon
\end{aligned}
$$

(b)

5. We prove this by contradiction. Suppose that A is a regular language. Let p be the "pumping length" of the Pumping Lemma. Consider the string $s=b^{p} a^{p+1}$. Note that $s \in A$, and $|s|=2 p+1>p$, so the Pumping Lemma will hold. Thus, there exists strings x, y, and z such that $s=x y z$ and
(a) $x y^{i} z \in A$ for each $i \geq 0$,
(b) $|y|>0$,
(c) $|x y| \leq p$.

Since the first p symbols of s are all b 's, the third property implies that x and y consist only of b 's. So z will be the rest of the b 's, followed by a^{p+1}. The second property states that $|y|>0$, so y has at least one b. More precisely, we can then say that

$$
\begin{aligned}
& x=b^{j} \text { for some } j \geq 0 \\
& y=b^{k} \text { for some } k \geq 1 \\
& z=b^{m} a^{p+1} \text { for some } m \geq 0
\end{aligned}
$$

Since $b^{p} a^{p+1}=s=x y z=b^{j} b^{k} b^{m} a^{p+1}=b^{j+k+m} a^{p+1}$, we must have that $j+k+m=p$. The first property implies that $x y^{2} z \in A$, but

$$
\begin{aligned}
x y^{2} z & =b^{j} b^{k} b^{k} b^{m} a^{p+1} \\
& =b^{p+k} a^{p+1}
\end{aligned}
$$

since $j+k+m=p$. Hence, $x y^{2} z \notin A$ because $k \geq 1$, and we get a contradiction. Therefore, A is a nonregular language.

